1 Seismic Velocity Reduction and Accelerated Recovery Due to Earthquakes on the Longmenshan Fault

Total Page:16

File Type:pdf, Size:1020Kb

1 Seismic Velocity Reduction and Accelerated Recovery Due to Earthquakes on the Longmenshan Fault 1 Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault 2 Shunping Pei1,2, Fenglin Niu3,4, Yehuda Ben-Zion5, Quan Sun2, Yanbing Liu2, Xiaotian Xue2, Jinrong Su6, 3 Zhigang Shao7 4 1CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), 5 Beijing 100101, China 6 2 CAS Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, 7 Chinese Academy of Sciences(CAS), Beijing 100101, China 8 3State Key Laboratory of petroleum Resource and Prospecting, and Unconventional Gas Institute, China 9 University of Petroleum at Beijing, Beijing 102249, China 10 4Department of Earth, Environmental and Planetary Sciences, Rice University, 6100 Main Street, 11 Houston, TX 77005, USA 12 5Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA 13 6Earthquake Administration of Sichuan Province, Chengdu 610041, China 14 7Institute of Earthquake Science, China Earthquake Administration, Beijing 100029, China 15 Correspondence and requests for materials should be addressed to F.N. ([email protected]). 16 17 Various studies report on temporal changes of seismic velocities in the crust and attempt to relate 18 the observations to changes of stress and material properties around faults. While there is growing 19 number of observations on co-seismic velocity reductions, detailed observations of healing phases 20 are generally lacking. Here we report on pronounced co-seismic reduction of velocities around two 21 locked sections (asperities) of the Longmenshan fault with large slip during the 2008 Mw 7.9 22 Wenchuan earthquake, and subsequent healing of the velocities. The healing phase is accelerated 23 significantly at the southern asperity right after the nearby 2013 Mw 6.6 Lushan earthquake. The 24 results are obtained by joint inversions of travel time data at four different periods across the 25 Wenchuan and Lushan earthquakes. The rapid acceleration of healing in response to the Lushan 1 26 earthquake provides unique evidence of the high sensitivity of seismic velocities to stress changes. 27 We suggest that stress redistribution plays an important role in rebuilding fault strength. 28 29 Earthquakes are caused by the rapid conversion of stresses to inelastic strain (rock damage) along 30 faults (1-10). Recent studies show that fault failure can manifest as a small or large earthquake (11), as 31 aseismic slip (12), or as non-volcanic tremor (13-15). It is also found that fault interactions and other 32 processes can significantly affect the long-term stress build up by plate tectonics (16,17). Stress transfer 33 can be calculated in principle with elastic or viscoelastic modelling (16-21); however, estimating stress 34 changes from data is notoriously difficult, particularly at seismogenic depths. One promising approach is 35 to accurately monitor changes of subsurface seismic velocities (4,22), which are shown in laboratory 36 studies to be sensitive to the stress field (23-25) due to stress-induced changes in properties of cracks. 37 Indeed, there are an increasing number of observations on temporal changes of seismic velocities 38 associated with the occurrence of tectonic events, such as earthquakes (3-8, 26-28) and volcanic eruptions 39 (29,30). 40 The Longmenshan fault zone is located at a pronounced topographic boundary between the eastern 41 margin of the Tibetan plateau and the western Sichuan basin (Figure 1), where elevation changes from Fig. 1 42 ~5000 m to ~500 m within a distance of ~50 km. Geologically, the fault zone manifests itself as the thrust 43 front of the Himalayan orogen and consists of a series of long-angle transpressional faults that extend 44 from southwest to northeast for approximately 300 kilometers. Fault motion is dominated by thrust at the 45 southwestern section and gradually transitions to strike slip at the northeastern end. Over the last decade, 46 two major earthquakes, the 2008 Mw7.9 Wenchuan earthquake and the 2013 Mw6.6 Lushan earthquake, 47 ruptured the northeastern part and the southern end of the fault zone, respectively. The section between 48 with a length of ~60 km remained intact and is associated with seismic risk yet to be determined. The 49 area has been well instrumented before and after the earthquakes, providing unique opportunities to study 50 temporal variations of seismic properties and interaction among different segments of the fault zone. 2 51 The Longmenshan fault zone is in a seismically active region, which is closely monitored by the 52 regional seismic network operated by the Earthquake Administration of Sichuan Province (EASP). The 53 seismicity before the 2008 Mw7.9 earthquake was rather diffuse and spread widely across the entire 54 margin (black crosses in Figure 1b). It was replaced by a much more condensed aftershock seismicity 55 along the Longmenshan fault after the main shock (circles in Figure 1b). These small events are well 56 recorded and located by the EASP seismic network due to the good station coverage in both azimuth and 57 distance. 