Pest Categorisation of Non‐EU Tephritidae

Total Page:16

File Type:pdf, Size:1020Kb

Pest Categorisation of Non‐EU Tephritidae SCIENTIFIC OPINION ADOPTED: 21 November 2019 doi: 10.2903/j.efsa.2020.5931 Pest categorisation of non-EU Tephritidae EFSA Panel on Plant Health (PLH), Claude Bragard, Katharina Dehnen-Schmutz, Francesco Di Serio, Paolo Gonthier, Marie-Agnes Jacques, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Christer Sven Magnusson, Panagiotis Milonas, Juan A Navas-Cortes, Stephen Parnell, Roel Potting, Philippe Lucien Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera, Jonathan Yuen, Lucia Zappala, Eleftheria Maria Bali, Nikolaos Papadopoulos, Stella Papanastassiou, Ewelina Czwienczek and Alan MacLeod Abstract The Panel on Plant Health performed a group pest categorisation of non-EU Tephritidae, a large insect family containing well-studied and economically important fruit fly species and little studied species with scarce information regarding their hosts and species that do not feed on plants. Information was saught on the distribution of each species and their hosts. Tephritidae occur in all biogeographic regions except in extreme desert and polar areas, where their hosts are scarce or absent. Non- European Tephritidae are listed in 2000/29 EC as Annex 1/A1 pests whose introduction into the EU is prohibited. Non-EU Tephritidae are regularly intercepted in the EU. Interceptions mainly occur on fruits although there is potential for entry on other plant parts. Beginning with over 5,000 recognised species, factors relevant for pest categorisation were sequentially used to narrow down the list of species to create a list of Tephritidae not known to be established in the EU yet which occur in countries with some EU climate types and which feed on plants that occur in the EU. Following the introduction of pest species, impacts on cultivated host plants could result in yield and quality losses; harmful impacts on wild hosts are uncertain. Phytosanitary measures are available to prevent the entry of non-EU Tephritidae. Results are presented in a series of appendices listing species screened during the process. Of 4,765 species regarded as non-EU Tephritidae, 257 species satisfy the criteria assessed by EFSA such that they can be considered as potential quarantine pests for the EU. Lack of information of the distribution of hosts and/or impact on wild hosts means 1,087 species of non-EU Tephritidae do not satisfy all criteria to be considered as potential quarantine pests for the EU. Non-EU Tephritidae do not meet the criteria assessed by EFSA for consideration as regulated non-quarantine pests, as members of the group are not present in the EU and plants for planting are not the main means of spread. © 2020 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority. Keywords: decision tree, fruit fly, invasive species, pest risk, plant health, plant pest, quarantine Requestor: European Commission Question number: EFSA-Q-2018-00273 Correspondence: [email protected] www.efsa.europa.eu/efsajournal EFSA Journal 2020;18(1):5931 Non-EU Tephritidae : Pest categorisation Panel members: Claude Bragard, Katharina Dehnen-Schmutz, Francesco Di Serio, Paolo Gonthier, Marie-Agnes Jacques, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Alan MacLeod, Christer Sven Magnusson, Panagiotis Milonas, Juan A Navas-Cortes, Stephen Parnell, Roel Potting, Philippe L Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera, Jonathan Yuen and Lucia Zappala. Acknowledgements: The Scientific Opinion was prepared in cooperation with the University of Thessaly, (Greece) under the EFSA Art. 36 Framework Partnership Agreement ‘GP/EFSA/ALPHA/2017/ 02 - LOT 3 GA 1 - SA01_Tephritidae’. The Panel wishes to acknowledge all competent European institutions, Member State bodies and other organisations that provided data for this scientific output. Suggested citation: EFSA PLH Panel (EFSA Panel on Plant Health), Bragard C, Dehnen-Schmutz K, Di Serio F, Gonthier P, Jacques M-A, Jaques Miret JA, Justesen AF, Magnusson CS, Milonas P, Navas- Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H-H, Van der Werf W, Vicent Civera A, Yuen J, Zappala L, Bali EM, Papadopoulos N, Papanastassiou S, Czwienczek E and MacLeod A, 2020. Pest categorisation of non-EU Tephritidae. EFSA Journal 2020;18(1):5931, 62 pp. https://doi.org/10.2903/ j.efsa.2020.5931 ISSN: 1831-4732 © 2020 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority. This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made. The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union. www.efsa.europa.eu/efsajournal 2 EFSA Journal 2020;18(1):5931 Non-EU Tephritidae : Pest categorisation Table of contents Abstract................................................................................................................................................... 1 1. Introduction................................................................................................................................5 1.1. Background and Terms of Reference as provided by the requestor.................................................. 5 1.1.1. Background ................................................................................................................................5 1.1.2. Terms of Reference ..................................................................................................................... 5 1.1.2.1. Terms of Reference: Appendix 1................................................................................................... 