Earthquakes Near the Haiyuan Fault Gansu, China)

Total Page:16

File Type:pdf, Size:1020Kb

Earthquakes Near the Haiyuan Fault Gansu, China) Geophys. J. Int. 12001) 144, 206±220 Source parameters and tectonic origin of the 1996 June 1 Tianzhu Mw=5.2) and 1995 July 21 Yongden Mw=5.6) earthquakes near the Haiyuan fault Gansu, China) C. Lasserre,1 B. Bukchin,2 P. Bernard,3 P. Tapponnier,1 Y. Gaudemer,1 A. Mostinsky2 and RongDailu 4 1 Laboratoire de Tectonique et MeÂcanique de la LithospheÁre, CNRS UMR 7578, Institut de Physique du Globe de Paris, Paris, France. E-mail:[email protected] 2 International Institute of Earthquake Prediction and Mathematical Geophysics, Moscow, Russia. E-mail: [email protected] 3 Laboratoire de Sismologie, CNRS UMR 7580, Institut de Physique du Globe de Paris, Paris, France 4 Seismological Institute of Lanzhou, China Seismological Bureau, Lanzhou, Gansu, China Accepted 2000 August 25. Received 2000 August 21; in original form 2000 February 22 SUMMARY The 1996 June 1 Tianzhu 1Mw=5.2, Ms=4.9) and the 1995 July 21 Yongden 1Mw=5.6, Ms=5.4) earthquakes are the two largest events recorded in the last 10 years between the 1990 October 20 Ms=5.8 and the recent 2000 June 6 Ms=5.6 earthquakes near the `Tianzhu seismic gap' on the Haiyuan fault in northeastern Tibet. We use frequency± time analysis 1FTAN) to extract the fundamental modes of Love and Rayleigh waves from digital records. A joint inversion of their amplitude spectra and of P-wave ®rst- motion polarities is then performed to calculate the source parameters 1focal mech- anisms, depths and seismic moments) of these two Msc5 earthquakes. Such a joint inversion is tested for the ®rst time. We use IRIS and GEOSCOPE network records for period ranges of 20±40 s for the former event and 35±70 s for the latter. The inversion of the Tianzhu earthquake yields nodal planes with strike, dip and slip of 282u,72u and 3u and 191u,87u and 162u, respectively, a focal depth around 12 km and a seismic moment of 0.56r1017 N m, consistent with the Harvard CMT calculation, and the alignment and depths of the aftershocks recorded by a local network. We propose two possible tectonic interpretations for this off-fault event. The solution for the Yongden earth- quake is consistent with a thrust, with strike, dip and slip of 105u,45u and 75u, respectively, a focal depth around 6 km and a seismic moment of 2.4r1017 N m, also in agreement with the Harvard CMT mechanism, the distribution of the aftershocks recorded by a regional network, and the general tectonic setting that we re®ne. Key words: earthquake source mechanism, NE Tibet, P waves, seismic gap, seismotectonics, surface waves. surface waves have recently been developed 1e.g. Braunmiller 1 INTRODUCTION et al. 1994; Arvidsson & EkstroÈm 1998, and references therein). The inversion of surface wave amplitude spectra, based on the Until now, the inversion of surface wave amplitude spectra has method described by Bukchin 11989, 1990, 1995), has already never been used for source studies of such small events. Using demonstrated its reliability in the source mechanism deter- surface wave amplitude spectra only, however, does not pro- mination of large earthquakes 1Msi6.5). In particular, three vide a unique focal mechanism solution 1Mendiguren 1977). major earthquakes of central Asia, the Ms=6.9 1988 Spitak Additional information is needed to constrain the uniqueness event 1Bukchin et al. 1994), the Ms=7.4 1992 Susamyr event of the solution; this was provided by long-period 1Ti100 s) 1Gomez et al. 1997a) and the Ms=6.5 1992 Barisakho event surface wave phase spectra in the aforementioned studies of 1Gomez et al. 1997b), have been studied with this method, which large earthquakes and by P-wave ®rst-motion polarities in proves to be a good complement to classical body wave modelling this study. We test, for the ®rst time, the feasibility of a joint 1Gomez 1998). To estimate the source parameters of relatively inversion of surface wave amplitude spectra and P-wave ®rst- weak earthquakes 1Mwc5), for which body wave inversion motion polarities to calculate the source parameters of two generally fails or reaches its limit, different methods using moderate-sized earthquakes 1Mwc5.5, Msc5). 