58 Coseismic velocity reduction during the 2008 Wenchuan Earthquake 59 We selected the first P-wave arrivals in the distance range between 0.1° and 2.0°, which are known as 60 the Pg waves traveling through the upper crust, recorded in the period of 2000-2014. The Pg travel times 61 exhibit a linear relationship with epicentral distance (Supplementary Fig. S1), and the slope of the linear 62 trend corresponds to the average velocity of the upper crust sampled by the source-receiver raypaths. We 63 noticed a small yet systematic change in the slope of the traveltime curve. We organized the traveltime 64 data in a chronological order, and divided the15-year period into time intervals with roughly the same 65 amount of earthquakes. In particular, we used one-year and one-month intervals before and after the 66 Wenchuan earthquake, respectively, due to the large number of aftershocks. Using linear regressions of 67 the Pg traveltimes compiled in each period, we compute the corresponding average P-wave velocities and 68 observe significant variation across the 15-year period (Figure 2a). The estimated average P-wave Fig. 2 69 velocity remains more or less the same at ~6 km/s before the Wenchuan earthquake, and drops abruptly 70 nearly 4% to ~5.75 km/s right after the mainshock. It then rises gradually to ~5.85 km/s before the 2013 71 Mw6.6 Lushan earthquake, where a small coseismic drop is observed. The influence from the Lushan 72 earthquake, however, appears to have very short duration and the recovery of P-wave velocity seems to be 73 present one month after the Lushan earthquake and continues to grow nearly to the level prior to the 74 Wenchuan earthquake. 3 75 To further locate the lateral distribution of the observed average velocity changes, we developed a 76 tomography technique that jointly invert the travel times observed at different time periods for 2-D 77 subsurface velocity changes. We analyzed four time periods that sample right before and after the two 78 earthquakes, which are marked by black solid horizontal lines in Figure 2a. The length of each period is 79 chosen such that the four time periods have roughly the same amount of Pg traveltime data. Because of 80 the large numbers of aftershocks right after the Wenchuan earthquake, a very short time period P2 is 81 sufficient to accumulate the required amount of data, producing a ~3-year gap between P2 and P3. We 82 treated the Pg travel times in each period as independent observations and employed a 2-D traveltime 83 tomography method (31, 32) to jointly invert the data from two consecutive periods for the background 84 velocities of each lateral block, as well as their changes between the two periods (Methods). 85 The co-seismic velocity changes of the Wenchuan earthquake (Figure 3a) were obtained from the 86 joint inversion of the Pg data of the first two time periods, P1 and P2. Large velocity drops are clustered Fig. 3 87 at the Yingxiu town of the Wenchuan County and Beichuan County, which are hereafter referred to as the 88 Wenchuan asperity and Beichuan asperity, respectively. We note that they are spatially coincident with 89 the two areas of large coseismic slip (33-35) and surface deformation (36,37). Results from the joint 90 inversion of Pg data of the two time periods, P2 and P3, reveal postseismic velocity changes that occurred 91 in the four-year period following the mainshock and right before the 2013 Lushan earthquake (Figure 92 3b). During this period, most of the velocity recoveries are observed around the Beichuan asperity, 93 suggesting that fault healing during this period took place at this part of the fault. The Wenchuan 94 asperity, on the other hand, showed very little to no velocity change during this period. 95 Accelerated healing following the 2013 Lushan earthquake 96 The co-seismic velocity changes of the Lushan earthquake inverted from P3 and P4 (Figure 3c) 97 show a large velocity increase in the southern portion of the Wenchuan rupture zone, particularly in the 98 area near the Wenchuan asperity. Velocity changes in other regions including the Beichuan asperity area 99 are insignificant. We further computed the total amount of velocity recovery along the Longmenshan fault 4 100 over the six-year period after the Wenchuan earthquake by jointly inverting the P2 and P4 data (Figure 101 3d). Most of the co-seismic velocity drops of the Wenchuan earthquake that centered at the two asperity 102 zones appear to be nearly recovered during this period. 103 To examine how seismic velocity has evolved in the two asperity regions, we computed the average 104 velocities and their standard deviations using cells in the two black boxes marked in Figure 3.
