Indices Circumstellar Matter 1994

Total Page:16

File Type:pdf, Size:1020Kb

Indices Circumstellar Matter 1994 INDICES CIRCUMSTELLAR MATTER 1994 LIST OF PARTICIPANTS Nancy Ageorges:- MPE, Garcning, GERMANY Geary Albright:- University of Virginia, USA Phillipe Andre:- Centre d'Etudes de Saclay, FRANCE Bernhard Aringer:- University of Vienna, AUSTRIA Jane Arthur:- Universidad Nacional Autonoma de Mexico, MEXICO Lorne Avery:- Herzberg Institute of Astrophysics, CANADA Stefano Bagnulo:- Armagh Observatory, NORTHERN IRELAND Eric Bakker:- SRON, Utrecht, NETHERLANDS Dominique BaJIereau:- Observatoire de Paris-Meudon, FRANCE Mary Barsony:- UC Riverside, California, USA Nicole Berruyer:- Observatoire de la Cote d'Azur, FRANCE Nina Beskrovnaya:- Pulkova Observatory, St. Petersburg, RUSSIA Peter Brand:- University of Edinburgh, SCOTLAND Danielle Briot:- Observatoire de Paris, FRANCE Henry Buckley:- University of Edinburgh, SCOTLAND Valentin Bujarrabal:- Centro Astronomico de Yebes, SPAIN Harold Butner:- DTM-Carnegie Institute of Washington, USA John Carr:- Ohio State University, USA Mark Casali:- Royal Observatories, Edinburgh, SCOTLAND Josephine Chan:- Max-Planck Research Group, Jena, GERMANY Claire Chandler:- NRAO, Socorro, New Mexico, USA Steve Charnley:- UC Berkeley/NASA Ames, California, USA Isabelle Cherchneff:- Royal Observatories, Edinburgh, SCOTLAND Ed Churchwell:- University of Wisconsin, USA Mark Clampin:- Space Telescope Science Institute, Maryland, USA Stuart Clark:- University of Hertfordshire, ENGLAND Jim Cohen:- NRAL Jodrell Bank, ENGLAND Martin Cohen:- University of California, Berkeley, USA Francisco Colomer:- Centre Astronomico de Yebes, SPAIN Carlos Correia:- University of Lisbon, PORTUGAL Bill Danchi:- Space Science Laboratory, Berkeley, USA Chris Davis:- MPIA, Heidelberg, GERMANY Francisco de Araujo:- Observatoire de la Cote D'Azur, FRANCE Bill Dent:- JAC, Hawaii, USA Lynne Deutsch:- University of Massachussetts, Amherst, USA Sean Dougherty:- Liverpool John Moore's University, ENGLAND Astrophysics and Space Science 224: 599-603, 1995. 600 CIRCUMSTELLAR MATTER 1994 Walt Duley:- University of Waterloo, CANADA Wolfgang Duschl:- ITA, University o{Heidelberg, GERMANY David Emerson:- University of Edinburgh, SCOTLAND Sandra Etoka :- Observatoire de Paris-Meudon, FRANCE Neal Evans:- University of Texas, Austin, USA Stewart Eyres:- NRAL, Jodrell Bank, ENGLAND Marco Ferrari-Toniolo:- Istituto di Astrofisica Spaziale, Frascati, ITALY Michael Feuchtinger:- Universitat Wien, AUSTRIA Sergio Fonti:- University of Leece, ITALY Dan Gezari:- NASA/Goddard, Maryland, USA Andy Gibb:- University of Kent, ENGLAND Alistair Glasse:- Royal Observatories, Edinburgh, SCOTLAND Malcolm Gray:- University of Bristol, ENGLAND Lincoln Greenhill:- Smithsonian Astrophysical Observatory, USA Martin Groenewegen:- Institute d'Astrophysique de Paris, FRANCE Harm Habing:- Sterrewacht Leiden, NETHERLANDS Andrew Harrison:- University of Edinburgh, SCOTLAND Lee Hartmann:- Center for Astrophysics, Cambridge, USA Paul Harvey:- University of Texas, Austin, USA Osamu Hashimoto:- Seikei University, Tokyo, JAPAN Saeko Hayashi:- SUBARU Project Office, Tokyo, JAPAN Will Henney:- Universidarl Nacional Autonoma de Mexico, MEXICO Naomi Hirano:- Hitosubashi University, Tokyo, JAPAN Melvin