6 1.1.2.2. Terms of Reference: Appendix 2................................................................................................... 7 1.1.2.3. Terms of Reference: Appendix 3................................................................................................... 8 1.2. Interpretation of the Terms of Reference....................................................................................... 9 2. Data and methodologies .............................................................................................................. 10 2.1. Data........................................................................................................................................... 10 2.1.1. Literature search ......................................................................................................................... 10 2.1.2. Database search ......................................................................................................................... 10 2.2. Methodologies............................................................................................................................. 10 3. Pest categorisation ...................................................................................................................... 14 3.1. Identity and biology of the pest.................................................................................................... 14 3.1.1. Identity and taxonomy................................................................................................................. 14 3.1.2. Biology of the pest ...................................................................................................................... 17 3.1.3. Intraspecific diversity................................................................................................................... 19 3.1.4. Detection and identification of the pest......................................................................................... 19 3.2. Pest distribution .......................................................................................................................... 22 3.2.1. Pest distribution outside the EU.................................................................................................... 22 3.2.2. Pest distribution in the EU............................................................................................................ 24 3.3. Regulatory status ........................................................................................................................ 24 3.3.1. Council Directive 2000/29/EC ....................................................................................................... 24 3.3.2. Legislation addressing the hosts of non-EU Tephritidae .................................................................. 25 3.4. Entry, establishment and spread in the EU .................................................................................... 26 3.4.1. Host range.................................................................................................................................. 26 3.4.2. Entry .......................................................................................................................................... 27 3.4.3. Establishment ............................................................................................................................. 28 3.4.3.1. EU distribution of main host plants ............................................................................................... 29 3.4.3.2. Climatic conditions affecting establishment...................................................................................
Recommended publications
  • Insect Pest Management: Oral Presentations in Programme Order
    ABSTRACTS: Insect Pest Management: Oral Presentations In programme order Session 10 (Part I) Session 13 (Part II) Session 16 (Part III) Session 18 (Part IV) Session 21 (Part V) Session 24 (Part VI) Pheromone identification by SSGA – an analytical method using circadian rhythms of volatile emissions Anat Levi-Zada Agricultural Research Organization, Volcani Center, Israel The SSGA (Sequential SPME/GCMS analysis) method uses circadian rhythms of volatile emissions for identifying insect pheromones. The history/background in development of the SSGA method will be presented along with its advantages compared to other established methods. The usefulness of the SSGA method and how it can be implemented to gain circadian information on semiochemicals and pheromones will be demonstrated with examples of different pest insects such as moths, fruit flies, and mealybugs. I will also show how these volatiles can be further tested for their biological activity in order to optimize effective attractants. Keywords: Circadian rhythm; SPME; moth; mealybugs; fruit flies Nanofibers as carrier of push substances against pear psyllids Bruna Czarnobai De Jorge1, Hans E. Hummel2, Jürgen Gross1 1Julius Kühn-Institut, Federal Research Center for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Laboratory of Applied Chemical Ecology, Schwabenheimer Str. 101, 69221 Dossenheim, Germany 2Justus-Liebig-University Gießen, Gießen, Germany Pear decline (PD) is a bacterial disease that causes considerable financial losses for growers in pear-growing areas in Europe. Fighting this disease requires a reliable and inexpensive method for protecting orchards against pear psyllids, which are the major responsible of its transmission. The need for alternatives to insecticides has stimulated studies on the use of plant essential oils and plant extracts against pest insects.