Recommended publications
  • And Potential Seismic Hazards Within the Southern Tarim Basin
    Kinematics of active deformation across the Western Kunlun mountain range (Xinjiang, China), and potential seismic hazards within the southern Tarim Basin. Christelle Guilbaud, Martine Simoes, Laurie Barrier, Amandine Laborde, Jerome van der Woerd, Haibing Li, Paul Tapponnier, Thomas Coudroy, Andrew Murray To cite this version: Christelle Guilbaud, Martine Simoes, Laurie Barrier, Amandine Laborde, Jerome van der Woerd, et al.. Kinematics of active deformation across the Western Kunlun mountain range (Xinjiang, China), and potential seismic hazards within the southern Tarim Basin.. Journal of Geophysical Research : Solid Earth, American Geophysical Union, 2017, 122 (12), pp.10,398-10,426. 10.1002/2017JB014069. hal-01668711 HAL Id: hal-01668711 https://hal.archives-ouvertes.fr/hal-01668711 Submitted on 21 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Kinematics of Active Deformation Across the Western Kunlun 10.1002/2017JB014069 Mountain Range (Xinjiang, China) and
    [Show full text]
  • Intraplate Earthquakes in North China
    5 Intraplate earthquakes in North China mian liu, hui wang, jiyang ye, and cheng jia Abstract North China, or geologically the North China Block (NCB), is one of the most active intracontinental seismic regions in the world. More than 100 large (M > 6) earthquakes have occurred here since 23 BC, including the 1556 Huax- ian earthquake (M 8.3), the deadliest one in human history with a death toll of 830,000, and the 1976 Tangshan earthquake (M 7.8) which killed 250,000 people. The cause of active crustal deformation and earthquakes in North China remains uncertain. The NCB is part of the Archean Sino-Korean craton; ther- mal rejuvenation of the craton during the Mesozoic and early Cenozoic caused widespread extension and volcanism in the eastern part of the NCB. Today, this region is characterized by a thin lithosphere, low seismic velocity in the upper mantle, and a low and flat topography. The western part of the NCB consists of the Ordos Plateau, a relic of the craton with a thick lithosphere and little inter- nal deformation and seismicity, and the surrounding rift zones of concentrated earthquakes. The spatial pattern of the present-day crustal strain rates based on GPS data is comparable to that of the total seismic moment release over the past 2,000 years, but the comparison breaks down when using shorter time windows for seismic moment release. The Chinese catalog shows long-distance roaming of large earthquakes between widespread fault systems, such that no M ࣙ 7.0 events ruptured twice on the same fault segment during the past 2,000 years.