Hoare:- MPIA, Heidelberg, GERMANY Susanne Hofner:- Universitat Wien, AUSTRIA Joseph Hora:- Institute for Astronomy, Honolulu, USA Patrick Huggins:- New York University, USA Vic Hughes:- Queen's University, Kingston, CANADA Robert Hurt:- UC Riverside, California, USA Busaba Hutawarakorn:- NRAL, Jodrell Bank, ENGLAND Alex ll'in:- Pulkovo Observatory, St. Petersburg, RUSSIA Syuzo Isobe:- National Astronomical Observatory, Tokyo, JAPAN Rob Ivison:- Royal Observatories, Edinburgh, SCOTLAND Hideyuki Izumiura:- Tokyo Gakuger University, JAPAN Eric Josselin:- Institute d'Astrophysique de Paris, FRANCE Kay Justtanont:- NASA Ames Research Center, California, USA Jill Knapp:- Princeton University, New Jersey, USA Carsten Koempe:- Uni-Sternwarte Jena, GERMANY Maria Kun:- Konkoly Observatory, Budapest, HUNGARY Jean-Pierre Lafon:- Observatoire de Paris-Meudon, FRANCE Jeane-Pierre Lagage:- Centre d'Etudes de Saclay, FRANCE Sergei Larnzin:- Sternberg Astronomical Institute, Moscow, RUSSIA Norbert Langer:- MPA, Garching, GERMANY CIRCUMSTELLAR MATTER 1994 601 A M Le Squeren:­ Observatoire de Paris-Meudon, FRANCE Giuseppe Leto:- Catania University, ITALY John Lightfoot:­ Royal Observatories, Edinburgh, SCOTLAND Michael Lindqvist:­ Sterrewacht Leiden, NETHERLANDS Silvia Lorenz-Martins:­ Observatoire de la Cote D'Azur, FRANCE Robert Lucas:- IRAM, Grenoble, FRANCE Ed Ludke:- Universidade Federal de Santa Maria, BRAZIL Stuart Lumsden:­ Anglo-Australian Observatory, Epping, AUSTRALIA Geoff Macdonald:­ University of Kent, ENGLAND Duncan Mackay:­ University of Kent, ENGLAND Arturo Manchado:- Instituto de Astrofisica de Canarias, Tenerife, CANARY ISLANDS Vince Mannings:- University College London, ENGLAND Colin Masson:- Center for Astrophysics, Cambridge, USA Masaiumi Matsumura:- Kagawa University, Takamatsu, JAPAN Mike McCartney:- University of Edinburgh, SCOTLAND Bruce McCollum:- Computer Sciences Corporation, Maryland, USA John McLeod:- Herzberg Institute of Astrophysics, CANADA Nigel Minchin:- Queen Mary & Westfield College, London, ENGLAND Luis Miranda:- Universida Autonoma de Madrid, SPAIN Andre Moitinho de Almeida:- University of Lisbon, PORTUGAL Toby Moore:- University of New South Wales, Canberra, AUSTRALIA Lee Mundy:- University of Maryland, USA Takenori Nakano:- Nobeyama Radio Observatory, JAPAN Jim Neff:- Penn State University, Pennsylvania, USA Ralph Neuhauser:- MPE, Garching, GERMANY Antonella Nota :- Space Telescope Science Institute, Maryland, USA Lars Nyman:- ESO, Santiago, CHILE Katsuo Ogura:- Kokugakuin University, Tokyo, JAPAN Nagayoshi Ohashi:- Nobeyama Radio Observatory, JAPAN Masatoshi Ohishi:- Nobeyama Radio Observatory, JAPAN Hans Olofsson:- Stockholm Observatory, SWEDEN Elena Ortiz:- Universida Autonoma de Madrid, SPAIN Rene Oudmaijer:- Kapteyn Laboratory, Groningen, NETHERLANDS Isabella Pagano:- Catania Astrophysical Observatory, ITALY Elma Parsamian:- Instituto Nacional de Astrofisica, Optica y Electronica, Pue, MEXICO Gianni Pascoli:- Universite de Picardie Jules Verne, Amiens, FRANCE Guy Perrin:­ DESPA, Observatoire de Paris-Meudon, FRANCE Paolo Persi:- Istituto di Astrofisica Spaziale, ITALY Martin Peters:­ Teikyo University, Tokyo, JAPAN Tim Phillips:­ Hughes STX Corporation, New York, USA Mikhail Pogodin:- Pulkova Observatory, St. Petersburg, RUSSIA 602 CIRCUMSTELLAR MATTER 