    [Show full text]
  • Dipterists Forum
    BULLETIN OF THE Dipterists Forum Bulletin No. 76 Autumn 2013 Affiliated to the British Entomological and Natural History Society Bulletin No. 76 Autumn 2013 ISSN 1358-5029 Editorial panel Bulletin Editor Darwyn Sumner Assistant Editor Judy Webb Dipterists Forum Officers Chairman Martin Drake Vice Chairman Stuart Ball Secretary John Kramer Meetings Treasurer Howard Bentley Please use the Booking Form included in this Bulletin or downloaded from our Membership Sec. John Showers website Field Meetings Sec. Roger Morris Field Meetings Indoor Meetings Sec. Duncan Sivell Roger Morris 7 Vine Street, Stamford, Lincolnshire PE9 1QE Publicity Officer Erica McAlister [email protected] Conservation Officer Rob Wolton Workshops & Indoor Meetings Organiser Duncan Sivell Ordinary Members Natural History Museum, Cromwell Road, London, SW7 5BD [email protected] Chris Spilling, Malcolm Smart, Mick Parker Nathan Medd, John Ismay, vacancy Bulletin contributions Unelected Members Please refer to guide notes in this Bulletin for details of how to contribute and send your material to both of the following: Dipterists Digest Editor Peter Chandler Dipterists Bulletin Editor Darwyn Sumner Secretary 122, Link Road, Anstey, Charnwood, Leicestershire LE7 7BX. John Kramer Tel. 0116 212 5075 31 Ash Tree Road, Oadby, Leicester, Leicestershire, LE2 5TE. [email protected] [email protected] Assistant Editor Treasurer Judy Webb Howard Bentley 2 Dorchester Court, Blenheim Road, Kidlington, Oxon. OX5 2JT. 37, Biddenden Close, Bearsted, Maidstone, Kent. ME15 8JP Tel. 01865 377487 Tel. 01622 739452 [email protected] [email protected] Conservation Dipterists Digest contributions Robert Wolton Locks Park Farm, Hatherleigh, Oakhampton, Devon EX20 3LZ Dipterists Digest Editor Tel.
    [Show full text]
  • Producing Sea Buckthorn of High Quality
    Natural resources and bioeconomy studies 31/2015 Producing Sea Buckthorn of High Quality Proceedings of the 3rd European Workshop on Sea Buckthorn EuroWorkS2014 Naantali, Finland, October 14-16, 2014 Kauppinen Sanna, Petruneva Ekaterina (Eds.) Natural resources and bioeconomy studies 31/2015 Producing Sea Buckthorn of High Quality Proceedings of the 3rd European Workshop on Sea Buckthorn EuroWorkS2014 Naantali, Finland October 14-16, 2014 Kauppinen Sanna, Petruneva Ekaterina (Eds.) Natural Resources Institute Finland, Helsinki 2015 ISBN: 978-952-326-035-1 (Online) ISSN 2342-7647 (Online) URN: http://urn.fi/URN:ISBN:978-952-326-035-1 Copyright: Natural Resources Institute Finland (Luke) Authors: Kauppinen Sanna, Petruneva Ekaterina (Eds.) Publisher: Natural Resources Institute Finland (Luke), Helsinki 2015 Year of publication: 2015 Cover photo: Sanna Kauppinen Natural resources and bioeconomy studies 31/2015 Preface Producing sea buckthorn of high quality asks skills and knowledge in every step of the food chain from the field to the consumer. The 3rd European Workshop on Sea Buckthorn (EuroWorkS2014) was held in Naantali, Finland on 14th to 16th of October 2014 under the theme “Producing Sea Buckthorn of High Quality”. Conference concentrated on three topics that were recognized to be current under the theme: sea buckthorn fly, cultivation technology and standardization of sea buckthorn. A special attention was paid to sea buckthorn fly because of its rapid and destructive invasion to Europe. Protective measurements need to be studied fast to get this new pest under control. Also long-term strategies are needed in order to continue efficient berry production, also without pesti- cides. Dr. Ljubov Shamanskaja has a long research experience with sea buckthorn fly in Barnaul, Rus- sia, where the fly has been a problem over 20 years.
