NDSU Extension Bulletin A1995

Total Page:16

File Type:pdf, Size:1020Kb

NDSU Extension Bulletin A1995 A1995 (December 2020) Sunflower Production Guide Edited and Compiled by Hans Kandel, Greg Endres and Ryan Buetow North Dakota Agricultural Experiment Station and North Dakota State University Extension (Sam Markell, NDSU) Foreword The first edition of “Sunflower Production and Marketing Extension Bulletin 25” was published in 1975. Revised editions followed in 1978, 1985, 1994 and 2007. This publication replaces the publication titled “Sunflower Production,” which was published in 2007. The purpose is to update information and provide a production and pest management guide for sunflower growers. This revised publication is directed primarily to the commercial production of sunflower, not to marketing and processing. It will attempt to give specific guidelines and recommendations on production practices and pest management based on current information. This publication also is directed primarily toward sunflower production in the northern part of the Great Plains of the U.S. However, much of the information is relevant to other production areas. All pesticides recommended have a U.S. Environmental Protection Agency label unless otherwise specified. This publication contains certain recommendations for pesticides that are labeled only for North Dakota. The users of any pesticide designated for a state label must have a copy of the state label in their possession at the time of application. State labels can be obtained from agricultural chemical dealers or distributors. Use pesticides only as labeled. Acknowledgments The editors are indebted to the contributors for writing sections of this publication. The editors also appreciate the efforts made by previous contributors because these previous sections often were the starting point for current sections. This publication was compiled and published in cooperation with the National Sunflower Association (www.sunflowernsa.com). Foreword / Acknowledgments 1 Contributors Patrick Beauzay, state IPM coordinator and research specialist, NDSU Extension, North Dakota State University, Fargo, ND 58105 Gary Brewer, former department chair and professor, Department of Entomology, North Dakota State University, Fargo, ND 58105 Ryan Buetow, Extension cropping systems specialist, NDSU Research Extension Center, Dickinson, ND 58601 Anitha Chirumamilla, Extension agent, agriculture and natural resources, Cavalier County, Langdon, ND 58249 Greg Endres, Extension cropping systems specialist, NDSU Research Extension Center, Carrington, ND 58421 Dave Franzen, Extension soils specialist, NDSU Extension, North Dakota State University, Fargo, ND 58105 Bob Harveson, Extension plant pathologist, University of Nebraska, Scottsbluff, NE 69361 Kenneth Hellevang, Extension agricultural engineer, NDSU Extension, North Dakota State University, Fargo, ND 58105 Karl Hoppe, Extension livestock systems specialist, NDSU Research Extension Center, Carrington, ND 58421 Brent Hulke, sunflower breeder, U.S. Department of Agriculture – Agricultural Research Service (USDA-ARS), North Dakota State University, Fargo, ND 58105 Joe Ikley, Extension weed specialist, NDSU Extension, North Dakota State University, Fargo, ND 58105 Hans Kandel, Extension agronomist, NDSU Extension, North Dakota State University, Fargo, ND 58105 Page Klug, research wildlife biologist, USDA-Animal and Plant Health Inspection Service-Wildlife Service National Wildlife Research Center, North Dakota Field Station, North Dakota State University, Fargo, ND 58105 Jan Knodel, Extension entomologist, NDSU Extension, North Dakota State University, Fargo, ND 58105 Sam Markell, Extension plant pathologist, NDSU Extension, North Dakota State University, Fargo, ND 58105 Febina Mathew, oilseeds plant pathologist, South Dakota State University, Brookings, SD 57007 John Nowatzki, ag machine systems specialist, NDSU Extension, North Dakota State University, Fargo, ND 58105 2 Sunflower Production Guide | www.ndsu.edu/extension Frayne Olson, Extension crops economist, NDSU Extension, North Dakota State University, Fargo, ND 58105 John Sandbakken, Executive director, National Sunflower Association, Mandan, ND 58554 Tom Scherer, Extension agricultural engineer, NDSU Extension, North Dakota State University, Fargo, ND 58105 Former editors: David W. Cobia, David E. Zimmer, Marcia McMullen and Duane R. Berglund Former contributors: Ron R. Allen, Roger Ashley, William S. Ball, James Bauder, Duane R. Berglund, Al Black, Carl Bradley, Lawrence Charlet, David W. Cobia, William Danke, Alan Dexter, Carl Fanning, Gerhardt N. Fick, George Flaskerud, Basil Furgala, Phil Glogoza, Thomas Gulya, James Hanzel, James Helm, Harvey J. Hirning, Edna T. Holm, Vernon L. Hofman, David H. Kinard, Larry Kleingartner, Arthur Lamey, Greg Lardy, George Linz, Darnell Lundstrom, Dean McBride, Hugh McDonald, Jerry Miller, John Nalewaja, Berlin Nelson, David M. Noetzel, William K. Pfeifer, Lyle Prunty, Charlie E. Rogers, LeRoy W. Schaffner, Albert Schneiter, Robert and Jay Schuler, John T. Schulz, Don Tanaka, Tommy E. Thompson, Sebastian Vogel, Howard D. Wilkins, David E. Zimmer, Richard Zollinger and Joseph C. Zubriski. Contributors 3 4 Sunflower Production Guide | www.ndsu.edu/extension Contents Foreword ................................................................................ 1 Acknowledgments ................................................................... 1 Contributors ........................................................................... 2 I. Introduction ....................................................................... 7 Historical Perspective ....................................................... 9 Taxonomy ..................................................................... 10 Growth Stages ............................................................... 11 Description of Sunflower Growth Stages ............................ 12 II. Production ...................................................................... 15 World Production ........................................................... 17 U.S. Production ............................................................. 17 Acreage ................................................................. 17 Seed Yield Per Acre ................................................. 18 Prices .................................................................... 19 Sunflower Marketing Strategy ................................... 19 III. Hybrid Selection and Production Practices..................... 23 Hybrid Selection ............................................................ 25 Sunflower Market Types ........................................... 25 Criteria for Hybrid Selection ...................................... 26 Production Practices ....................................................... 27 Seed Quality ........................................................... 27 Soils ...................................................................... 27 Soil Fertility ............................................................ 27 Other Nutrients ....................................................... 35 Organic Sunflower Nutrient Management ................... 35 Water Requirements for Sunflower ................................... 36 Soil Water Management for Dryland Sunflower .......... 37 Irrigation Management ............................................. 37 Tillage, Seedbed Preparation and Planting ........................ 40 Tillage and Seedbed Preparation ............................... 40 Conventional-till Production Systems ......................... 40 Air Drill Use ........................................................... 41 No-till Production Systems ....................................... 42 No-till and One-pass Seeding ................................... 42 Planting Dates ........................................................ 43 Row Spacing and Plant Population ............................ 43 Postharvest Tillage .................................................. 46 Crop Rotation ................................................................ 46 Pollination ..................................................................... 47 Pollinator Safety ...................................................... 48 Contents 5 IV. Pest Management .......................................................... 49 Integrated Pest Management ........................................... 51 Insect Pest Management ................................................. 54 Diseases of Sunflower ..................................................... 99 Weeds ........................................................................ 