    [Show full text]
  • SMIP13 Seminar Proceedings OBSERVATIONS from the APRIL 20, 2013 LUSHAN COUNTY, YA'an CITY, SICHUAN PROVINCE, CHINA EARTHQUAKE
    SMIP13 Seminar Proceedings OBSERVATIONS FROM THE APRIL 20, 2013 LUSHAN COUNTY, YA’AN CITY, SICHUAN PROVINCE, CHINA EARTHQUAKE Marshall Lew AMEC Environment & Infrastructure, Inc. Los Angeles, California Abstract The April 20, 2013 Lushan earthquake followed the 2008 Great Wenchuan earthquake by almost five years. Although the rupture also started in the Longmenshan fault zone, the Lushan earthquake is not an aftershock. Although similar damage and disruptions to infrastructure and society occurred, it was of a smaller scale and not unexpected due to the short time for the lessons from Wenchuan to be applied. There were some examples of lessons learned and the strong motion dataset obtained in this event will prove valuable in assessing how effective the actions taken have been. The visual observations were made on May 27 and 28, 2013 in Lushan. Introduction On April 20, 2013, at 8:02 am (Beijing Time), an earthquake occurred in Lushan County of Ya’an City in Sichuan Province in southwestern China. The epicenter was located at 30o 17’ 02” N and 102o 57’ 22” E, about 120 km from the major city of Chengdu; see Figure 1. Ya’an City is a prefecture level city in the western part of Sichuan Province and has a population of about 1.5 million people and is the location of one of China’s main centers for the protection of the endangered giant panda. Sichuan Province is known as the “Province of Abundance.” The province is a leading agricultural region of China and the province is also very rich in mineral resources, including large natural gas reserves.
    [Show full text]
  • Distribution Pattern of Landslides Triggered by the 2014
    International Journal of Geo-Information Article Distribution Pattern of Landslides Triggered by the 2014 Ludian Earthquake of China: Implications for Regional Threshold Topography and the Seismogenic Fault Identification Suhua Zhou 1,2, Guangqi Chen 1 and Ligang Fang 2,* 1 Department of Civil and Structural Engineering, Kyushu University, Fukuoka 819-0395, Japan; [email protected] (S.Z.); [email protected] (G.C.) 2 Department of Geotechnical Engineering, Central South University, Changsha 410075, China * Correspondance: [email protected]; Tel.: +86-731-8253-9756 Academic Editor: Wolfgang Kainz Received: 16 February 2016; Accepted: 11 March 2016; Published: 30 March 2016 Abstract: The 3 August 2014 Ludian earthquake with a moment magnitude scale (Mw) of 6.1 induced widespread landslides in the Ludian County and its vicinity. This paper presents a preliminary analysis of the distribution patterns and characteristics of these co-seismic landslides. In total, 1826 landslides with a total area of 19.12 km2 triggered by the 3 August 2014 Ludian earthquake were visually interpreted using high-resolution aerial photos and Landsat-8 images. The sizes of the landslides were, in general, much smaller than those triggered by the 2008 Wenchuan earthquake. The main types of landslides were rock falls and shallow, disrupted landslides from steep slopes. These landslides were unevenly distributed within the study area and concentrated within an elliptical area with a 25-km NW–SE striking long axis and a 15-km NW–SE striking short axis. Three indexes including landslides number (LN), landslide area ratio (LAR), and landslide density (LD) were employed to analyze the relation between the landslide distribution and several factors, including lithology, elevation, slope, aspect, distance to epicenter and distance to the active fault.