206 # 2001 RAS Msc5 Tianzhu and Yongden events, China 207 The two earthquakes we investigate are located in north- Bukchin 1990). In the case of a ®nite source, eq. 11) describes eastern Tibet: the Tianzhu earthquake 11996 June 1, Mw=5.2, the spectrum of displacements for periods much longer than Ms=4.9) and the Yongden earthquake 11995 July 21, Mw=5.6, the source duration. The low-frequency displacement energy is Ms=5.4). Both of them occurred in regions adjacent to the mainly carried by surface waves. Only low-frequency displace- c1000 km longHaiyuan fault system, the principal left-lateral ments transported by the fundamental modes of the Love strike-slip fault accommodatingthe eastward component of and Rayleigh waves will be considered here. We assume that movement between Tibet and the Gobi-Ala Shan Platform due variations of medium properties in any horizontal direction are to India±Asia collision 1Fig. 1; Tapponnier & Molnar 1977; small over distances alongthe wave paths of the order of a Zhang et al. 1988a,b). In 1920 and 1927, this fault system wavelength, so that the structure of the medium can be well experienced two Mi8 earthquakes, 300 km apart 1Fig. 1; Deng approximated by a weak horizontally inhomogeneous model et al. 1986; Zhang et al. 1987; Gaudemer et al. 1995). The 1Woodhouse 1974; Babich et al. 1976). The scatteringof energy Tianzhu and Yongden events took place near the 220 km long at subvertical boundaries is considered negligible; this has been quiescent western segment of the Haiyuan faultÐknown as veri®ed for a large variety of models 1Levshin 1985). Under the `Tianzhu seismic gap', a site of signi®cant seismic hazard, these assumptions, the spectral parameters of the surface waves Mi7.5 1Gaudemer et al. 1995; Lasserre et al. 1999)Ðbetween can be determined locally. The spectrum of the Green's function the 1920 and 1927 ruptures. A better understandingof their for Love and Rayleigh waves in eq. 11) depends on 11) the mechanism, in relation to the current deformation of the area, velocity and density models in the source region and under the was thus required, which motivated this study. Between the seismic stations recordingthe earthquake, 12) the mean phase 1990 October 20 Ms=5.8 and the recent 2000 June 6 Ms=5.6 velocity of waves alongthe path between the source and the earthquakes, both at the eastern end of the gap 1Fig. 1), the receiver and 13) geometrical spreading 1Levshin 1985; Bukchin Tianzhu and Yongden events are in fact the largest ones 1990). If all of these characteristics are known, as well as the recorded near the gap. Furthermore, the Tianzhu earthquake is origin time of the earthquake and the hypocentre location, the largest event to occur less than 3 km from the Haiyuan fault recording ui1x, v) at different points x on the Earth's surface trace, almost at the centre of the gap, since 1920. Its epicentre for a set of frequencies v gives, from eq. 11), a system of linear lies next to a 10 km wide pull-apart step between two segments equations from which the elements of the seismic moment of the fault 1Tianzhu basin, Fig. 1) 1Gaudemer et al. 1995), which tensor Mij can be retrieved. The mean phase velocity of surface could act as a nucleation zone for a future large earthquake in waves, however, is usually poorly known. To calculate the the gap 1King & Nabelek 1985; Barka & Kadinsky-Cade 1988; source parameters, only the amplitude spectrum |u1x, v)|, that Nielsen & Knopoff 1998). The Yongden event is further away is, the absolute value of the displacement spectrum u1x, v) from the Haiyuan fault but located less than 50 km northeast described in eq. 11), is used, as its value does not depend on of Lanzhou, a city of three million people. The fault responsible this average phase velocity. It is important to note also that for this earthquake was previously unknown. the value of |u1x, v)| is not affected by any error in epicentre We retrieved the Love and Rayleigh fundamental modes location 1Bukchin 1990). from the IRIS and GEOSCOPE broad-band digital records. A We assume now that the velocity and density of the joint inversion of their amplitude spectrum and of P-wave ®rst- propagating medium are given near the source and under each motion polarities at worldwide stations or at Chinese regional station at the free surface recordingthe seismic event and that stations was then performed to calculate the focal mechanism all of the followinghypotheses are valid: an instant point source parameters 1nodal plane strike, dip and slip