1994 John Porter:­ University of Oxford, ENGLAND Phil Puxley:- Royal Observatories, 'Edinburgh, SCOTLAND Susanne Ramsay-Howat:­ Royal Observatories, Edinburgh, SCOTLAND Jonathan Rawlings:­ UMIST, Manchester, ENGLAND Anita Richards:- NRAL, Jodrell Bank, ENGLAND Mercedes Richards:- University of Virginia, USA Angels Riera:­ Universitat de Barcelona, SPAIN Ian Robson:- JAC, Hawaii, USA Adrian Russell:- Royal Observatories, Edinburgh, SCOTLAND Nicole Saint-Louis:­ Universite de Montreal, CANADA Eric Schlegel:­ NASA-GSFC/USRA, Maryland, USA Andreas Schulz:- MPI, Bonn, GERMANY Karl Schuster:- IRAM, St. Martin d'Heres, FRANCE Chris Skinner:­ Lawrence Livermore National Laboratory, USA Augustin Skopal:­ Skalnate Pleso Observatory, SLOVAKIA Phillipe Stee:­ Observatoire de la Cote d'Azur, FRANCE Robert Stencel:­ University of Denver Observatories, Colorado, USA Lars Stenholm:- Uppsala Astronomical Observatory, SWEDEN Tomasz Stepinski:- Lunar and Planetary Institute, Houston, Texas, USA Michael Sterzik:- MPE, Garching, GERMANY Ian Stevens:- University of Birmingham, ENGLAND Jim Stone:- University of Maryland, USA Koji Sugitani:­ Nagoya City University, JAPAN Roger Sylvester:­ University College London, ENGLAND Motohide Tamura:­ National Astronomical Observatory, Tokyo, JAPAN Jonathan Tedds:- Royal Observatories, Edinburgh, SCOTLAND Teresa Teixeira:- Queen Mary & Westfield College, London, ENGLAND S P Thompson:­ Leicester University, Leicester, ENGLAND Hrant Tovmassian:- Instituto Nacional de Astrofisica, Optica y Electronica, Pue, MEXICO Corrado Trigilio:- Istituto di Radioastronomia, CNR, Noto, ITALY Barry Turner:- NRAO, Charlottesville, USA Munetaka Ueno:- University of Tokyo, JAPAN Grazia Umana:- Istituto di Radioastronomia, CNR, Noto, ITALY Johan van der Walt:- Potchefstroom University, SOUTH AFRICA Ewine van Dishoeck:- Leiden Observatory, NETHERLANDS Peter van Hoof:- Kapteyn Institute, Groningen, NETHERLANDS Hans van Winckel:- Instituut voor Sterrenkunde, Leuven, BELGIUM Nikolai Voschchinnikov:- St. Petersburg University, RUSSIA Christoffel Waelkens:- Instituut voor Sterrenkunde, Leuven, BELGIUM Helen Walker:- Daresbury Rutherford Appleton Laboratory, ENGLAND Malcolm Walmsley:- MPI, Bonn, GERMANY Derek Ward-Thompson:- Royal Observatories, Edinburgh, SCOTLAND CIRCUMSTELLAR MATTER 1994 603 Graeme Watt:- Royal Observatories, Edinburgh, SCOTLAND Karen Willacy:- University of Edinburgh, SCOTLAND David Williams:- UMIST, Manchester, ENGLAND Peredur Williams:- Royal Observatories, Edinburgh, SCOTLAND J M Winters:- Technische Universitat Berlin, GERMANY Joachim Wirsick:- Berlin, GERMANY Ray Wolstenccroft:- Royal Observatories, Edinburgh, SCOTLAND Doug Wood:- NRAO, Socorro, USA Al Wootten:- NRAO, Charlottesville, USA Gareth Wynn-Williams:- Institute of Astronomy, Hawaii, USA Jeremy Yates:- University of Bristol, ENGLAND Albert Zijlstra:- ESO, Garching, GERMANY Igor Zinchenko:- Russian Academy of Sciences, Nizhny Novgorod, RUSSIA Hans Zinnecker:- University of Wiirzburg, GERMANY Robert Zylka:- MPI, Bonn, GERMANY AUTHOR INDEX Ageorges
Recommended publications
  • Curriculum Vitae for MERCEDES T. RICHARDS
