Thiamethoxam Seed Treatments Have No Impact on Pest Numbers Or Yield in Cultivated Sunflowers

Total Page:16

File Type:pdf, Size:1020Kb

Thiamethoxam Seed Treatments Have No Impact on Pest Numbers Or Yield in Cultivated Sunflowers FIELD AND FORAGE CROPS Thiamethoxam Seed Treatments Have No Impact on Pest Numbers or Yield in Cultivated Sunflowers 1 2,3 MICHAEL M. BREDESON AND JONATHAN G. LUNDGREN J. Econ. Entomol. 108(6): 2665–2671 (2015); DOI: 10.1093/jee/tov249 ABSTRACT The use of neonicotinoid seed treatments is a nearly ubiquitous practice in sunflower (Helianthus annuus) pest management. Sunflowers have a speciose pest complex, but also harbor a di- verse and abundant community of beneficial, nontarget organisms which may be negatively affected by pest management practices. Here, we investigate how the foliar and subterranean arthropod pest com- munities in sunflower fields were affected by a thiamethoxam seed treatment over three site years (two years on one farm, and another year at an additional field in the second year). Thiamethoxam and its me- tabolite clothianidin in leaf tissue were quantified throughout the growing season, and yield differences between treatments were measured. Across site years, foliar herbivores and key pests of sunflowers were Downloaded from unaffected by the seed treatment. Likewise, subterranean herbivores were unaffected. Thiamethoxam was measurable in leaf tissue through the R1 plant stage, while its metabolite clothianidin was detected throughout flowering (R6). No difference in sunflower yield was observed between treatments across site years. This research suggests that neonicotinoid seed treatments in sunflowers do not always provide economic benefits to farmers in the form of pest reductions or yield improvements. Future research should focus on sunflower integrated pest management strategies that limit nontarget effects of http://jee.oxfordjournals.org/ agrochemicals, while providing greater economic returns to farmers. KEY WORDS Helianthus annuus, herbivore, neonicotinoid, metabolite, clothianidin Producers commonly use neonicotinoid seed dressings causing unregulated nerve excitation (Matsuda et al. to control early-season herbivory on a wide variety of 2001, Meijer et al. 2014). This overstimulation of a tar- crops (Elbert et al. 2008). Neonicotinoids are a class of get cell can cause paralysis and eventually lead to the water-soluble insecticides which, when applied as a death of the insect (Goulson 2013). by guest on July 26, 2016 seed treatment, are present systemically through the Pests of sunflowers (Helianthus annuus; Asterales: plant’s roots (Van Rozen and Ester 2010), green tissue Asteraceae) are challenging to manage in North Amer- (Sur and Stork 2003), nectar (Schmuck et al. 2001), ica for several reasons. First, many wild varieties of and pollen (Laurent and Rathahao 2003). The insecti- sunflower are native to this region, and so have cide gradually becomes less concentrated as the plant coevolved with a diverse suite of indigenous pests grows and as the insecticide is metabolized (Naultetal. (Charlet et al. 1992, Rogers 1992). For example, there 2004, Moser and Obrycki 2009). Metabolites of neoni- are 20 insects of concern recognized in the northern cotinoids applied as seed treatments can be found at Great Plains (Knodel et al. 2010). Many of these pests measurable levels within treated plant tissue (Nauen feed inside the sunflower’s large head and stem which et al. 2003). These chemicals often display insecticidal provides physical refuge for an insect, making the tim- qualities similar to the active ingredient used to treat ing and placement of insecticide a challenge (Knodel the plant (Benzidane et al. 2010), but are often over- et al. 2010). Managing these head-feeding pests is fur- looked in risk-assessment studies focused on the envi- ther complicated because many varieties of sunflowers, ronmental fate of the active ingredient. Upon although self-compatible, still experience a yield benefit consumption of treated plant-tissue by an insect, neoni- from insect pollination (Jyoti and Brewer 1999), and so cotinoid toxins compete with naturally occurring neuro- insecticide application needs to be balanced against transmitters for the same binding sites on a target cell, pollination services (Rogers 1992). Finally, there is very low tolerance for seed-damaging pests in sunflowers destined for certain markets (e.g., the confection mar- ket; Brewer and Schmidt 1995). In general, insecticides Mention of trade names or commercial products in this publication are the primary tool that farmers use to manage pests is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department in their sunflower fields (Rogers 1992 , Prasifka and of Agriculture. Hulke 2012). It is not uncommon for producers to use 1 Department of Biology and Microbiology, South Dakota State multiple applications of broad-spectrum insecticides University, Brookings, SD 57007. during a single growing season. In addition to insecti- 2 USDA-ARS, North Central Agricultural Research