123 Birds .......................................................................... 130 Other Pests and Damage ............................................... 135 V. Hail Injury .................................................................... 139 VI. Harvesting ................................................................... 147 VII. Drying and Storage ..................................................... 153 VIII. Feeding Value of Sunflower Products in Beef Cattle Diets ................................................... 161 IX. U.S. Grades and Standards for Sunflower .................... 167 X. Glossary........................................................................ 171 6 Contents I. Introduction (Ryan Buetow, NDSU) Introduction 7 8 Sunflower Production Guide | www.ndsu.edu/extension Introduction Hans Kandel Three primary types of sunflower are grown: (1) oilseed for vegetable oil production, (2) nonoilseed
Recommended publications
  • Biology and Integrated Pest Management of the Sunflower Stem
    E-821 (Revised) Biology and Integrated Pest Management of the SunflowerSunflower StemStem WeevilsWeevils inin thethe GreatGreat PlainsPlains Janet J. Knodel, Crop Protection Specialist Laurence D. Charlet, USDA, ARS Research Entomologist he sunflower stem weevil, Cylindrocopturus adspersus T(LeConte), is an insect pest that has caused economic damage to sunflower in the northern and southern Great Plains of the USA and into Canada. It belongs in the order Coleoptera (beetles) and family Curculionidae (weevils), and has also been called the spotted sunflower stem weevil. It is native to North America and has adapted to wild and cultivated Figure 1. Damage caused by sunflower stem weevil – sunflower lodging and stalk breakage. sunflowers feeding on the stem and leaves. The sunflower stem weevil was first reported as a pest in 1921 from severely wilted plants in fields grown for silage in Colorado. In North Dakota, the first sunflower stem weevil infestation ■ Distribution was recorded in 1973, causing 80% The sunflower stem weevil has been reported from most states yield loss due to lodging (Figure 1). west of the Mississippi River and into Canada. Economically Populations of sunflower stem weevil damaging populations have been recorded in Colorado, Kansas, have fluctuated over the years with high Nebraska, North Dakota, Minnesota, South Dakota, and Texas. numbers in some areas from the 1980s The black sunflower stem weevil can be found in most sunflower production areas with the greatest concentrations in to early 1990s in North Dakota. southern North Dakota and South Dakota. Another stem feeding weevil called the black sunflower stem weevil, Apion occidentale Fall, also occurs throughout the Great Plains, and attacks sunflower as a host.
    [Show full text]
  • Value of Sunflower Seed in Finishing Diets of Feedlot Cattle
    Value of sunflower seed in finishing diets of feedlot cattle1,2 D. J. Gibb*, F. N. Owens†, P. S. Mir*, Z. Mir*, M. Ivan*, and T. A. McAllister*3 *Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta T1J 4B1, Canada and †Animal Science Research, Pioneer Hi-Bred International, Johnston, IA 50131-0002 ABSTRACT: The value of sunflower seed (SS) in fin- linearly (P = 0.08) with level of SS in the diet. Feeding ishing diets was assessed in two feeding trials. In Exp. SS decreased (P < 0.05) levels of 16:0 and 18:3 in both 1, 60 yearling steers (479 ± 45 kg) were fed five diets diaphragm and subcutaneous fats, and increased (P = (n = 12). A basal diet (DM basis) of 84.5% steam-rolled 0.05) the prevalence of 18:1, 18:2, cis-9,trans-11-CLA barley, 9% barley silage, and 6.5% supplement was fed and trans-10,cis-12-CLA in subcutaneous fat. In Exp. as is (control), with all the silage replaced (DM basis) 2, barley diets supplemented with high-linoleic SS de- with rolled SS, or with grain:silage mix replaced with creased DMI (P = 0.02) and ADG (P = 0.007) by steers 9% whole SS, 14% whole SS, or 14% rolled SS. Liver, throughout the trial, whereas no decrease was noted diaphragm, and brisket samples were obtained from with corn (interaction P = 0.06 for DMI and P = 0.01 ± each carcass. In Exp. 2, 120 yearling steers (354 25 for ADG). With barley, high-linoleic SS decreased final kg) were fed corn- or barley-based diets containing no live weight (554 vs.