    Curriculum Vitae for MERCEDES T. RICHARDS Work Address: Department of Astronomy & Astrophysics, Penn State University, 525 Davey Lab, University Park, PA 16802-6305 Telephone: (814) 865-0150 (office); (814) 863-3399 (fax) E-mail address: [email protected] Web address: http://www.astro.psu.edu/~mrichards Education Ph.D., 1986, Astronomy, University of Toronto M.Sc., 1979, Astronomy, York University B.Sc., 1977, Physics, University of the West Indies Graduate Awards: University of the West Indies Graduate Scholarship, 1977-1979; York University Scholarship, 1977-1979; University of Toronto Doctoral Fellowship, 1979-1981; Frank Hogg Fellowship, 1981-1982; C. A. Chant Fellowship, 1982-1983; Carl Reinhardt Fellowship, 1981-1986. Academic Positions 2003 – : Assistant Head, Department of Astronomy & Astrophysics, Penn State University 2002 – : Professor, Department of Astronomy & Astrophysics, Penn State University 2000 – 2001: Visiting Scientist, Institute for Advanced Study, Princeton 1999 – 2002: Professor, Department of Astronomy, University of Virginia 1993 – 1999: Associate Professor, Department of Astronomy, University of Virginia 1987 – 1993: Assistant Professor, Department of Astronomy, University of Virginia 1986 – 1987: Visiting Scholar, Dept. of Physics & Astronomy, U. North Carolina, Chapel Hill 1979 – 1985: Teaching Assistant, Department of Astronomy, University of Toronto, Canada 1977 – 1979: Research/Teaching Assistant, Centre for Research in Earth & Space Science, York University Academic Service Positions 2007 – 2010:
    [Show full text]
  • Arxiv:2104.03323V2 [Astro-Ph.SR] 9 Apr 2021 Pending on the Metallicity and Modeling Assumptions (E.G., Lar- Son & Starrfield 1971; Oey & Clarke 2005)
    Astronomy & Astrophysics manuscript no. main ©ESO 2021 April 12, 2021 The Tarantula Massive Binary Monitoring V. R 144 – a wind-eclipsing binary with a total mass & 140 M * T. Shenar1, H. Sana1, P. Marchant1, B. Pablo2, N. Richardson3, A. F. J. Moffat4, T. Van Reeth1, R. H. Barbá5, D. M. Bowman1, P. Broos6, P. A. Crowther7, J. S. Clark8†, A. de Koter9, S. E. de Mink10; 9; 11, K. Dsilva1, G. Gräfener12, I. D. Howarth13, N. Langer12, L. Mahy1; 14, J. Maíz Apellániz15, A. M. T. Pollock7, F. R. N. Schneider16; 17, L. Townsley6, and J. S. Vink18 (Affiliations can be found after the references) Received March 02, 2021; accepted April 06, 2021 ABSTRACT Context. The evolution of the most massive stars and their upper-mass limit remain insufficiently constrained. Very massive stars are characterized by powerful winds and spectroscopically appear as hydrogen-rich Wolf-Rayet (WR) stars on the main sequence. R 144 is the visually brightest WR star in the Large Magellanic Cloud (LMC). R 144 was reported to be a binary, making it potentially the most massive binary thus observed. However, the orbit and properties of R 144 are yet to be established. Aims. Our aim is to derive the physical, atmospheric, and orbital parameters of R 144 and interpret its evolutionary status. Methods. We perform a comprehensive spectral, photometric, orbital, and polarimetric analysis of R 144. Radial velocities are measured via cross- correlation. Spectral disentangling is performed using the shift-and-add technique. We use the Potsdam Wolf-Rayet (PoWR) code for the spectral analysis. We further present X-ray and optical light-curves of R 144, and analyse the latter using a hybrid model combining wind eclipses and colliding winds to constrain the orbital inclination i.