Laboratory, Brookings, SD 57006. cidal sprays, conventional producers very frequently 3 Corresponding author, e-mail: [email protected]. use neonicotinoid seed treatments to control early Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US. 2666 JOURNAL OF ECONOMIC ENTOMOLOGY Vol. 108, no. 6 season sunflower pests. The extensive adoption of was reduced to 1.61 liter/ha. Fields at Dakota Lakes neonicotinoid seed treatments use has created a situa- were sprayed with sulfentrazone (0.29 liter/ha) the fall tion where interested producers have difficulty finding before planting occurred, and in the spring shortly after sunflower seeds that have not been treated (European planting the fields were sprayed with a mixture of Academies Scientific Advisory Council [EASAC] 2015). glyphosate (rate: 1.17 liter/ha) and pendimethalin There are no peer-reviewed studies as of yet that (Prowl H2O; 2.92 liter/ha). No fertilizer was applied at evaluate the need for, or effects of, neonicotinoid seed the Brookings location in either 2013 or 2014. At treatments in sunflowers. The persistence of neonicoti- Dakota Lakes, nitrogen was broadcasted at a rate of noids and toxic metabolites within a variety of treated 84.06 Kg/ha on June 1, 2014. crops also has not been formally substantiated and re- Insect Collections. Foliar Herbivores. In 2013, quires further investigation (Bonmatin et al. 2015). The the foliar arthropod communities within sunflower present study tested the null hypotheses that thiame- fields were assessed eight times between the V-6 and thoxam, a commonly used neonicotinoid seed treat- R-7 sunflower stages (Schneiter et al. 2003)atthe ment, does not affect yields, crop profitability, or pest Brookings location. In 2014, foliar insect communities populations in oilseed sunflower production systems in were assessed 10 times at Brookings and six times at central and eastern South Dakota. To further character- Dakota Lakes between V-2 and R-6 sunflower stages. ize the sunflower agroecosystem, thiamethoxam and its The herbivorous arthropod communities on entire toxic metabolite clothianidin were measured within leaf plants were visually assessed. On each of the sampling tissue throughout the growing season across three site dates, randomly selected sunflower plants from each Downloaded from years. field were examined, and all herbivorous arthropods found on the foliage, stems, and flowers were placed in 70% ethanol to be later curated and identified. At the Materials and Methods Brookings location in 2013, 10 plants from each field Sunflower Production and Experimental on each date were examined. In 2014 at the Brookings Design. The experiment was replicated at one location location 20 plants per field were examined on the first http://jee.oxfordjournals.org/ (Brookings) in two successive growing seasons, and at two dates, 15 plants on the second and third dates, and an additional location (Dakota Lakes) in the second 10 plants per field on all of the remaining dates. In growing season. On June 14, 2013, at the eastern South 2014 at the Dakota Lakes location 15 plants per field Dakota Soil and Water Research Farm (USDA-ARS) were examined on the first date and 10 plants were near Brookings, SD (44.3064 N, 96.7881 W), sun- examined per field on all of the remaining dates. flowers (Helianthus annuus, Pioneer, Variety: 63M80- Soil Arthropod Community. In 2013, soil herbivore N422) were planted in six, 30.5- by 30.5-m fields. communities at the Brookings location were assessed Borders (12 m wide) of untreated Sorghum Sudan (Sor- on six occasions between planting and the R-6 plant ghum X drummondii, Millborn Seeds Inc., Variety: stage. In 2014, soil herbivores were assessed eight MS9000) grass were planted around and in between times at Brookings and six times at Dakota Lakes by guest on July 26, 2016 the fields to separate them. Three of the fields were between the V-2 and R-6 stages. planted with untreated seeds while the remaining three In 2013, four soil cores from each field (10 cm diam- were planted with seeds that had been treated with eter, 10 cm deep) were collected using a golf-hole cup thiamethoxam (Cruiser, Syngenta, Greensborough, cutter from randomly selected locations within sun- NC) at a rate of 0.25 mg a.i./seed. Fields were planted flower rows. In 2014, three soil cores were taken in in a randomized block design with a seeding rate of each field on every sampling date. On each collection 76,601 seeds/ha. date cores taken within individual fields were pooled On May 23, 2014, at the Brookings, SD site there and extracted from the soil over 7 d using a Berlese were eight, 24.5- by 36.5-m fields planted to sunflowers funnel. The arthropods collected in this manner were (Helianthus annuus, Mycogen, var 8H288CLDM) at a stored in 70% ethanol, for later curation and rate of 76,601 seeds/ha. Half of the fields were treated identification. with a thiamethoxam seed dressing prior to planting at Insecticide in Plant Tissue. Leaf Tissue Collec- a rate of 0.25 mg a.i./seed and half of the fields were tion.