    [Show full text]
  • 197 Section 9 Sunflower (Helianthus
    SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow.
    [Show full text]
  • Pristop K Obvladovanju Prenamnožitev Lazarjev Iz Rodu Arion
    Zbornik predavanj in referatov 13. Slovenskega posvetovanje o varstvu rastlin z mednarodno udeležbo Rimske Toplice, 7.-8. marec 2017 ZAČASEN ZNAČAJ KARANTENSKE KATEGORIJE NA ZGLEDU PLODOVIH MUH (Tephritidae) Vlasta KNAPIČ1, Gabrijel SELJAK2 1Ministrstvo za kmetijstvo, gozdarstvo in prehrano, Uprava RS za varno hrano, veterinarstvo in varstvo rastlin, Ljubljana 2 Kmetijsko gozdarski zavod Nova Gorica IZVLEČEK Plodove muhe so med najpomembnejšimi škodljivci v pridelavi sadja in zelenjave na svetu. Opisanih je nad 4000 vrst. Mnoge so polifagne. Družina Tephritidae ima kar 500 rodov, ki imajo vsak svoje domorodno območje. Med gospodarsko najpomembnejše rodove spadajo: Anastrepha (domorodne vrste pretežno v Južni in Srednji Ameriki), Bactrocera (Bližnji vzhod in območje Avstralazije), Ceratitis (tropska Afrika) in Rhagoletis (domorodne vrste v zmerno toplem pasu Amerike, Evrope in Azije). Mnoge vrste iz teh rodov so tudi invazivne in povzročajo veliko škodo ob vnosu na nova območja, kar se zaradi mednarodne trgovine dogaja vse pogosteje. Po tej poti so se k nam verjetno vnesle breskova muha (Ceratitis capitata), oljkova muha (Bactrocera oleae), višnjeva muha (Rhagoletis cingulata) in orehova 254 muha (Rh. completa). Od skoraj 200 znanih škodljivih vrst plodovih muh pa jih večina še ni zastopanih v Evropi, zato jih je mogoče obdržati na karantenski listi in predpisati uvozne zahteve za plodove, s katerimi se v EU lahko vnesejo. V prispevku so opisane regulirane vrste plodovih muh v Sloveniji in v Evropski uniji za obdobje 1977 do 2017 in posebnosti pri tem preventivnem ukrepu varstva rastlin. Ključne besede: plodove muhe, Tephritidae, karantenski ukrepi, uvoz, zdravje rastlin ABSTRACT TEMPORARY NATURE OF QUARANTINE PEST CATEGORIES USING THE EXAMPLE OF THE Tephritidae FRUIT FLIES Globally, fruit flies belong to the most significant pests in the production of fruits and vegetables.