    [Show full text]
  • Macrolepidoptera Inventory of the Chilcotin District
    Macrolepidoptera Inventory of the Chilcotin District Aud I. Fischer – Biologist Jon H. Shepard - Research Scientist and Crispin S. Guppy – Research Scientist January 31, 2000 2 Abstract This study was undertaken to learn more of the distribution, status and habitat requirements of B.C. macrolepidoptera (butterflies and the larger moths), the group of insects given the highest priority by the BC Environment Conservation Center. The study was conducted in the Chilcotin District near Williams Lake and Riske Creek in central B.C. The study area contains a wide variety of habitats, including rare habitat types that elsewhere occur only in the Lillooet-Lytton area of the Fraser Canyon and, in some cases, the Southern Interior. Specimens were collected with light traps and by aerial net. A total of 538 species of macrolepidoptera were identified during the two years of the project, which is 96% of the estimated total number of species in the study area. There were 29,689 specimens collected, and 9,988 records of the number of specimens of each species captured on each date at each sample site. A list of the species recorded from the Chilcotin is provided, with a summary of provincial and global distributions. The habitats, at site series level as TEM mapped, are provided for each sample. A subset of the data was provided to the Ministry of Forests (Research Section, Williams Lake) for use in a Flamulated Owl study. A voucher collection of 2,526 moth and butterfly specimens was deposited in the Royal BC Museum. There were 25 species that are rare in BC, with most known only from the Riske Creek area.
    [Show full text]
  • Sunflower for Seed Introduction Sunflower Helianthus ( Annuus) Is a Beautiful and Versatile Flowering Annual That Has Been Aptly Named
    University of Kentucky CCD Home CCD Crop Profiles College of Agriculture, Food and Environment COOPERATIVE EXTENSION SERVICE UNIVERSITY OF KENTUCKY COLLEGE OF AGRICULTURE, FOOD AND ENVIRONMENT Sunflower for Seed Introduction Sunflower (Helianthus annuus) is a beautiful and versatile flowering annual that has been aptly named. Not only does the large flower’s shape and yellow color bring to mind the sun, but flower heads face in the direction of the sun during their early development; mature heads typically face east. While sunflowers can be grown for ornamental uses, this profile will focus 1) birdseed, 2) snack and baking products, and 3) on production for seed. oil and livestock meal. In the U.S., 25 percent of sunflower production is directed to birdseed, 10 Sunflower is classified as either an oil type to 20 percent to snack and baking products, and or a confection (non-oil) type, each with its the remaining to oil and livestock meal products. own distinct market. Seeds from oil types Increased world competition in conjunction with are processed into vegetable oil or as meal in the end of support programs has led to a decline livestock feed. Most confection type seed is in U.S. sunflower seed exports. However, sold, with or without the hull, as snack foods. exports of confectionary sunflower seed remain While either type can be packaged for birdseed, steady primarily due to the higher quality and the confectionery type is grown in Kentucky for desirable properties of U.S. produce. Moreover, this purpose. Sunflowers are not recommended the increased demand has led to higher prices.
    [Show full text]
  • 197 Section 9 Sunflower (Helianthus
    SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow.
    [Show full text]
  • Zoogeography of the Holarctic Species of the Noctuidae (Lepidoptera): Importance of the Bering Ian Refuge
    © Entomologica Fennica. 8.XI.l991 Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Bering ian refuge Kauri Mikkola, J, D. Lafontaine & V. S. Kononenko Mikkola, K., Lafontaine, J.D. & Kononenko, V. S. 1991 : Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Beringian refuge. - En to mol. Fennica 2: 157- 173. As a result of published and unpublished revisionary work, literature compi­ lation and expeditions to the Beringian area, 98 species of the Noctuidae are listed as Holarctic and grouped according to their taxonomic and distributional history. Of the 44 species considered to be "naturall y" Holarctic before this study, 27 (61 %) are confirmed as Holarctic; 16 species are added on account of range extensions and 29 because of changes in their taxonomic status; 17 taxa are deleted from the Holarctic list. This brings the total of the group to 72 species. Thirteen species are considered to be introduced by man from Europe, a further eight to have been transported by man in the subtropical areas, and five migrant species, three of them of Neotropical origin, may have been assisted by man. The m~jority of the "naturally" Holarctic species are associated with tundra habitats. The species of dry tundra are frequently endemic to Beringia. In the taiga zone, most Holarctic connections consist of Palaearctic/ Nearctic species pairs. The proportion ofHolarctic species decreases from 100 % in the High Arctic to between 40 and 75 % in Beringia and the northern taiga zone, and from between 10 and 20 % in Newfoundland and Finland to between 2 and 4 % in southern Ontario, Central Europe, Spain and Primorye.