Recommended publications
  • Biology and Integrated Pest Management of the Sunflower Stem
    E-821 (Revised) Biology and Integrated Pest Management of the SunflowerSunflower StemStem WeevilsWeevils inin thethe GreatGreat PlainsPlains Janet J. Knodel, Crop Protection Specialist Laurence D. Charlet, USDA, ARS Research Entomologist he sunflower stem weevil, Cylindrocopturus adspersus T(LeConte), is an insect pest that has caused economic damage to sunflower in the northern and southern Great Plains of the USA and into Canada. It belongs in the order Coleoptera (beetles) and family Curculionidae (weevils), and has also been called the spotted sunflower stem weevil. It is native to North America and has adapted to wild and cultivated Figure 1. Damage caused by sunflower stem weevil – sunflower lodging and stalk breakage. sunflowers feeding on the stem and leaves. The sunflower stem weevil was first reported as a pest in 1921 from severely wilted plants in fields grown for silage in Colorado. In North Dakota, the first sunflower stem weevil infestation ■ Distribution was recorded in 1973, causing 80% The sunflower stem weevil has been reported from most states yield loss due to lodging (Figure 1). west of the Mississippi River and into Canada. Economically Populations of sunflower stem weevil damaging populations have been recorded in Colorado, Kansas, have fluctuated over the years with high Nebraska, North Dakota, Minnesota, South Dakota, and Texas. numbers in some areas from the 1980s The black sunflower stem weevil can be found in most sunflower production areas with the greatest concentrations in to early 1990s in North Dakota. southern North Dakota and South Dakota. Another stem feeding weevil called the black sunflower stem weevil, Apion occidentale Fall, also occurs throughout the Great Plains, and attacks sunflower as a host.
    [Show full text]
  • 197 Section 9 Sunflower (Helianthus
    SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow.
    [Show full text]
  • Control Biológico De Insectos: Clara Inés Nicholls Estrada Un Enfoque Agroecológico
    Control biológico de insectos: Clara Inés Nicholls Estrada un enfoque agroecológico Control biológico de insectos: un enfoque agroecológico Clara Inés Nicholls Estrada Ciencia y Tecnología Editorial Universidad de Antioquia Ciencia y Tecnología © Clara Inés Nicholls Estrada © Editorial Universidad de Antioquia ISBN: 978-958-714-186-3 Primera edición: septiembre de 2008 Diseño de cubierta: Verónica Moreno Cardona Corrección de texto e indización: Miriam Velásquez Velásquez Elaboración de material gráfico: Ana Cecilia Galvis Martínez y Alejandro Henao Salazar Diagramación: Luz Elena Ochoa Vélez Coordinación editorial: Larissa Molano Osorio Impresión y terminación: Imprenta Universidad de Antioquia Impreso y hecho en Colombia / Printed and made in Colombia Prohibida la reproducción total o parcial, por cualquier medio o con cualquier propósito, sin autorización escrita de la Editorial Universidad de Antioquia. Editorial Universidad de Antioquia Teléfono: (574) 219 50 10. Telefax: (574) 219 50 12 E-mail: [email protected] Sitio web: http://www.editorialudea.com Apartado 1226. Medellín. Colombia Imprenta Universidad de Antioquia Teléfono: (574) 219 53 30. Telefax: (574) 219 53 31 El contenido de la obra corresponde al derecho de expresión del autor y no compromete el pensamiento institucional de la Universidad de Antioquia ni desata su responsabilidad frente a terceros. El autor asume la responsabilidad por los derechos de autor y conexos contenidos en la obra, así como por la eventual información sensible publicada en ella. Nicholls Estrada, Clara Inés Control biológico de insectos : un enfoque agroecológico / Clara Inés Nicholls Estrada. -- Medellín : Editorial Universidad de Antioquia, 2008. 282 p. ; 24 cm. -- (Colección ciencia y tecnología) Incluye glosario. Incluye bibliografía e índices.