    [Show full text]
  • Fault Behavior and Lower Crustal Rheology Inferred from the First Seven Years of Postseismic GPS Data After the 2008 Wenchuan Earthquake
    Originally published as: Diao, F., Wang, R., Wang, Y., Xiong, X., Walter, T. R. (2018): Fault behavior and lower crustal rheology inferred from the first seven years of postseismic GPS data after the 2008 Wenchuan earthquake. - Earth and Planetary Science Letters, 495, pp. 202—212. DOI: http://doi.org/10.1016/j.epsl.2018.05.020 Manuscript to be submitted to EPSL 1 Fault behaviour and lower crustal rheology inferred from the first seven years of 2 postseismic GPS data after the 2008 Wenchuan earthquake 3 4 Faqi Diaoa, Rongjiang Wangb*, Yuebing Wangc, Xiong Xionga and Thomas R. Walterb 5 a. Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, 6 China 7 b. GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam, 8 Germany 9 c. National Earthquake Infrastructure Service, Beijing 100045, China 10 *Corresponding author: Rongjiang Wang ([email protected]) 11 12 Abstract 13 Long-term and wide-area geodetic observations may allow identifying distinct postseismic 14 deformation processes following large earthquakes, and thus can reveal fault behaviour 15 and permit quantifying complexities in lithospheric rheology. In this paper, the first 7 16 years of GPS (Global Positioning System) displacement data following the 2008 Mw7.9 17 Wenchuan earthquake are used to study the relevant mechanisms of postseismic 18 deformation. Two simple models that consider either afterslip or viscoelastic relaxation as 19 the unitary mechanism of the postseismic deformation are tested at first. After analysing 20 the limitations and complementarity of these two separated models, a combined model 21 incorporating the two main mechanisms is presented.
    [Show full text]
  • Earthquake Phenomenology from the Field the April 20, 2013, Lushan Earthquake Springerbriefs in Earth Sciences
    SPRINGER BRIEFS IN EARTH SCIENCES Zhongliang Wu Changsheng Jiang Xiaojun Li Guangjun Li Zhifeng Ding Earthquake Phenomenology from the Field The April 20, 2013, Lushan Earthquake SpringerBriefs in Earth Sciences For further volumes: http://www.springer.com/series/8897 Zhongliang Wu · Changsheng Jiang · Xiaojun Li Guangjun Li · Zhifeng Ding Earthquake Phenomenology from the Field The April 20, 2013, Lushan Earthquake 1 3 Zhongliang Wu Guangjun Li Changsheng Jiang Earthquake Administration of Sichuan Xiaojun Li Province Zhifeng Ding Chengdu China Earthquake Administration China Institute of Geophysics Beijing China ISSN 2191-5369 ISSN 2191-5377 (electronic) ISBN 978-981-4585-13-2 ISBN 978-981-4585-15-6 (eBook) DOI 10.1007/978-981-4585-15-6 Springer Singapore Heidelberg New York Dordrecht London Library of Congress Control Number: 2014939941 © The Author(s) 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • Structure-Controlled Asperities of the 1920 Haiyuan M8.5 and 1927
    www.nature.com/scientificreports OPEN Structure‑controlled asperities of the 1920 Haiyuan M8.5 and 1927 Gulang M8 earthquakes, NE Tibet, China, revealed by high‑resolution seismic tomography Quan Sun1,2, Shunping Pei1,2,3*, Zhongxiong Cui4, Yongshun John Chen5, Yanbing Liu1,2, Xiaotian Xue1,2, Jiawei Li1,2, Lei Li1,2 & Hong Zuo1,2 Detailed crustal structure of large earthquake source regions is of great signifcance for understanding the earthquake generation mechanism. Numerous large earthquakes have occurred in the NE Tibetan Plateau, including the 1920 Haiyuan M8.5 and 1927 Gulang M8 earthquakes. In this paper, we obtained a high‑resolution three‑dimensional crustal velocity model around the source regions of these two large earthquakes using an improved double‑diference seismic tomography method. High‑ velocity anomalies encompassing the seismogenic faults are observed to extend to depths of 15 km, suggesting the asperity (high‑velocity area) plays an important role in the preparation process of large earthquakes. Asperities are strong in mechanical strength and could accumulate tectonic stress more easily in long frictional locking periods, large earthquakes are therefore prone to generate in these areas. If the close relationship between the aperity and high‑velocity bodies is valid for most of the large earthquakes, it can be used to predict potential large earthquakes and estimate the seismogenic capability of faults in light of structure studies. Earthquakes occur when the stored energy in the Earth’s lithosphere is suddenly released. Large earthquakes usually cause great hazards on natural environment and/or humans. Tere has been an obvious surge of great earthquakes with magnitudes ≥ 8.0 during the past decade with great diversity at various aspects 1.