    [Show full text]
  • Mitteilungen Der Dgaae 22
    Halle (Saale) 2020 Mitt. Dtsch. Ges. allg. angew. Ent. 22 Examinations on the pupae of the fruit fly Rhagoletis batava Hering 1958 (Diptera: Tephritidae) and the role of applied scientific research in a “bottom-up” approach to control this pest Sandra Lerche 1, Thorsten Rocksch 2, Sabine Altmann 2 & Frank Hippauf 3 1 Leibniz Centre for Agricultural Landscape Research (ZALF) e. V. 2 Humboldt-Universty of Berlin, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences 3 Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries, Centre of Horticultural Crop Production, LFA Abstract: In Germany, considerable damage of the sea buckthorn flyRhagoletis batava Hering 1958 in fruits of sea buckthorn Hippophae rhamnoides L. is fairly new. Up to 100 % of the harvest can be lost and methods available for controlling the pest are limited both in organic and in integrated production systems. In response to this, growers, institutions, companies and scientists connected with this issue joined forces. They collected existing data about the pest, coordinated and carried out monitoring and tested first control measures. This comprehensive body of preliminary work was the origin of the MoPlaSa project, which is funded by the European Innovation Partnership (EIP-agri). The project was launched on 1st October 2018 to develop a control strategy against R. batava consisting of several non-chemically based control modules. In general, EIP-agri finances projects which combine a “bottom-up” principle in the identification of solutions to problems in agricultural through the application of directed scientific research. The aim is to achieve quick, sustainable and practicable results in the project.
    [Show full text]
  • Inventory and Review of Quantitative Models for Spread of Plant Pests for Use in Pest Risk Assessment for the EU Territory1
    EFSA supporting publication 2015:EN-795 EXTERNAL SCIENTIFIC REPORT Inventory and review of quantitative models for spread of plant pests for use in pest risk assessment for the EU territory1 NERC Centre for Ecology and Hydrology 2 Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, UK ABSTRACT This report considers the prospects for increasing the use of quantitative models for plant pest spread and dispersal in EFSA Plant Health risk assessments. The agreed major aims were to provide an overview of current modelling approaches and their strengths and weaknesses for risk assessment, and to develop and test a system for risk assessors to select appropriate models for application. First, we conducted an extensive literature review, based on protocols developed for systematic reviews. The review located 468 models for plant pest spread and dispersal and these were entered into a searchable and secure Electronic Model Inventory database. A cluster analysis on how these models were formulated allowed us to identify eight distinct major modelling strategies that were differentiated by the types of pests they were used for and the ways in which they were parameterised and analysed. These strategies varied in their strengths and weaknesses, meaning that no single approach was the most useful for all elements of risk assessment. Therefore we developed a Decision Support Scheme (DSS) to guide model selection. The DSS identifies the most appropriate strategies by weighing up the goals of risk assessment and constraints imposed by lack of data or expertise. Searching and filtering the Electronic Model Inventory then allows the assessor to locate specific models within those strategies that can be applied.
    [Show full text]
  • Pseudotsuga Menziesii
    SPECIAL PUBLICATION 4 SEPTEMBER 1982 INVERTEBRATES OF THE H.J. ANDREWS EXPERIMENTAL FOREST, WESTERN CASCADE MOUNTAINS, OREGON: A SURVEY OF ARTHROPODS ASSOCIATED WITH THE CANOPY OF OLD-GROWTH Pseudotsuga Menziesii D.J. Voegtlin FORUT REJEARCH LABORATORY SCHOOL OF FORESTRY OREGON STATE UNIVERSITY Since 1941, the Forest Research Laboratory--part of the School of Forestry at Oregon State University in Corvallis-- has been studying forests and why they are like they are. A staff or more than 50 scientists conducts research to provide information for wise public and private decisions on managing and using Oregons forest resources and operating its wood-using industries. Because of this research, Oregons forests now yield more in the way of wood products, water, forage, wildlife, and recreation. Wood products are harvested, processed, and used more efficiently. Employment, productivity, and profitability in industries dependent on forests also have been strengthened. And this research has helped Oregon to maintain a quality environment for its people. Much research is done in the Laboratorys facilities on the campus. But field experiments in forest genetics, young- growth management, forest hydrology, harvesting methods, and reforestation are conducted on 12,000 acres of School forests adjacent to the campus and on lands of public and private cooperating agencies throughout the Pacific Northwest. With these publications, the Forest Research Laboratory supplies the results of its research to forest land owners and managers, to manufacturers and users of forest products, to leaders of government and industry, and to the general public. The Author David J. Voegtlin is Assistant Taxonomist at the Illinois Natural History Survey, Champaign, Illinois.
