Distribution Pattern of Landslides Triggered by the 2014
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
And Potential Seismic Hazards Within the Southern Tarim Basin
Kinematics of active deformation across the Western Kunlun mountain range (Xinjiang, China), and potential seismic hazards within the southern Tarim Basin. Christelle Guilbaud, Martine Simoes, Laurie Barrier, Amandine Laborde, Jerome van der Woerd, Haibing Li, Paul Tapponnier, Thomas Coudroy, Andrew Murray To cite this version: Christelle Guilbaud, Martine Simoes, Laurie Barrier, Amandine Laborde, Jerome van der Woerd, et al.. Kinematics of active deformation across the Western Kunlun mountain range (Xinjiang, China), and potential seismic hazards within the southern Tarim Basin.. Journal of Geophysical Research : Solid Earth, American Geophysical Union, 2017, 122 (12), pp.10,398-10,426. 10.1002/2017JB014069. hal-01668711 HAL Id: hal-01668711 https://hal.archives-ouvertes.fr/hal-01668711 Submitted on 21 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Kinematics of Active Deformation Across the Western Kunlun 10.1002/2017JB014069 Mountain Range (Xinjiang, China) and -
Intraplate Earthquakes in North China
5 Intraplate earthquakes in North China mian liu, hui wang, jiyang ye, and cheng jia Abstract North China, or geologically the North China Block (NCB), is one of the most active intracontinental seismic regions in the world. More than 100 large (M > 6) earthquakes have occurred here since 23 BC, including the 1556 Huax- ian earthquake (M 8.3), the deadliest one in human history with a death toll of 830,000, and the 1976 Tangshan earthquake (M 7.8) which killed 250,000 people. The cause of active crustal deformation and earthquakes in North China remains uncertain. The NCB is part of the Archean Sino-Korean craton; ther- mal rejuvenation of the craton during the Mesozoic and early Cenozoic caused widespread extension and volcanism in the eastern part of the NCB. Today, this region is characterized by a thin lithosphere, low seismic velocity in the upper mantle, and a low and flat topography. The western part of the NCB consists of the Ordos Plateau, a relic of the craton with a thick lithosphere and little inter- nal deformation and seismicity, and the surrounding rift zones of concentrated earthquakes. The spatial pattern of the present-day crustal strain rates based on GPS data is comparable to that of the total seismic moment release over the past 2,000 years, but the comparison breaks down when using shorter time windows for seismic moment release. The Chinese catalog shows long-distance roaming of large earthquakes between widespread fault systems, such that no M ࣙ 7.0 events ruptured twice on the same fault segment during the past 2,000 years. -
2021 Oregon Seismic Hazard Database: Purpose and Methods
State of Oregon Oregon Department of Geology and Mineral Industries Brad Avy, State Geologist DIGITAL DATA SERIES 2021 OREGON SEISMIC HAZARD DATABASE: PURPOSE AND METHODS By Ian P. Madin1, Jon J. Francyzk1, John M. Bauer2, and Carlie J.M. Azzopardi1 2021 1Oregon Department of Geology and Mineral Industries, 800 NE Oregon Street, Suite 965, Portland, OR 97232 2Principal, Bauer GIS Solutions, Portland, OR 97229 2021 Oregon Seismic Hazard Database: Purpose and Methods DISCLAIMER This product is for informational purposes and may not have been prepared for or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information. This publication cannot substitute for site-specific investigations by qualified practitioners. Site-specific data may give results that differ from the results shown in the publication. WHAT’S IN THIS PUBLICATION? The Oregon Seismic Hazard Database, release 1 (OSHD-1.0), is the first comprehensive collection of seismic hazard data for Oregon. This publication consists of a geodatabase containing coseismic geohazard maps and quantitative ground shaking and ground deformation maps; a report describing the methods used to prepare the geodatabase, and map plates showing 1) the highest level of shaking (peak ground velocity) expected to occur with a 2% chance in the next 50 years, equivalent to the most severe shaking likely to occur once in 2,475 years; 2) median shaking levels expected from a suite of 30 magnitude 9 Cascadia subduction zone earthquake simulations; and 3) the probability of experiencing shaking of Modified Mercalli Intensity VII, which is the nominal threshold for structural damage to buildings. -