angles), the depths on an ideal plane fault, with known origin time and epicentre and the seismic moments of the Tianzhu and Yongden events. location, and a medium with weak lateral inhomogeneities. The The results are compared to available Harvard CMT solutions seismic source is then completely de®ned by its double-couple and, for the Tianzhu earthquake, to the Lanzhou Seismological depth, its focal mechanism parametersÐwhether expressed by Institute solution. The focal mechanisms of the Tianzhu and the strike, dip and slip angles of the nodal planes or by the two Yongden events are then discussed with regard to the distri- unit vectors P and T in the directions of principal compression bution of their aftershocks, recorded by a local network and by and the tension axes, respectivelyÐand its seismic moment M0. the Chinese regional network, respectively, and interpreted in To estimate these parameters, we construct a grid in the 4-D relation to the regional tectonics.
Recommended publications
  • Lecture 15, Slides (Pdf)
    Magnitude Seismic moment Intensity Frequency-magnitude relation Earthquake magnitude Earthquake magnitude is a measure of the size or strength of an earthquake. It is based on amplitudes of seismograms. In the past various magnitude scales have been developed. Local magnitude “Richter scale” (local magnitude, ML ) was introduced by Charles Richter in 1935 for southern California earthquakes measured on a Wood-Anderson seismograph. �� = log � + 2.76 log ∆ − 2.48 ML : local magnitude A: amplitude on Wood-Anderson seismograph in mm Δ: epicentral distance in km Various magnitude scales Body wave magnitude Correction term body wave magnitude Surface wave magnitude Earthquakes vs. nuclear explosions Body and surface wave magnitude have been used to discriminate between nuclear explosions and earthquakes. Body and surface wave magnitude ‘Saturation’ is a problem of body and surface wave magnitudes Seismic moment, moment magnitude ML , mb , MS are empirical. Better: Seismic moment M0 = μ D S μ : shear modulus [Pa = Nm-2] D : average slip along fault plane [m] S : surface area along which slip occurred [m2] M0 in Nm, i.e. a measure of energy or moment/torque Related magnitude scale: Moment magnitude log � � = 0 − 10.73 � 1.5 -5 -2 -7 where M0 in ergs = dyne . cm = 10 N . 10 m = 10 Nm !"# $ (or � = ! − 6 with M in Nm) � %.' 0 Seismic energy Empirical relation between seismic energy (ES) and MW : 10 log ES = 1.5 MW + 11.8 1 unit increase in MW corresponds to a 32 time increase in ES Note that seismic energy is only a fraction of the total energy released during an earthquake.
    [Show full text]
  • 4Th Annual Report
    UK EARTHQUAKE MONITORING 1992/93 BGS Seismic Monitoring and Information Service Fourth Annual Report British Geological Survey Tel: 0131-667-1000 Murchison House Fax: 0131-667-1877 West Mains Road Internet: http://www.gsrg.nmh.ac.uk/ Edinburgh EH9 3LA Scotland BRITISH GEOLOGICAL SURVEY TECHNICAL REPORT WL/93/08 Global Seismology Series UK Earthquake Monitoring 1992/93 BGS Seismic Monitoring and Information Service Fourth Annual Report C W A Browitt and A B Walker April 1993 UK Seismic Monitoring and Information Service Year Four Report to Customer Group: April 1993 Cover photo Solar-powered earthquake- monitoring station in the North-west Highlands of Scotland (T Bain) Bibliographic reference Browitt, C W A & Walker, A B., 1993. BGS Seismic Monitoring and Information Service Fourth Annual Report. British Geological Survey Technical Report WL/93/08 @ NERC Copyright 1993 Edinburgh British Geological Survey 1993 BRITISH GEOLOGICAL SURVEY The full range of Survey publications is available Keyworth, Nottingham NG 12 5GG through the Sales Desks at Keyworth and at B 0602-363 100 Telex 378173 BGSKEY G Murchison House, Edinburgh, and in the BGS Fax0602-363200 London Information Office in the Natural History Museum Earth Galleries. The adjacent bookshop Murchison House, West Mains Road, Edinburgh stocks the more popular books for sale over the EH93LA counter. Most BGS books and reports are listed in Telex 727343 SEISED G HMSO’s Sectional List 45, and can be bought from s 031-667 1000 Fax031-6682683 HMSO and through HMSO agents and retailers. Maps are listed in the BGS Map Catalogue, and can be bought from BGS approved stockists and agents London Information Office at the Natural History as well as direct from BGS.