    [Show full text]
  • Two New Species of Psyttalia Walker (Hymenoptera, Braconidae, Opiinae) Reared from Fruit-Infesting Tephritid (Diptera) Hosts in Kenya
    A peer-reviewed open-access journal ZooKeys 20: 349–377Two (2009) new species of Psyttalia Walker (Hymenoptera, Braconidae, Opiinae) 349 doi: 10.3897/zookeys.20.99 RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research Two new species of Psyttalia Walker (Hymenoptera, Braconidae, Opiinae) reared from fruit-infesting tephritid (Diptera) hosts in Kenya Robert A. Wharton Departament of Entomology, Texas A & M University, College Station, TX urn:lsid:zoobank.org:author:6AAF121C-A6DB-47B0-81EE-131259F28972 Corresponding author: Robert A. Wharton ([email protected]) Academic editor: Kees van Achterberg | Received 14 February 2009 | Accepted 7 May 2009 | Published 14 September 2009 urn:lsid:zoobank.org:pub:42A09D98-A0FC-4510-A2E5-A578D9935766 Citation: Wharton RA (2009) Two new species of Psyttalia Walker (Hymenoptera, Braconidae, Opiinae) reared from fruit-infesting tephritid (Diptera) hosts in Kenya. In: Johnson N (Ed) Advances in the systematics of Hymenoptera. Festschrift in honour of Lubomír Masner. ZooKeys 20: 349–377. doi: 10.3897/zookeys.20.99 Abstract Two species of opiine Braconidae, reared from fruit-infesting Tephritidae in Kenya, are described. Psyt- talia masneri, sp. n., was reared from fruits of Dracaena fragrans (L.) Ker Gawl. (Liliaceae) infested with Taomyia marshalli Bezzi in western Kenya. Psyttalia masneri is the only opiine braconid known to attack members of the genus Taomyia. Unusual morphological features of P. masneri and its host are detailed. Psyttalia halidayi, sp. n., was reared from fruits of Lettowianthus stellatus Diels (Annonaceae) infested with Ceratitis rosa Karsch in coastal Kenya. Psyttalia halidayi is morphologically similar to several described species of Psyttalia that have previously been used in the biological control of tephritid pests.
    [Show full text]
  • TRUPANEA in America North of Mexico (Díptera, Tephritidae)
    A Revision of the Genus TRUPANEA in America North of Mexico (Díptera, Tephritidae) e ,v-\ ^SlMENT STA^^S TECHNICAL BULLETIN NO. 1214 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE CONTENTS Page Genus Trupanea Guettard 2 Key to females 4 Key to males 6 Descriptions of species 8 Trupanea conjuncta (Adams) 8 Trupanea femoralis (Thomson) 8 Trupanea nigricornis (Coquillett) 9 Trupanea hisetosa (Coquillett) 11 Trupanea dacetoptera Phillips 11 Trupanea arizonensis Malloch 12 Trupanea maculigera, new species 13 Trupanea ageratae Benjamin 14 Trupanea wheeleri Curran 14 Trupanea mevarna (Walker) 15 Trupanea texana Malloch 17 Trupanea imperfecta (Coquillett) 18 Trupanea radífera (Coquillett) 18 Trupanea eclipta Benjamin 19 Trupanea jonesi Curran 20 Trupanea californica Malloch 21 Trupanea pseudovicina Hering 22 Trupanea signalaj new species 22 Trupanea actinohola (Loew) 24 Trupanea vicina (van der Wulp) 25 Literature cited 26 ACKNOWLEDGMENTS I am deeply indebted to F. Van Emden, British Museum (Natural History), London, for comparing specimens with the types of Trupanea mevarna (Walk.) and vicina (v. d. W.) and to F. L. Blanc, California Department of Agriculture, Sacramento, who borrowed specimens from several west coast collections specif- ically for this study. I also express my appreciation to the following individ- uals and institutions for lending me specimens : Paul H. Arnaud, Jr., California Department of Agriculture, Sacramento; Carl Brandhorst, University of Ne- braska, Lincoln ; R. R. Dreisbach, Midland, Mich. ; C. F. Knowlton, Utah State University, Logan; and L. W. Quate, formerly of the University of Nebraska, Lincoln ; — Academy of Natural Sciences of Philadelphia ; American Museum of Natural History, New York; California Academy of Sciences, San Francisco; California Department of Agriculture, Sacramento; California Insect Survey, Sacramento; University of California, Berkeley; University of California, Davis ; University of California, Riverside ; Carnegie Museum, Pittsburgh, Pa.