    [Show full text]
  • Detection and Characterization of Hot Subdwarf Companions of Massive Stars Luqian Wang
    Georgia State University ScholarWorks @ Georgia State University Physics and Astronomy Dissertations Department of Physics and Astronomy 8-13-2019 Detection And Characterization Of Hot Subdwarf Companions Of Massive Stars Luqian Wang Follow this and additional works at: https://scholarworks.gsu.edu/phy_astr_diss Recommended Citation Wang, Luqian, "Detection And Characterization Of Hot Subdwarf Companions Of Massive Stars." Dissertation, Georgia State University, 2019. https://scholarworks.gsu.edu/phy_astr_diss/119 This Dissertation is brought to you for free and open access by the Department of Physics and Astronomy at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Physics and Astronomy Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. DETECTION AND CHARACTERIZATION OF HOT SUBDWARF COMPANIONS OF MASSIVE STARS by LUQIAN WANG Under the Direction of Douglas R. Gies, PhD ABSTRACT Massive stars are born in close binaries, and in the course of their evolution, the initially more massive star will grow and begin to transfer mass and angular momentum to the gainer star. The mass donor star will be stripped of its outer envelope, and it will end up as a faint, hot subdwarf star. Here I present a search for the subdwarf stars in Be binary systems using the International Ultraviolet Explorer. Through spectroscopic analysis, I detected the subdwarf star in HR 2142 and 60 Cyg. Further analysis led to the discovery of an additional 12 Be and subdwarf candidate systems. I also investigated the EL CVn binary system, which is the prototype of class of eclipsing binaries that consist of an A- or F-type main sequence star and a low mass subdwarf.
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • Angular Momentum Mixing Chemical Mixing Conclusions Content
    Be Stars and Rotational Mixing Th. Rivinius, L.R. R´ımulo & A.C. Carciofi With many thanks for discussions to make things clearer to myself to S. Justham, N. Langer, P. Marchant, G. Meynet, F. Schneider European Southern Observatory, Chile IAG, Sao˜ Paulo, Brasil March 21, 2017 Some Be stars. Credit: Robert Gendler via APOD (January 9, 2006) Pleione, Alkyone, Electra, Merope Intro Angular Momentum Mixing Chemical Mixing Conclusions Content 1 Short Introduction to Be Stars 2 Angular Momentum Mixing 3 Chemical Mixing 4 Conclusions Intro Angular Momentum Mixing Chemical Mixing Conclusions Be star classification Definition (Be stars) A non-supergiant B star whose spectrum has, or had at some time, one or more Balmer lines in emission. (Jaschek et al., 1981; Collins, 1987) (Non-sg B star: 3 to 15 solar masses, 10 000 to 28 000 K) Observational corollary (Disk angular momentum) • Disk is rotationally supported (i.e. Keplerian) ¥ Evidence: Spectro-interferometry, spectroscopy of shell stars, time behaviour of perturbed disks Intro Angular Momentum Mixing Chemical Mixing Conclusions Physical properties of classical Be stars Definition (Classical Be stars) • Emission is formed in a disk ¥ Evidence: Interferometry, polarimetry • Disk is created by central star through mass loss ¥ Evidence: Disks come and go in weeks to decades, absence of mass-transferring companion More physical definition, still based on observational properties, but hard to apply. Though necessary to understand physics. Intro Angular Momentum Mixing Chemical Mixing Conclusions Physical properties of classical Be stars Definition (Classical Be stars) • Emission is formed in a disk ¥ Evidence: Interferometry, polarimetry • Disk is created by central star through mass loss ¥ Evidence: Disks come and go in weeks to decades, absence of mass-transferring companion More physical definition, still based on observational properties, but hard to apply.