    [Show full text]
  • Canadian Food Inspection Agency Home > Plants > Plants with Novel Traits > Applicants > Directive 94­08 > Biology Documents > Helianthus Annuus L
    Canadian Food Inspection Agency Home > Plants > Plants With Novel Traits > Applicants > Directive 94­08 > Biology Documents > Helianthus annuus L. The Biology of Share this page Helianthus annuus L. This page is part of the Guidance Document Repository (GDR). Looking for related documents? Search for related documents in the Guidance Document Repository Biology Document BIO2005­01: A companion document to the Directive 94­08 (Dir94­08), Assessment Criteria for Determining Environmental Safety of Plant with Novel Traits Table of Contents Part A General Information A1. Background A2. Scope Part B The Biology of H. annuus L. B1. General Description, Cultivation and Use as a Crop Plant B2. The Centres of Origin of the Species B3. The Reproductive Biology of H. annuus B4. Breeding, Seed Production and Agronomic Practices for Sunflower B5. Cultivated H. annuus as a Volunteer Weed Part C Related species of H. annuus L. C1. Inter­species/Genus Hybridization C2. Potential for Introgression of Genetic Information from Cultivated H. annuus into Relatives C3. Summary of Ecology of Relatives of H. annuus Part D Potential Interactions of H. annuus L. Table 1. Examples of Potential Interactions of H. annuus L. with Other Life Form During its Life Cycle. Part E Acknowledgements Part F Bibliography Part A ­ General Information A1. Background The Canadian Food Inspection Agency's (CFIA) Plant Biosafety Office (PBO) is responsible for regulating the intentional introduction of plants with novel traits (PNTs) into the Canadian environment. PNTs are plants containing traits not present in plants of the same species already existing as stable, cultivated populations in Canada, or are expressed outside the normal statistical range of similar existing traits in the plant species.
    [Show full text]
  • Journal of Hymenoptera Research
    c 3 Journal of Hymenoptera Research . .IV 6«** Volume 15, Number 2 October 2006 ISSN #1070-9428 CONTENTS BELOKOBYLSKIJ, S. A. and K. MAETO. A new species of the genus Parachremylus Granger (Hymenoptera: Braconidae), a parasitoid of Conopomorpha lychee pests (Lepidoptera: Gracillariidae) in Thailand 181 GIBSON, G. A. P., M. W. GATES, and G. D. BUNTIN. Parasitoids (Hymenoptera: Chalcidoidea) of the cabbage seedpod weevil (Coleoptera: Curculionidae) in Georgia, USA 187 V. Forest GILES, and J. S. ASCHER. A survey of the bees of the Black Rock Preserve, New York (Hymenoptera: Apoidea) 208 GUMOVSKY, A. V. The biology and morphology of Entedon sylvestris (Hymenoptera: Eulophidae), a larval endoparasitoid of Ceutorhynchus sisymbrii (Coleoptera: Curculionidae) 232 of KULA, R. R., G. ZOLNEROWICH, and C. J. FERGUSON. Phylogenetic analysis Chaenusa sensu lato (Hymenoptera: Braconidae) using mitochondrial NADH 1 dehydrogenase gene sequences 251 QUINTERO A., D. and R. A. CAMBRA T The genus Allotilla Schuster (Hymenoptera: Mutilli- dae): phylogenetic analysis of its relationships, first description of the female and new distribution records 270 RIZZO, M. C. and B. MASSA. Parasitism and sex ratio of the bedeguar gall wasp Diplolqjis 277 rosae (L.) (Hymenoptera: Cynipidae) in Sicily (Italy) VILHELMSEN, L. and L. KROGMANN. Skeletal anatomy of the mesosoma of Palaeomymar anomalum (Blood & Kryger, 1922) (Hymenoptera: Mymarommatidae) 290 WHARTON, R. A. The species of Stenmulopius Fischer (Hymenoptera: Braconidae, Opiinae) and the braconid sternaulus 316 (Continued on back cover) INTERNATIONAL SOCIETY OF HYMENOPTERISTS Organized 1982; Incorporated 1991 OFFICERS FOR 2006 Michael E. Schauff, President James Woolley, President-Elect Michael W. Gates, Secretary Justin O. Schmidt, Treasurer Gavin R.