    [Show full text]
  • Review of Geotechnical Investigations Resulting from the Roermond April 13, 1992 Earthquake
    Missouri University of Science and Technology Scholars' Mine International Conferences on Recent Advances 1995 - Third International Conference on Recent in Geotechnical Earthquake Engineering and Advances in Geotechnical Earthquake Soil Dynamics Engineering & Soil Dynamics 07 Apr 1995, 10:30 am - 11:30 am Review of Geotechnical Investigations Resulting from the Roermond April 13, 1992 Earthquake P. M. Maurenbrecher TU Delft, The Netherlands A. Den Outer TU Delft, The Netherlands H. J. Luger Delft Geotechnics, The Netherlands Follow this and additional works at: https://scholarsmine.mst.edu/icrageesd Part of the Geotechnical Engineering Commons Recommended Citation Maurenbrecher, P. M.; Den Outer, A.; and Luger, H. J., "Review of Geotechnical Investigations Resulting from the Roermond April 13, 1992 Earthquake" (1995). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 5. https://scholarsmine.mst.edu/icrageesd/03icrageesd/session09/5 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. (\ Proceedings: Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, t..\ April 2-7, 1995, Volume II, St. Louis, Missouri Review of Geotechnical Investigations Resulting from the Roermond April 13, 1992 Earthquake Paper No.
    [Show full text]
  • Interseismic Slip and Coupling Along the Haiyuan Fault Zone Constrained by Insar and GPS Measurements
    remote sensing Article Interseismic Slip and Coupling along the Haiyuan Fault Zone Constrained by InSAR and GPS Measurements Xin Qiao 1,2 , Chunyan Qu 1,* , Xinjian Shan 1, Dezheng Zhao 1 and Lian Liu 1 1 State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China; [email protected] (X.Q.); [email protected] (X.S.); [email protected] (D.Z.); [email protected] (L.L.) 2 Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-Sen University, Zhuhai 519000, China * Correspondence: [email protected] Abstract: The Haiyuan fault zone is an important tectonic boundary and strong seismic activity belt in northeastern Tibet, but no major earthquake has occurred in the past ∼100 years, since the Haiyuan M8.5 event in 1920. The current state of strain accumulation and seismic potential along the fault zone have attracted significant attention. In this study, we obtained the interseismic deformation field along the Haiyuan fault zone using Envisat/ASAR data in the period 2003–2010, and inverted fault kinematic parameters including the long-term slip rate, locking degree and slip deficit distribution based on InSAR and GPS individually and jointly. The results show that there is near-surface creep in the Laohushan segment of about 19 km. The locking degree changes significantly along the strike with the western part reaching 17 km and the eastern part of 3–7 km. The long-term slip rate gradually decreases from west 4.7 mm/yr to east 2.0 mm/yr.