    [Show full text]
  • Triggered Slip on a Back Reverse Fault in the Mw6.8 2013 Lushan, China Earthquake Revealed by Joint Inversion of Local Strong Mo
    Tectonophysics 672–673 (2016) 24–33 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Triggered slip on a back reverse fault in the Mw6.8 2013 Lushan, China earthquake revealed by joint inversion of local strong motion accelerograms and geodetic measurements Guohong Zhang a,b,⁎,EricA.Hetlandb,XinjianShana, Martin Vallée c, Yunhua Liu a, Yingfeng Zhang a, Chunyan Qu a a State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China b Earth and Environmental Sciences, University of Michigan, Ann Arbor, USA c Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, UMR 7154 CNRS, Paris, France article info abstract Article history: The 2013 Mw6.8 Lushan, China earthquake occurred in the southwestern end of the Longmenshan fault zone. We Received 4 June 2015 jointly invert local strong motion data and geodetic measurements of coseismic surface deformation, including Received in revised form 11 January 2016 GPS and InSAR, to obtain a robust model of the rupture process of the 2013 Lushan earthquake. Our joint inver- Accepted 13 January 2016 sion best model involves the rupture of two opposing faults during the Lushan earthquake, a main fault and a sec- Available online 6 February 2016 ondary fault. It is only when the secondary fault is included that both the GPS and InSAR measurements are fit along with the near-field strong motion. Over 75% of the computed moment was released in slip on the main Keywords: Triggered fault slip fault segment, a northwest dipping, listric thrust fault, with buried thrust and dextral strike-slip at hypocenter Back reverse fault depths, and with only minor slip closer to the surface.
    [Show full text]
  • Table of Contents
    A field assessment of the April 20, 2013, Mw = 6.6, Lushan, China, Earthquake Table of contents Abstract ............................................................................................................................................. 1 Introduction ....................................................................................................................................... 1 Geology and Tectonics...................................................................................................................... 2 The main shock and aftershocks ....................................................................................................... 2 Ground Motion and Intensity Survey ................................................................................................ 2 Structural Response........................................................................................................................... 3 Lifelines ............................................................................................................................................ 4 Conclusion ........................................................................................................................................ 5 Acknowledgment .............................................................................................................................. 5 References ......................................................................................................................................... 6 Figure
    [Show full text]
  • Changes in Tropospheric Ozone Associated with Strong Earthquakes and Possible Mechanism
    Chapman University Chapman University Digital Commons Biology, Chemistry, and Environmental Sciences Science and Technology Faculty Articles and Faculty Articles and Research Research 5-17-2021 Changes in Tropospheric Ozone Associated With Strong Earthquakes and Possible Mechanism Feng Jing Ramesh P. Singh Follow this and additional works at: https://digitalcommons.chapman.edu/sees_articles Part of the Atmospheric Sciences Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Geochemistry Commons, and the Geophysics and Seismology Commons Changes in Tropospheric Ozone Associated With Strong Earthquakes and Possible Mechanism Comments This article was originally published in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, volume 14, in 2021. https://doi.org/10.1109/JSTARS.2021.3080843 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. 5300 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021 Changes in Tropospheric Ozone Associated With Strong Earthquakes and Possible Mechanism Feng Jing , Member, IEEE, and Ramesh P. Singh , Senior Member, IEEE Abstract—The index of ozone anomaly (IOA) has been proposed occurred globally [9], [10]. The changes observed in borehole, to detect changes in tropospheric ozone associated with strong ground, atmospheric, and ionospheric parameters have provided earthquakes. The tropospheric ozone prior and after the 2008 evidence to believe existence of strong coupling between land– Wenchuan earthquake has been analyzed using IOA. Atmospheric infrared sounder ozone volume mixing ratio (O3 VMR) at different atmosphere–ionosphere during the phase of earthquake prepara- pressure levels (600, 500, 400, 300, 200 hPa) for an 18-year period tion [11]–[13].