SMIP13 Seminar Proceedings OBSERVATIONS from the APRIL 20, 2013 LUSHAN COUNTY, YA'an CITY, SICHUAN PROVINCE, CHINA EARTHQUAKE
SMIP13 Seminar Proceedings OBSERVATIONS FROM THE APRIL 20, 2013 LUSHAN COUNTY, YA’AN CITY, SICHUAN PROVINCE, CHINA EARTHQUAKE Marshall Lew AMEC Environment & Infrastructure, Inc. Los Angeles, California Abstract The April 20, 2013 Lushan earthquake followed the 2008 Great Wenchuan earthquake by almost five years. Although the rupture also started in the Longmenshan fault zone, the Lushan earthquake is not an aftershock. Although similar damage and disruptions to infrastructure and society occurred, it was of a smaller scale and not unexpected due to the short time for the lessons from Wenchuan to be applied. There were some examples of lessons learned and the strong motion dataset obtained in this event will prove valuable in assessing how effective the actions taken have been. The visual observations were made on May 27 and 28, 2013 in Lushan. Introduction On April 20, 2013, at 8:02 am (Beijing Time), an earthquake occurred in Lushan County of Ya’an City in Sichuan Province in southwestern China. The epicenter was located at 30o 17’ 02” N and 102o 57’ 22” E, about 120 km from the major city of Chengdu; see Figure 1. Ya’an City is a prefecture level city in the western part of Sichuan Province and has a population of about 1.5 million people and is the location of one of China’s main centers for the protection of the endangered giant panda. Sichuan Province is known as the “Province of Abundance.” The province is a leading agricultural region of China and the province is also very rich in mineral resources, including large natural gas reserves. -
Bray 2011 Pseudostatic Slope Stability Procedure Paper
Paper No. Theme Lecture 1 PSEUDOSTATIC SLOPE STABILITY PROCEDURE Jonathan D. BRAY 1 and Thaleia TRAVASAROU2 ABSTRACT Pseudostatic slope stability procedures can be employed in a straightforward manner, and thus, their use in engineering practice is appealing. The magnitude of the seismic coefficient that is applied to the potential sliding mass to represent the destabilizing effect of the earthquake shaking is a critical component of the procedure. It is often selected based on precedence, regulatory design guidance, and engineering judgment. However, the selection of the design value of the seismic coefficient employed in pseudostatic slope stability analysis should be based on the seismic hazard and the amount of seismic displacement that constitutes satisfactory performance for the project. The seismic coefficient should have a rational basis that depends on the seismic hazard and the allowable amount of calculated seismically induced permanent displacement. The recommended pseudostatic slope stability procedure requires that the engineer develops the project-specific allowable level of seismic displacement. The site- dependent seismic demand is characterized by the 5% damped elastic design spectral acceleration at the degraded period of the potential sliding mass as well as other key parameters. The level of uncertainty in the estimates of the seismic demand and displacement can be handled through the use of different percentile estimates of these values. Thus, the engineer can properly incorporate the amount of seismic displacement judged to be allowable and the seismic hazard at the site in the selection of the seismic coefficient. Keywords: Dam; Earthquake; Permanent Displacements; Reliability; Seismic Slope Stability INTRODUCTION Pseudostatic slope stability procedures are often used in engineering practice to evaluate the seismic performance of earth structures and natural slopes. -
Living on Shaky Ground: How to Survive Earthquakes and Tsunamis