    [Show full text]
  • TRUPANEA in America North of Mexico (Díptera, Tephritidae)
    A Revision of the Genus TRUPANEA in America North of Mexico (Díptera, Tephritidae) e ,v-\ ^SlMENT STA^^S TECHNICAL BULLETIN NO. 1214 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE CONTENTS Page Genus Trupanea Guettard 2 Key to females 4 Key to males 6 Descriptions of species 8 Trupanea conjuncta (Adams) 8 Trupanea femoralis (Thomson) 8 Trupanea nigricornis (Coquillett) 9 Trupanea hisetosa (Coquillett) 11 Trupanea dacetoptera Phillips 11 Trupanea arizonensis Malloch 12 Trupanea maculigera, new species 13 Trupanea ageratae Benjamin 14 Trupanea wheeleri Curran 14 Trupanea mevarna (Walker) 15 Trupanea texana Malloch 17 Trupanea imperfecta (Coquillett) 18 Trupanea radífera (Coquillett) 18 Trupanea eclipta Benjamin 19 Trupanea jonesi Curran 20 Trupanea californica Malloch 21 Trupanea pseudovicina Hering 22 Trupanea signalaj new species 22 Trupanea actinohola (Loew) 24 Trupanea vicina (van der Wulp) 25 Literature cited 26 ACKNOWLEDGMENTS I am deeply indebted to F. Van Emden, British Museum (Natural History), London, for comparing specimens with the types of Trupanea mevarna (Walk.) and vicina (v. d. W.) and to F. L. Blanc, California Department of Agriculture, Sacramento, who borrowed specimens from several west coast collections specif- ically for this study. I also express my appreciation to the following individ- uals and institutions for lending me specimens : Paul H. Arnaud, Jr., California Department of Agriculture, Sacramento; Carl Brandhorst, University of Ne- braska, Lincoln ; R. R. Dreisbach, Midland, Mich. ; C. F. Knowlton, Utah State University, Logan; and L. W. Quate, formerly of the University of Nebraska, Lincoln ; — Academy of Natural Sciences of Philadelphia ; American Museum of Natural History, New York; California Academy of Sciences, San Francisco; California Department of Agriculture, Sacramento; California Insect Survey, Sacramento; University of California, Berkeley; University of California, Davis ; University of California, Riverside ; Carnegie Museum, Pittsburgh, Pa.
    [Show full text]
  • Richard Herbert Foote (1918-2002) Richard H. Foote, a Longtime Member and Former President of the Entomological Society of Washi
    31 March 2003 PROC. ENTOMOL. SOC. WASH. 105(2), 2003, pp. 508-516 OBITUARY Richard Herbert Foote (1918-2002) Richard H. Foote, a longtime member old-fashioned way to bring up children in a and former President of the Entomological family. We were raised according to Chris- Society of Washington, died on February 9, tian tradition, and both of us were always 2002. Known fondly as "Dick" to his confident of our parents' love as long as many friends and colleagues, he passed they lived." away suddenly, at the age of 83, of com- Dick's interest in biology had its roots in plications following a broken hip. Among his father's work as a sanitary and civil en- the highlights and accomplishments of his gineer. Herb Foote worked for the State of long career, Dick became a world recog- Montana from 1923, when he assumed the nized specialist on the taxonomy of fruit position of Director of the Water and Sew- flies, served as leader of the Systematic En- age Division of the Montana State Board of tomology Laboratory, ARS, USD A, and Health, until his retirement in the 1950's. was an early advocate for the use of com- He led the successful efforts to rid Montana puters for information storage and retrieval of typhoid fever through his work on the in entomology. drinking water systems of the state and re- Richard Herbert Foote was born on May ceived an honorary doctorate for his work 2, 1918 in Bozeman, Montana, by eight in parasitology from the University of Mon- years the elder of the two children of Her- tana.