    [Show full text]
  • Pathways to Earthquake Resilience in China
    Report Pathways to earthquake resilience in China October 2015 Overseas Development Institute 203 Blackfriars Road London SE1 8NJ Tel. +44 (0) 20 7922 0300 Fax. +44 (0) 20 7922 0399 E-mail: [email protected] www.odi.org www.odi.org/facebook www.odi.org/twitter Readers are encouraged to reproduce material from ODI Reports for their own publications, as long as they are not being sold commercially. As copyright holder, ODI requests due acknowledgement and a copy of the publication. For online use, we ask readers to link to the original resource on the ODI website. The views presented in this paper are those of the author(s) and do not necessarily represent the views of ODI. © Overseas Development Institute 2015. This work is licensed under a Creative Commons Attribution-NonCommercial Licence (CC BY-NC 3.0). ISSN: 2052-7209 Cover photo: Photo by GDS, Children receiving the GDS disaster risk reduction kit, Shaanxi Province, China Contents Acknowledgements 9 About the authors 9 Glossary of terms 11 Acronyms 11 1. Introduction 13 John Young 2. Earthquake disaster risk reduction policies and programmes in China 16 Cui Ke, Timothy Sim and Lena Dominelli 3. Current knowledge on seismic hazards in Shaanxi Province 23 By Feng Xijie, Richard Walker and Philip England 4. Community-based approaches to disaster risk reduction in China 30 Lena Dominelli, Timothy Sim and Cui Ke 5. Case study: World Vision’s community disaster response plan in Ranjia village 42 William Weizhong Chen, Ning Li and Ling Zhang 6. Case study: Gender Development Solution’s disaster risk reduction in primary education 46 Zhao Bin 7.
    [Show full text]
  • (Shanxi Province)?
    Earthq Sci (2013) 26(3–4):229–239 DOI 10.1007/s11589-013-0035-y RESEARCH PAPER Did the MS7.0 Lushan earthquake dynamically trigger earthquakes in the Datong volcanic region (Shanxi Province)? Meiqin Song • Yong Zheng • Rui Fu • Xiangjun Liang • Xia Wang • Li Li • Bin Li Received: 6 August 2013 / Accepted: 3 November 2013 / Published online: 10 December 2013 Ó The Seismological Society of China, Institute of Geophysics, China Earthquake Administration and Springer-Verlag Berlin Heidelberg 2013 Abstract Immediately following the MS7.0 Lushan contrastively continuous waveform data before, and 5 h earthquake on April 20, 2013, using high-pass and low- after, the MS7.0 Lushan earthquake and MS9.0 Tohoku pass filtering on the digital seismic stations in the Shanxi earthquake in 2011. The results show that the similar Province, located about 870–1,452 km from the earthquake phenomena occur before the earthquakes, but the seis- epicenter, we detected some earthquakes at a time corre- micity rates after the earthquakes are remarkably increased. sponding to the first arrival of surface waves in high-pass Since these weak earthquakes are quite small, it is hard to filtering waveform. The earthquakes were especially get clear phase arrival time from three or more stations to noticed at stations in Youyu (YUY), Shanzizao (SZZ), locate them. In addition, the travel time differences Shanghuangzhuang (SHZ), and Zhenchuan (ZCH), which between P waves and S waves (S–P) are all less than 4 s, are located in a volcanic region in the Shanxi Province,but that means the events should occur in 34 km around the they were not listed in the Shanxi seismic observation stations in the volcanic region.
    [Show full text]