    [Show full text]
  • Active Tectonics and Intracontinental Earthquakes in China: the Kinematics and Geodynamics
    The Geological Society of America Special Paper 425 2007 Active tectonics and intracontinental earthquakes in China: The kinematics and geodynamics Mian Liu Youqing Yang Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA Zhengkang Shen State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China Shimin Wang Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA Min Wang Institute of Earthquake Science, China Earthquake Administration, Beijing 100036, China Yongge Wan School of Disaster Prevention Techniques, Yanjiao, Beijing 101601, China ABSTRACT China is a country of intense intracontinental seismicity. Most earthquakes in west- ern China occur within the diffuse Indo-Eurasian plate-boundary zone, which extends thousands of kilometers into Asia. Earthquakes in eastern China mainly occur within the North China block, which is part of the Archean Sino-Korean craton that has been thermally rejuvenated since late Mesozoic. Here, we summarize neotectonic and geo- detic results of crustal kinematics and explore their implications for geodynamics and seismicity using numerical modeling. Quaternary fault movements and global position- ing system (GPS) measurements indicate a strong infl uence of the Indo-Asian colli- sion on crustal motion in continental China. Using a spherical three-dimensional (3-D) fi nite-element model, we show that the effects of the collisional plate-boundary force are largely limited to western China, whereas gravitational spreading of the Tibetan Plateau has a broad impact on crustal deformation in much of Asia. The intense seis- micity in the North China block, and the lack of seismicity in the South China block, may be explained primarily by the tectonic boundary conditions that produce high devi- atoric stresses within the North China block but allow the South China block to move coherently as a rigid block.
    [Show full text]
  • Smallest Earthquake Magnitude That Can Trigger Liquefaction
    Smallest Earthquake Magnitude that Can Trigger Liquefaction Russell Green, Julian Bommer Datum June 2018 Editors Jan van Elk & Dirk Doornhof General Introduction The soils in Groningen contain deposits of water saturated sands. Therefore, the possibility of earthquake- induced liquefaction needs to be considered. In particular, liquefaction could potentially be important for critical infra-structure like dikes and levees. This report contains a literature study of field observations, to establish an earthquake magnitude threshold below which the possibility of triggering liquefaction can be discounted. The study concludes that earthquakes as small as moment magnitude 4.5 can trigger liquefaction in extremely susceptible soil deposits. However, these susceptible soil deposits correspond to site conditions where building construction is not viable. Example of such extremely susceptible soil deposits would be a mud-flat area outside the dikes, a river bed, an impoundment area or a tailings pond. For soil profiles that are sufficiently competent to support foundation loads, the minimum earthquake magnitude for the triggering of liquefaction is about 5. The report therefore proposes that in liquefaction hazard assessments for engineering applications, magnitude 5.0 be adopted as the minimum earthquake size considered. Title Smallest Earthquake Magnitude that Can Trigger Date June 2018 Liquefaction Initiator NAM Autor(s) Russell Green and Julian Bommer Editor Jan van Elk Dirk Doornhof Organisation Team of Academic Experts Organisation NAM Place in the Study Study Theme: Liquefaction and Data Comment: Acquisition Plan The soils in Groningen contain deposits of water saturated sands. Therefore, the possibility of earthquake-induced liquefaction needs to be considered. In particular, liquefaction could potentially be important for critical infra-structure like dikes and levees.
    [Show full text]
  • Structure-Controlled Asperities of the 1920 Haiyuan M8.5 and 1927
    www.nature.com/scientificreports OPEN Structure‑controlled asperities of the 1920 Haiyuan M8.5 and 1927 Gulang M8 earthquakes, NE Tibet, China, revealed by high‑resolution seismic tomography Quan Sun1,2, Shunping Pei1,2,3*, Zhongxiong Cui4, Yongshun John Chen5, Yanbing Liu1,2, Xiaotian Xue1,2, Jiawei Li1,2, Lei Li1,2 & Hong Zuo1,2 Detailed crustal structure of large earthquake source regions is of great signifcance for understanding the earthquake generation mechanism. Numerous large earthquakes have occurred in the NE Tibetan Plateau, including the 1920 Haiyuan M8.5 and 1927 Gulang M8 earthquakes. In this paper, we obtained a high‑resolution three‑dimensional crustal velocity model around the source regions of these two large earthquakes using an improved double‑diference seismic tomography method. High‑ velocity anomalies encompassing the seismogenic faults are observed to extend to depths of 15 km, suggesting the asperity (high‑velocity area) plays an important role in the preparation process of large earthquakes. Asperities are strong in mechanical strength and could accumulate tectonic stress more easily in long frictional locking periods, large earthquakes are therefore prone to generate in these areas. If the close relationship between the aperity and high‑velocity bodies is valid for most of the large earthquakes, it can be used to predict potential large earthquakes and estimate the seismogenic capability of faults in light of structure studies. Earthquakes occur when the stored energy in the Earth’s lithosphere is suddenly released. Large earthquakes usually cause great hazards on natural environment and/or humans. Tere has been an obvious surge of great earthquakes with magnitudes ≥ 8.0 during the past decade with great diversity at various aspects 1.