HOW TO SURVIVE EARTHQUAKES AND TSUNAMIS IN OREGON DAMAGE IN doWNTOWN KLAMATH FALLS FRom A MAGNITUde 6.0 EARTHQUAke IN 1993 TSUNAMI DAMAGE IN SEASIde FRom THE 1964GR EAT ALASKAN EARTHQUAke 1 Oregon Emergency Management Copyright 2009, Humboldt Earthquake Education Center at Humboldt State University. Adapted and reproduced with permission by Oregon Emergency You Can Prepare for the Management with help from the Oregon Department of Geology and Mineral Industries. Reproduction by permission only. Next Quake or Tsunami Disclaimer This document is intended to promote earthquake and tsunami readiness. It is based on the best SOME PEOplE THINK it is not worth preparing for an earthquake or a tsunami currently available scientific, engineering, and sociological because whether you survive or not is up to chance. NOT SO! Most Oregon research. Following its suggestions, however, does not guarantee the safety of an individual or of a structure. buildings will survive even a large earthquake, and so will you, especially if you follow the simple guidelines in this handbook and start preparing today. Prepared by the Humboldt Earthquake Education Center and the Redwood Coast Tsunami Work Group (RCTWG), If you know how to recognize the warning signs of a tsunami and understand in cooperation with the California Earthquake Authority what to do, you will survive that too—but you need to know what to do ahead (CEA), California Emergency Management Agency (Cal EMA), Federal Emergency Management Agency (FEMA), of time! California Geological Survey (CGS), Department of This handbook will help you prepare for earthquakes and tsunamis in Oregon. Interior United States Geological Survey (USGS), the National Oceanographic and Atmospheric Administration It explains how you can prepare for, survive, and recover from them. -
Beyond the Angle of Repose: a Review and Synthesis of Landslide Processes in Response to Rapid Uplift, Eel River, Northern Eel River, Northern California
Portland State University PDXScholar Geology Faculty Publications and Presentations Geology 2-23-2015 Beyond the Angle of Repose: A Review and Synthesis of Landslide Processes in Response to Rapid Uplift, Eel River, Northern Eel River, Northern California Joshua J. Roering University of Oregon Benjamin H. Mackey University of Canterbury Alexander L. Handwerger University of Oregon Adam M. Booth Portland State University, [email protected] Follow this and additional works at: https://pdxscholar.library.pdx.edu/geology_fac David A. Schmidt Univ Persityart of of the W Geologyashington Commons , Geomorphology Commons, and the Geophysics and Seismology Commons Let us know how access to this document benefits ou.y See next page for additional authors Citation Details Roering, Joshua J., Mackey, Benjamin H., Handwerger, Alexander L., Booth, Adam M., Schmidt, David A., Bennett, Georgina L., Cerovski-Darriau, Corina, Beyond the angle of repose: A review and synthesis of landslide pro-cesses in response to rapid uplift, Eel River, Northern California, Geomorphology (2015), doi: 10.1016/j.geomorph.2015.02.013 This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Geology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Joshua J. Roering, Benjamin H. Mackey, Alexander L. Handwerger, Adam M. Booth, David A. Schmidt, Georgina L. Bennett, and Corina Cerovski-Darriau This post-print is available at PDXScholar: https://pdxscholar.library.pdx.edu/geology_fac/75 ACCEPTED MANUSCRIPT Beyond the angle of repose: A review and synthesis of landslide processes in response to rapid uplift, Eel River, Northern California Joshua J. -
Earthquake/Landslide Death Scene Investigation Supplement