    [Show full text]
  • Evaluation of Host Plant Resistance Against Sunflower Moth, <I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Student Research in Entomology Entomology, Department of 8-2017 Evaluation of host plant resistance against sunflower moth, Homoeosoma electellum (Hulst), in cultivated sunflower in western Nebraska Dawn M. Sikora University of Nebraska - Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/entomologydiss Part of the Entomology Commons Sikora, Dawn M., "Evaluation of host plant resistance against sunflower moth, Homoeosoma electellum (Hulst), in cultivated sunflower in western Nebraska" (2017). Dissertations and Student Research in Entomology. 50. http://digitalcommons.unl.edu/entomologydiss/50 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Student Research in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Evaluation of host plant resistance against sunflower moth, Homoeosoma electellum (Hulst), in cultivated sunflower in western Nebraska by Dawn Sikora A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Entomology Under the Supervision of Professors Jeff Bradshaw and Gary Brewer Lincoln, Nebraska August, 2017 Evaluation of host plant resistance against sunflower moth, Homoeosoma electellum (Hulst), in cultivated sunflower in western Nebraska Dawn Sikora, M.S. University of Nebraska, 2017 Advisors: Jeff Bradshaw and Gary Brewer Sunflower moth, Homoeosoma electellum, is a serious pest of oilseed and confection sunflowers. In this study, we determine efficacy of resistance against this pest. Thirty commercial hybrids, inbreds, and varieties of sunflowers were tested in replicated field and laboratory studies.
    [Show full text]
  • Redalyc.Contribution to a History of Mexican Dipterology Part II.- The
    Acta Zoológica Mexicana (nueva serie) ISSN: 0065-1737 [email protected] Instituto de Ecología, A.C. México Papavero, Nelson; Ibáñez Bernal, Sergio Contribution to a History of Mexican Dipterology Part II.- The Biologia Centrali-Americana Acta Zoológica Mexicana (nueva serie), núm. 88, 2003, pp. 143 - 232 Instituto de Ecología, A.C. Xalapa, México Available in: http://www.redalyc.org/articulo.oa?id=57508806 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Acta Zool. Mex. (n.s.) 88:143-232 (2003) CONTRIBUTIONS TO A HISTORY OF MEXICAN DIPTEROLOGY. PART II.- THE BIOLOGIA CENTRALI-AMERICANA Nelson PAPAVERO1 & Sergio IBÁÑEZ-BERNAL2 1 Museu de Zoologia & Instituto de Estudos Avançados, Universidade de Sao Paulo, Sao Paulo, SP, BRAZIL Pesquisador do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. Nº 1 300994/79) 2 Instituto de Ecología, A.C. Departamento de Entomología, km 2.5 carretera antigua a Coatepec N/ 351, Congregación El Haya, 91070, Xalapa, Veracruz, MÉXICO RESUMEN En esta segunda contribución a la historia de la Dipterología mexicana, se presentan datos generales de la obra Biologia-Centrali Americana, de sus autores, colectores y de los viajes efectuados para la obtención del material. Específicamente con respecto a Diptera, se incluyen algunos aspectos de la vida y obra de los contribuidores de este trabajo. Aquí se enlistan todos los nombres de especies de los Diptera mexicanos propuestos por Karl Robert Romanovitch Baron von den Osten Sacken (78 especies), Samuel Wendell Williston (200 especies), John Merton Aldrich (47 especies), William Morton Wheeler y Axel Leonard Melander (18 especies), y Frederik Maurits Van Der Wulp (610 especies).