    [Show full text]
  • Local Administrations and Disaster Risk Management In
    DISASTER RESILIENT URBAN SETTLEMENTS A DOCTORAL DISSERTATION SUBMITTED TO THE FACULTY OF SPATIAL PLANNING OF TECHNICAL UNIVERSITY OF DORTMUND BY EBRU ALARSLAN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF ENGINEERING (Dr. Ing.) IN SPATIAL PLANNING DECEMBER 2009 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name: Ebru ALARSLAN Signature : ii ABSTRACT DISASTER RESILIENT URBAN SETTLEMENTS Alarslan, Ebru Dr. Ing. In Spatial Planning, Faculty of Spatial Planning Supervisors:Prof.Dr. Stefan Greiving, Prof.Dr.H.Hans Blotevogel, Prof.Dr. Konstantin Meskouris September 2009, 480 pages Recently, natural disasters with devastating effects on human settlements have proliferated. Against this background, this study outlines a resilience model for urban settlements with respect to natural disasters. The focus on urban settlements has been chosen because of their high disaster risks due to (i) their dense population and construction, (ii) their position as a center of economic and cultural activities, (iii) their location on the significant cross-roads of transportation routes and other modern networks, and (iv) their exploitation of natural resources and generation of environmental pollution. In addition to these reasons, variables of disaster risks in urban settlements
    [Show full text]
  • Assessing Damage for Herkenbosch, the Netherlands, Due to The
    Transactions on the Built Environment vol 14, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509 Assessing damage for Herkenbosch, The Netherlands, due to the Roermond earthquake of April 13, 1992 P.M. Maurenbrecher, G. de Vries Faculty of Mining and Petroleum Engineering, University of 2629 Abstract During the April 13 1992 Roermond earthquake the town of Herkenbosch suffered extensive damage. To examine the extent of the damage a door to door enquiry survey was carried out. 75% of the households replied to the survey, which is based on "yes" or "no" replies to questions on the residents' experience during the earthquake, the damage to their homes and other observations. The replies were entered into a database. Examples of selected replies are given to show their geographical distribution. The study requires further input data to enable more effective use of the information. To facilitate this, the present database is structured in a way that further information can be easily added; for example reports from the Rampenfonds (Disaster Fund) survey, municipality information on house lay-outs and building details, and ground conditions. With sufficient data the survey should indicate which house styles or building methods are vulnerable to earthquake damage and identify those factors which influence such damage. 1. Introduction Subsequent to earthquakes two types of damage survey are normally carried out; one for reparations and one for research. In the Netherlands several surveys were executed soon after the Roermond earthquake; one for the Disaster Fund and a macroseismic KNMI survey *\ In addition an earthquake survey team from the UK visited Heinsberg in Germany and Roermond in the Netherlands^.
    [Show full text]
  • Earthquake Risk and Earthquake Catastrophe Insurance for China
    Munich Personal RePEc Archive Earthquake Risk and Earthquake Catastrophe Insurance for the People’s Republic of China Wang, Zifa and Lin, Tun and Walker, George Asian Development Bank June 2009 Online at https://mpra.ub.uni-muenchen.de/21248/ MPRA Paper No. 21248, posted 11 Mar 2010 18:02 UTC ADB Sustainable Development Working Paper Series Earthquake Risk and Earthquake Catastrophe Insurance for the People’s Republic of China Zifa Wang, Tun Lin, and George Walker No. 7 | June 2009 MS ADB Sustainable Development Working Paper Series Earthquake Risk and Earthquake Catastrophe Insurance for the People’s Republic of China Zifa Wang, Tun Lin, and George Walker Dr. Zifa Wang is managing director of Risk Management Solutions, Inc. and a research No. 7 June 2009 professor at the Institute of Engineering Mechanics, China Earthquake Administration. Mr. Tun Lin is a natural resources economist of the Asian Development Bank. Dr. George Walker is a senior risk analyst of Aon Benfield Asia Pacific. Asian Development Bank 6 ADB Avenue, Mandaluyong City 1550 Metro Manila, Philippines www.adb.org/ © 2009 by Asian Development Bank June 2009 ISSN 2071-9450 Publication Stock No. WPS090552 The views expressed in this paper are those of the author and do not necessarily reflect the views or policies of the Asian Development Bank. ADB does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. Use of the term ―country‖ does not imply any judgment by the authors or ADB as to the legal or other status of any territorial entity.