Death Scene Investigation Supplement EARTHQUAKE/LANDSLIDE 1 DECEDENT PERSONAL DETAILS Last Name: First Name: Sex: Law Enforcement Case Number (if available): Male Female ME/C Case Number (if available): Law Enforcement Agency (if applicable): Date of Birth: Date of Death: Estimated Found Known MM DD YYYY MM DD YYYY Location of Injury (physical address, including ZIP code): 2 LOCATION OF THE DECEDENT Was the decedent found INDOORS? Yes No Complete 2A: OUTDOORS In what part of residence or building was the decedent found? Did the incident destroy the location? Yes No Unknown Did the incident collapse the walls or ceiling of the location? Yes No Unknown 2A OUTDOORS Was the decedent found OUTDOORS? Yes No Go to Section 3: Information about Circumstances of Death Any evidence the person was previously in a... Structure? Yes No Unknown Vehicle? Yes No Unknown 3 INFORMATION ABOUT CIRCUMSTANCES OF DEATH Does the cause of death appear to be due to any of the following? Select all potential causes of death. Complete all corresponding sections, THEN go to Section 7. Injury – Struck by (e.g., falling object)/Blunt force/Burns Complete Section 4: Injury Questions Motor Vehicle Crash Complete Section 5: Motor Vehicle Crash Questions Other (e.g., exacerbation of chronic diseases) Complete Section 6: Other Non-Injury Causes Questions 1 4 INJURY QUESTIONS How did the injury occur? Check all that apply: Hit by or struck against (Describe) Crushed (Describe) Asphyxia (Describe) Cut/laceration/impaled (Describe) Electric current or burn (Describe) Burn and/or -
A Rapid Identification Method for Severely
Environ Earth Sci (2016) 75:704 DOI 10.1007/s12665-016-5540-6 ORIGINAL ARTICLE A rapid identification method for severely earthquake-damaged areas based on damaged mobile phone base stations in China 1 2 1 1 Xiaoyong Zhang • Qingshui Lu • Baokun Ning • Zhiyong Huang Received: 26 October 2015 / Accepted: 5 March 2016 Ó Springer-Verlag Berlin Heidelberg 2016 Abstract Obtaining an accurate map of severely dam- property. However, current methods to map earthquake- aged areas immediately after an earthquake is a high pri- damaged areas in China do not meet the required 2-h time ority in China. Previous methods of mapping these areas in constraint. For instance, seismic intensity attenuation the country have been too slow. The increasing number of models rely on seismic intensity in the earthquake epi- mobile phone base stations provides a new means of central region to identify extremely damaged areas, but identifying areas severely damaged by earthquakes in a acquiring seismic intensity data to determine that region very short time. In this study, we derive a new method requires many hours of processing (Yu 1995; Zhang et al. based on the data of faulty mobile phone base stations. Our 2009; Tan et al. 2011). Some studies use earthquake results show that areas of extreme earthquake damage aftershock data to estimate extremely damaged areas. identified according to base stations damaged by the However, with this method, processing the seismic data to Ludian and Lushan earthquakes were in very good agree- derive a map of such areas requires at least 1 day because a ment with large-magnitude seismic intensity zones outlined series of aftershock data observed within 24 h after the by the China Earthquake Administration. -
Fault Behavior and Lower Crustal Rheology Inferred from the First Seven Years of Postseismic GPS Data After the 2008 Wenchuan Earthquake
Originally published as: Diao, F., Wang, R., Wang, Y., Xiong, X., Walter, T. R. (2018): Fault behavior and lower crustal rheology inferred from the first seven years of postseismic GPS data after the 2008 Wenchuan earthquake. - Earth and Planetary Science Letters, 495, pp. 202—212. DOI: http://doi.org/10.1016/j.epsl.2018.05.020 Manuscript to be submitted to EPSL 1 Fault behaviour and lower crustal rheology inferred from the first seven years of 2 postseismic GPS data after the 2008 Wenchuan earthquake 3 4 Faqi Diaoa, Rongjiang Wangb*, Yuebing Wangc, Xiong Xionga and Thomas R. Walterb 5 a. Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, 6 China 7 b. GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam, 8 Germany 9 c. National Earthquake Infrastructure Service, Beijing 100045, China 10 *Corresponding author: Rongjiang Wang ([email protected]) 11 12 Abstract 13 Long-term and wide-area geodetic observations may allow identifying distinct postseismic 14 deformation processes following large earthquakes, and thus can reveal fault behaviour 15 and permit quantifying complexities in lithospheric rheology. In this paper, the first 7 16 years of GPS (Global Positioning System) displacement data following the 2008 Mw7.9 17 Wenchuan earthquake are used to study the relevant mechanisms of postseismic 18 deformation. Two simple models that consider either afterslip or viscoelastic relaxation as 19 the unitary mechanism of the postseismic deformation are tested at first. After analysing 20 the limitations and complementarity of these two separated models, a combined model 21 incorporating the two main mechanisms is presented. -