    [Show full text]
  • Coleoptera: Dryophthoridae, Brachyceridae, Curculionidae) of the Prairies Ecozone in Canada
    143 Chapter 4 Weevils (Coleoptera: Dryophthoridae, Brachyceridae, Curculionidae) of the Prairies Ecozone in Canada Robert S. Anderson Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario, Canada, K1P 6P4 Email: [email protected] Patrice Bouchard* Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, Canada, K1A 0C6 Email: [email protected] *corresponding author Hume Douglas Entomology, Ottawa Plant Laboratories, Canadian Food Inspection Agency, Building 18, 960 Carling Avenue, Ottawa, ON, Canada, K1A 0C6 Email: [email protected] Abstract. Weevils are a diverse group of plant-feeding beetles and occur in most terrestrial and freshwater ecosystems. This chapter documents the diversity and distribution of 295 weevil species found in the Canadian Prairies Ecozone belonging to the families Dryophthoridae (9 spp.), Brachyceridae (13 spp.), and Curculionidae (273 spp.). Weevils in the Prairies Ecozone represent approximately 34% of the total number of weevil species found in Canada. Notable species with distributions restricted to the Prairies Ecozone, usually occurring in one or two provinces, are candidates for potentially rare or endangered status. Résumé. Les charançons forment un groupe diversifié de coléoptères phytophages et sont présents dans la plupart des écosystèmes terrestres et dulcicoles. Le présent chapitre décrit la diversité et la répartition de 295 espèces de charançons vivant dans l’écozone des prairies qui appartiennent aux familles suivantes : Dryophthoridae (9 spp.), Brachyceridae (13 spp.) et Curculionidae (273 spp.). Les charançons de cette écozone représentent environ 34 % du total des espèces de ce groupe présentes au Canada. Certaines espèces notables, qui ne se trouvent que dans cette écozone — habituellement dans une ou deux provinces — mériteraient d’être désignées rares ou en danger de disparition.
    [Show full text]
  • Weevils in Native Plant Seed Production
    Weevils in Native Plant Seed Production Bob Hammon Colorado State University Tri River Area Extension Grand Junction CO Why Weevils? Presentation goals If it’s a weevil, it’s probably a pest • Identify adult & larval weevils • Life history of some damaging weevils • Sampling options for weevils • Developing management plans for weevils What is a Weevil? • Snout beetles • 3 families • Curculionidae – Largest family of beetles • now includes bark beetles Sweet clover weevil – 3000 species 500 genera in North America – Almost all are plant feeders • Living and dead plants – Larvae feed within (sometimes upon) plant tissues – Adults drill holes in fruits, nuts, stems, roots Weevil larvae • Legless grub with distinct head capsule • Rarely moves far from feeding site True Weevils Curculionidae The Yucca Weevil • Distinct snout • much variation of form • Antennae arise from ~ middle of snout • Huge size variation – 1 mm – 1 inch+ • Many “play dead” when disturbed • Most have narrow host range Weevils as Biocontrol Agents • Tamarisk • Coniatus splendidulus (leaf buds & foliage) • Thistles: • Larunus planus (seeds) • Baris subsimilis (crown/root), • Rhynocillus conicus (seeds) The Penstemon Crown Borer Barus sp. • Restricted to SW Co? • Can be devastating to stands • Unknown species? • Control is difficult • Once damage is apparent, control is impossible PCB Adult • About 3/16” long • Adults present in fall & early spring – found in feeding cells within roots – Abundant on torn-out plants in disked field • Eggs laid in spring?? – eggs are unknown
    [Show full text]
  • NDSU Extension Bulletin A1995
    A1995 (December 2020) Sunflower Production Guide Edited and Compiled by Hans Kandel, Greg Endres and Ryan Buetow North Dakota Agricultural Experiment Station and North Dakota State University Extension (Sam Markell, NDSU) Foreword The first edition of “Sunflower Production and Marketing Extension Bulletin 25” was published in 1975. Revised editions followed in 1978, 1985, 1994 and 2007. This publication replaces the publication titled “Sunflower Production,” which was published in 2007. The purpose is to update information and provide a production and pest management guide for sunflower growers. This revised publication is directed primarily to the commercial production of sunflower, not to marketing and processing. It will attempt to give specific guidelines and recommendations on production practices and pest management based on current information. This publication also is directed primarily toward sunflower production in the northern part of the Great Plains of the U.S. However, much of the information is relevant to other production areas. All pesticides recommended have a U.S. Environmental Protection Agency label unless otherwise specified. This publication contains certain recommendations for pesticides that are labeled only for North Dakota. The users of any pesticide designated for a state label must have a copy of the state label in their possession at the time of application. State labels can be obtained from agricultural chemical dealers or distributors. Use pesticides only as labeled. Acknowledgments The editors are indebted to the contributors for writing sections of this publication. The editors also appreciate the efforts made by previous contributors because these previous sections often were the starting point for current sections.
    [Show full text]