    [Show full text]
  • Natural Enemies of True Fruit Flies 02/2004-01 PPQ Jeffrey N
    United States Department of Agriculture Natural Enemies of Marketing and Regulatory True Fruit Flies Programs Animal and Plant Health (Tephritidae) Inspection Service Plant Protection Jeffrey N. L. Stibick and Quarantine Psyttalia fletcheri (shown) is the only fruit fly parasitoid introduced into Hawaii capable of parasitizing the melon fly (Bactrocera cucurbitae) United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 4700 River Road Riverdale, MD 20737 February, 2004 Telephone: (301) 734-4406 FAX: (301) 734-8192 e-mail: [email protected] Jeffrey N. L. Stibick Introduction Introduction Fruit flies in the family Tephritidae are high profile insects among commercial fruit and vegetable growers, marketing exporters, government regulatory agencies, and the scientific community. Locally, producers face huge losses without some management scheme to control fruit fly populations. At the national and international level, plant protection agencies strictly regulate the movement of potentially infested products. Consumers throughout the world demand high quality, blemish-free produce. Partly to satisfy these demands, the costs to local, state and national governments are quite high and increasing as world trade, and thus risk, increases. Thus, fruit flies impose a considerable resource tax on participants at every level, from producer to shipper to the importing state and, ultimately, to the consumer. (McPheron & Steck, 1996) Indeed, in the United States alone, the running costs per year to APHIS, Plant Protection and Quarantine (PPQ), (the federal Agency responsible) for maintenance of trapping systems, laboratories, and identification are in excess of US$27 million per year and increasing. This figure only accounts for a fraction of total costs throughout the country, as State, County and local governments put in their share as well as the local industry affected.
    [Show full text]
  • Richard Herbert Foote (1918-2002) Richard H. Foote, a Longtime Member and Former President of the Entomological Society of Washi
    31 March 2003 PROC. ENTOMOL. SOC. WASH. 105(2), 2003, pp. 508-516 OBITUARY Richard Herbert Foote (1918-2002) Richard H. Foote, a longtime member old-fashioned way to bring up children in a and former President of the Entomological family. We were raised according to Chris- Society of Washington, died on February 9, tian tradition, and both of us were always 2002. Known fondly as "Dick" to his confident of our parents' love as long as many friends and colleagues, he passed they lived." away suddenly, at the age of 83, of com- Dick's interest in biology had its roots in plications following a broken hip. Among his father's work as a sanitary and civil en- the highlights and accomplishments of his gineer. Herb Foote worked for the State of long career, Dick became a world recog- Montana from 1923, when he assumed the nized specialist on the taxonomy of fruit position of Director of the Water and Sew- flies, served as leader of the Systematic En- age Division of the Montana State Board of tomology Laboratory, ARS, USD A, and Health, until his retirement in the 1950's. was an early advocate for the use of com- He led the successful efforts to rid Montana puters for information storage and retrieval of typhoid fever through his work on the in entomology. drinking water systems of the state and re- Richard Herbert Foote was born on May ceived an honorary doctorate for his work 2, 1918 in Bozeman, Montana, by eight in parasitology from the University of Mon- years the elder of the two children of Her- tana.
    [Show full text]