    [Show full text]
  • The Discovery of a Shell-Like Event in the O-Type Star HD 120678,, (Research Note)
    A&A 546, A92 (2012) Astronomy DOI: 10.1051/0004-6361/201118725 & c ESO 2012 Astrophysics The discovery of a shell-like event in the O-type star HD 120678,, (Research Note) R. Gamen1,,J.I.Arias2,†,R.H.Barbá2,3,†, N. I. Morrell4,†,N.R.Walborn5,A.Sota6, J. Maíz Apellániz6,‡,andE.J.Alfaro6 1 Instituto de Astrofísica de La Plata (CONICET) and Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina e-mail: [email protected] 2 Departamento de Física, Universidad de La Serena, Cisternas 1200 Norte, La Serena, Chile 3 Instituto de Ciencias Astronómicas, de la Tierra y del Espacio (ICATE-CONICET), Avda España 1512 Sur, J5402DSP, San Juan, Argentina 4 Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena, Chile 5 Space Telescope Science Institute,‡, 3700 San Martin Drive, Baltimore, MD 21218, USA 6 Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, 18008, Granada, Spain Received 22 December 2011 / Accepted 4 September 2012 ABSTRACT Aims. We report the detection of a shell-like event in the Oe-type star HD 120678. Methods. HD 120678 has been intensively observed as part of a high-resolution spectroscopic monitoring program of southern Galactic O stars and Wolf-Rayet stars of the nitrogen sequence. Results. An optical spectrogram of HD 120678 obtained in June 2008 shows strong H and He i absorption lines instead of the double-peaked emission profiles observed both previously and subsequently, as well as a variety of previously undetected absorption features, mainly of O ii,Siiii and Fe iii.
    [Show full text]
  • Broad Absorption Line Variability on Multi-Year Timescales in a Large Quasar Sam- Ple; Filiz Ak, N., Brandt, W
    The Pennsylvania State University The Graduate School College of Science BROAD ABSORPTION LINE VARIABILITY ON MULTI-YEAR TIMESCALES IN A LARGE QUASAR SAMPLE A Dissertation in Astronomy and Astrophysics by Nurten Filiz Ak c 2014 Nurten Filiz Ak Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2014 The dissertation of Nurten Filiz Ak was reviewed and approved∗ by the following: William Nielsen Brandt Distinguished Professor of Astronomy and Astrophysics Dissertation Adviser Chair of Committee Donald Schneider Distinguished Professor of Astronomy and Astrophysics Head of the Department of Astronomy and Astrophysics Michael Eracleous Professor of Astronomy and Astrophysics Mercedes Richards Professor of Astronomy and Astrophysics Benjamin Owen Professor of Physics Steinn Sigurdsson Professor of Astronomy and Astrophysics Chair of the Graduate Program of Astronomy and Astrophysics ∗Signatures on file in the Graduate School. iii Abstract Outflows launched near the central supermassive black holes (SMBHs) are a common and important component of active galactic nuclei (AGNs). Outflows in luminous AGNs (i.e., quasars) play a key role in mass accretion onto SMBH as well as in the feedback into host galaxies. The most prominent signature of such outflows appears as broad absorption lines (BALs) that are blueshifted from the emission line with a few thousands kms−1 velocities. In this dissertation, I place further constrains upon the size scale, internal structure, dynamics, and evolution of the outflows investigating profiles, properties, and variation characteristics of BAL troughs. I present observational results on BAL troughs in a large quasar sample utilizing spectroscopic observations from the Sloan Digital Sky Survey spanning on multi-year timescales.
    [Show full text]
  • Why Are There Seven Sisters?