    [Show full text]
  • Camelbeeck Seismicity Fidgeo-3866
    Historical Earthquakes, Paleoseismology, Neotectonics and Seismic Hazard: New Insights and Suggested Procedures DOI: 10.23689/fidgeo-3866 How well does known seismicity between the Lower Rhine Graben and southern North Sea reflect future earthquake activity? Thierry Camelbeeck1, Kris Vanneste1, Koen Verbeek1, David Garcia-Moreno1,2, Koen van Noten1 & Thomas Lecocq1 1 Royal Observatory of Belgium: [email protected], [email protected], [email protected], [email protected], [email protected] 2 University of Ghent: [email protected] Abstract th Since the 14 century, moderate seismic activity with 14 earthquakes of magnitude MW≥5.0 occurred in Western Europe in a region extending from the Lower Rhine Graben (LRG) to the southern North Sea. In this paper, we investigate how well this seismic activity could reflect that of the future. The observed earthquake activity in the LRG is continuous and concentrates on the Quaternary normal faults delimiting the LRG, which are also the source of large surface rupturing Holocene and Late Pleistocene earthquakes. The estimated magnitude of these past earthquakes ranges from 6.3±0.3 to 7.0±0.3 while their average recurrence on individual faults varies from ten thousand to a few ten thousand years, which makes foreseeing future activity over the long-term possible. Three of the largest historical earthquakes with MW≥5.5 occurred outside the LRG. Late Quaternary activity along the fault zones suspected to be the source of two of these earthquakes, i.e. the 1580 Strait of Dover and 1692 northern Belgian Ardennes earthquakes, is very elusive if it exists.
    [Show full text]
  • Basin-Related Effects on Ground Motion for Earthquake Scenarios In
    Geophys. J. Int. (2006) 166, 197–212 doi: 10.1111/j.1365-246X.2006.02909.x Basin-related effects on ground motion for earthquake scenarios in the Lower Rhine Embayment ∗ Michael Ewald,1 Heiner Igel,1 Klaus-G¨unterHinzen2 and Frank Scherbaum3 1Department of Earth and Environmental Studies, Section Geophysics, Ludwig-Maximilians-University M¨unchen, Germany 2Abt. f¨urErdbebengeologie, University Cologne, Germany 3Institut f¨urGeowissenschaften, University of Potsdam, Germany Accepted 2006 January 11. Received 2006 January 8; in original form 2005 March 20 Downloaded from https://academic.oup.com/gji/article/166/1/197/632062 by guest on 24 September 2021 SUMMARY The deterministic calculation of earthquake scenarios using complete waveform modelling plays an increasingly important role in estimating shaking hazard in seismically active regions. Here we apply 3-D numerical modelling of seismic wave propagation to M 6+ earthquake scenarios in the area of the Lower Rhine Embayment, one of the seismically most active regions in central Europe. Using a 3-D basin model derived from geology, borehole information and seismic experiments, we aim at demonstrating the strong dependence of ground shaking on hypocentre location and basin structure. The simulations are carried out up to frequencies of ca. 1 Hz. As expected, the basin structure leads to strong lateral variations in peak ground motion, amplification and shaking duration. Depending on source–basin–receiver geometry, the effects correlate with basin depth and the slope of the basin flanks; yet, the basin also affects peak ground motion and estimated shaking hazard thereof outside the basin. Comparison with measured seismograms for one of the earthquakes shows that some of the main characteristics of the wave motion are reproduced.
    [Show full text]