An Evaluation of Influential Factors on Landslide Mobility During the 2008
Open Access Nat. Hazards Earth Syst. Sci. Discuss., 2, C1501–C1503, 2014 Natural Hazards www.nat-hazards-earth-syst-sci-discuss.net/2/C1501/2014/ and Earth System © Author(s) 2014. This work is distributed under the Creative Commons Attribute 3.0 License. Sciences Discussions Interactive comment on “An evaluation of influential factors on landslide mobility during the 2008 Wenchuan earthquake” by D. P. Guo et al. D. P. Guo et al. [email protected] Received and published: 14 July 2014 Dear editor and reviewer: Thank you very much for your kind comments on our paper, I will reply your comments one by one, as follows: [1] . .. .I think the topic of the manuscript is very valuable and urgent. In addition, I no- ticed that the topic is not only have few concerns in theWenchuan earthquake, but also other earthquake events (such as the 1999 Chi-chi earthquake, the 2010 Yushu earth- quake, the 2013 Lushan earthquake, 2010 Haiti earthquake etc.). Therefore, I suggest the author to read several more papers of these earthquake events, and supplement the knowledge in the section introduction, which can strengthen the meaningful and C1501 valuable of the manuscript. Reply: added following text in the Line 5 of page 3 of NHESSD version of this paper: From the global viewpoint, there are many publications to research the relationship between earthquake-triggered landslide distribution and its influential factors, such as, Keefer (1984) firstly introduced empirical upper bound lines for the relation between earthquake magnitude and total area affected by landslides, maximum distance from epicenter or from fault rupture zone. -
1 Seismic Velocity Reduction and Accelerated Recovery Due to Earthquakes on the Longmenshan Fault
1 Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault 2 Shunping Pei1,2, Fenglin Niu3,4, Yehuda Ben-Zion5, Quan Sun2, Yanbing Liu2, Xiaotian Xue2, Jinrong Su6, 3 Zhigang Shao7 4 1CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), 5 Beijing 100101, China 6 2 CAS Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, 7 Chinese Academy of Sciences(CAS), Beijing 100101, China 8 3State Key Laboratory of petroleum Resource and Prospecting, and Unconventional Gas Institute, China 9 University of Petroleum at Beijing, Beijing 102249, China 10 4Department of Earth, Environmental and Planetary Sciences, Rice University, 6100 Main Street, 11 Houston, TX 77005, USA 12 5Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA 13 6Earthquake Administration of Sichuan Province, Chengdu 610041, China 14 7Institute of Earthquake Science, China Earthquake Administration, Beijing 100029, China 15 Correspondence and requests for materials should be addressed to F.N. ([email protected]). 16 17 Various studies report on temporal changes of seismic velocities in the crust and attempt to relate 18 the observations to changes of stress and material properties around faults. While there is growing 19 number of observations on co-seismic velocity reductions, detailed observations of healing phases 20 are generally lacking. Here we report on pronounced co-seismic reduction of velocities around two 21 locked sections (asperities) of the Longmenshan fault with large slip during the 2008 Mw 7.9 22 Wenchuan earthquake, and subsequent healing of the velocities. The healing phase is accelerated 23 significantly at the southern asperity right after the nearby 2013 Mw 6.6 Lushan earthquake.