    Why are there Seven Sisters? Ray P. Norris1,2 & Barnaby R. M. Norris3,4,5 1 Western Sydney University, Locked Bag 1797, Penrith South, NSW 1797, Australia 2 CSIRO Astronomy & Space Science, PO Box 76, Epping, NSW 1710, Australia 3 Sydney Institute for Astronomy, School of Physics, Physics Road, University of Sydney, NSW 2006, Australia 4 Sydney Astrophotonic Instrumentation Laboratories, Physics Road, University of Sydney, NSW 2006, Australia 5 AAO-USyd, School of Physics, University of Sydney, NSW 2006, Australia Abstract of six stars arranged symmetrically around a seventh, and is There are two puzzles surrounding the therefore probably symbolic rather than a literal picture of Pleiades, or Seven Sisters. First, why are the Pleiades. the mythological stories surrounding them, In Greek mythology, the Seven Sisters are named after typically involving seven young girls be- the Pleiades, who were the daughters of Atlas and Pleione. ing chased by a man associated with the Their father, Atlas, was forced to hold up the sky, and was constellation Orion, so similar in vastly sep- therefore unable to protect his daughters. But to save them arated cultures, such as the Australian Abo- from being raped by Orion the hunter, Zeus transformed them riginal cultures and Greek mythology? Sec- into stars. Orion was the son of Poseidon, the King of the sea, ond, why do most cultures call them “Seven and a Cretan princess. Orion first appears in ancient Greek Sisters" even though most people with good calendars (e.g. Planeaux , 2006), but by the late eighth to eyesight see only six stars? Here we show that both these puzzles may be explained by early seventh centuries BC, he is said to be making unwanted a combination of the great antiquity of the advances on the Pleiades (Hesiod, Works and Days, 618-623).
    [Show full text]
  • Black Lives in Astronomy: a Resource Guide Compiled by Andrew Fraknoi (Fromm Institute, U
    Black Lives in Astronomy: A Resource Guide Compiled by Andrew Fraknoi (Fromm Institute, U. of San Francisco) July 2020 © copyright 2020 by Andrew Fraknoi. The right to use or reproduce this guide for any nonprofit educational purpose is hereby granted. For permission to use in other ways, or to suggest additional materials, please contact the author at e-mail: fraknoi {at} fhda {dot} edu This introductory guide is not a comprehensive listing, but merely an introduction, for students and their instructors, to the contributions and profiles of black astronomers, and to some of the issues facing them. Most of the entries are drawn from my Astronomy of Many Cultures: http://bit/ly/astrocultures Banneker’s Almanac Neil deGrasse Tyson Dara Norman Aomawa Shields ______________________________________________________________________________ Overview Materials About Black Astronomers Astronomy in Color blog: http://astronomyincolor.blogspot.com/ American Institute of Physics Center for the History of Physics: African-American Astronomers (a lesson plan with materials): https://www.aip.org/history-programs/physics- history/teaching-guides-women-minorities/african-americans-astronomy-and-astrophysics Fikes, Robert “From Banneker to Best: Some Stellar Careers in Astronomy & Astrophysics” (on black astronomers): http://www.math.buffalo.edu/mad/special/Black.Astronomers-Fikes.pdf Greene, Nick “African-Americans in Astronomy & Space (concise guide, links to brief bios): http://space.about.com/od/astronomyspacehistory/tp/Black_History_Month.html Reaching to the Stars: African American Astronomers (in celebration of Black History Month in 2011, Swarthmore hosted three African-American scientists: Derrick Pitts (Fels Planetarium), Eric Wilcots (U. of Wisconsin) and astronaut Mae Jemison, discussing the future of the field.) [90 min]: http://www.youtube.com/watch?v=9q8I3bU68Gw Sokol, J.
    [Show full text]
  • Star Catalog**
    ". -~ STAR CATALOG** A1 ternate~ Bayer Flam- Constel- NOTES NAME Name(s) (Lacaille) steed lation t indicates other names Acamar e 60 Eri Double 81,82 Achernar a Eri "riverls end" Achird f1 24 Cas Acrab Elacrab p 8 Sco Double ~l, ~2 Acrux a Cru double Acubens Sertan a 65 Cnc "claws" of crab Adara e 21 CMa Double Adhafera ~ 36 Leo Adhara Adara e 2 CMa "the Virgins" Agena Hadar 13 Cen "kneell Double Ailkes Alkes, Alkers a 7 Crt Ain e 74 Tau Aladfar rJ 20 Lyr Alamak Almach y 57 And Alaraph Zavijava 13 5 Vir Albali e 2 Aqr "the swallower" Albireo 13 6 Cyg Double, Head of Swan Alchiba Alchita a 1 Crv "the tentll Alcor 9 80 UMa Double with Mizar, lithe test", lithe near oneil, "the Rider (Arabic)11 Alcyone rt 25 Tau Pleiades Aldebaran Palilicium a 87 Tau I'follower of Pleiades", eye of Bull (Double) Great Hexagon Alderamin a 5 Cep "right arm'l Al Dhanab y Gru Aldib Altais 0 57 Ora see Nodus lIt Alfard Cor Hydrae a 30 Hya (Alphard) Alfirk Alphirk ~ 8 Cep "the flock" Algedi Al Giedi a 5,6 Cap Head of Sea Goat? Double see Giedi Prima & Secunda Giedi Algenib )' 88 Peg "wing" (Sometimes C1Per, see Mirfak)t Algieba )' 41 Leo Double "the lion's mane" Algol Gorgona ~ 26 Per Ecl ipsi ng Bi nary liThe Demon Star" (Arabic) Algorab 0 7 Crv Double, faint secondary called "The Raven" Alhajoth Capella a 13 Aur Alhena .y 24 Gem "a mark (on the foot of Pollux)" Alioth .E 77 UMa "the tai 1 of sheep" Alkaid Alcaid " 21 UMa "the Chief" (see also Benetnash) ~;~:: CA-T- I~ Alternate Bayer F1am- Constel- NOTES NAME Name(s) (lacai 11e:) steed lation t indicates other
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]
  • 407 a Abell Galaxy Cluster S 373 (AGC S 373) , 351–353 Achromat
    Index A Barnard 72 , 210–211 Abell Galaxy Cluster S 373 (AGC S 373) , Barnard, E.E. , 5, 389 351–353 Barnard’s loop , 5–8 Achromat , 365 Barred-ring spiral galaxy , 235 Adaptive optics (AO) , 377, 378 Barred spiral galaxy , 146, 263, 295, 345, 354 AGC S 373. See Abell Galaxy Cluster Bean Nebulae , 303–305 S 373 (AGC S 373) Bernes 145 , 132, 138, 139 Alnitak , 11 Bernes 157 , 224–226 Alpha Centauri , 129, 151 Beta Centauri , 134, 156 Angular diameter , 364 Beta Chamaeleontis , 269, 275 Antares , 129, 169, 195, 230 Beta Crucis , 137 Anteater Nebula , 184, 222–226 Beta Orionis , 18 Antennae galaxies , 114–115 Bias frames , 393, 398 Antlia , 104, 108, 116 Binning , 391, 392, 398, 404 Apochromat , 365 Black Arrow Cluster , 73, 93, 94 Apus , 240, 248 Blue Straggler Cluster , 169, 170 Aquarius , 339, 342 Bok, B. , 151 Ara , 163, 169, 181, 230 Bok Globules , 98, 216, 269 Arcminutes (arcmins) , 288, 383, 384 Box Nebula , 132, 147, 149 Arcseconds (arcsecs) , 364, 370, 371, 397 Bug Nebula , 184, 190, 192 Arditti, D. , 382 Butterfl y Cluster , 184, 204–205 Arp 245 , 105–106 Bypass (VSNR) , 34, 38, 42–44 AstroArt , 396, 406 Autoguider , 370, 371, 376, 377, 388, 389, 396 Autoguiding , 370, 376–378, 380, 388, 389 C Caldwell Catalogue , 241 Calibration frames , 392–394, 396, B 398–399 B 257 , 198 Camera cool down , 386–387 Barnard 33 , 11–14 Campbell, C.T. , 151 Barnard 47 , 195–197 Canes Venatici , 357 Barnard 51 , 195–197 Canis Major , 4, 17, 21 S. Chadwick and I. Cooper, Imaging the Southern Sky: An Amateur Astronomer’s Guide, 407 Patrick Moore’s Practical
    [Show full text]