    [Show full text]
  • Control Biológico De Insectos: Clara Inés Nicholls Estrada Un Enfoque Agroecológico
    Control biológico de insectos: Clara Inés Nicholls Estrada un enfoque agroecológico Control biológico de insectos: un enfoque agroecológico Clara Inés Nicholls Estrada Ciencia y Tecnología Editorial Universidad de Antioquia Ciencia y Tecnología © Clara Inés Nicholls Estrada © Editorial Universidad de Antioquia ISBN: 978-958-714-186-3 Primera edición: septiembre de 2008 Diseño de cubierta: Verónica Moreno Cardona Corrección de texto e indización: Miriam Velásquez Velásquez Elaboración de material gráfico: Ana Cecilia Galvis Martínez y Alejandro Henao Salazar Diagramación: Luz Elena Ochoa Vélez Coordinación editorial: Larissa Molano Osorio Impresión y terminación: Imprenta Universidad de Antioquia Impreso y hecho en Colombia / Printed and made in Colombia Prohibida la reproducción total o parcial, por cualquier medio o con cualquier propósito, sin autorización escrita de la Editorial Universidad de Antioquia. Editorial Universidad de Antioquia Teléfono: (574) 219 50 10. Telefax: (574) 219 50 12 E-mail: [email protected] Sitio web: http://www.editorialudea.com Apartado 1226. Medellín. Colombia Imprenta Universidad de Antioquia Teléfono: (574) 219 53 30. Telefax: (574) 219 53 31 El contenido de la obra corresponde al derecho de expresión del autor y no compromete el pensamiento institucional de la Universidad de Antioquia ni desata su responsabilidad frente a terceros. El autor asume la responsabilidad por los derechos de autor y conexos contenidos en la obra, así como por la eventual información sensible publicada en ella. Nicholls Estrada, Clara Inés Control biológico de insectos : un enfoque agroecológico / Clara Inés Nicholls Estrada. -- Medellín : Editorial Universidad de Antioquia, 2008. 282 p. ; 24 cm. -- (Colección ciencia y tecnología) Incluye glosario. Incluye bibliografía e índices.
    [Show full text]
  • Organic Pricing Methodologies for Barley, Corn, Cotton, Grain Sorghum, Rice, Soybeans, Sunflowers, and Wheat
    Organic Pricing Methodologies for Barley, Corn, Cotton, Grain Sorghum, Rice, Soybeans, Sunflowers, and Wheat Actuarial and Product Design Division Risk Management Agency United States Department of Agriculture Updated June, 2017 Organic Commodities The CEPP provides the authority to derive a factor “as determined by RMA” to establish organic prices, as applicable. This paper is to inform stakeholders regarding the methodology used to derive these factors. Organic Corn and Soybeans Data used to derive these organic factors is gathered from the Agricultural Marketing Service (AMS) and the Chicago Board of Trade (CBOT). All plans of insurance (Yield Protection, Area Yield Protection, Supplemental Coverage Option [SCO] Yield Protection, Revenue Protection, Area Revenue Protection, SCO Revenue Protection, Revenue Protection with Harvest Price Exclusion [HPE], Area Revenue Protection – HPE, and SCO Revenue Protection with HPE) associated with the Basic Provisions use the same factors, which are applied to both the projected price and harvest price as applicable. National organic corn and soybean prices are published bi-weekly by AMS in the “National Organic Grain and Feedstuffs” (NOGF) report. This report contains a range of organic prices including a “weighted average” price; however, the “weighted average” price is not production weighted. Therefore, as a conservative approach, RMA uses the “low” price category and converts that bi-weekly posted price into a simple average monthly price. These monthly organic prices are compared with the CBOT average monthly futures prices for conventional corn and soybeans. To compute the corn factor, the monthly organic corn prices are divided by the corresponding monthly average price of the December corn futures contract.
    [Show full text]
  • Journal of Hymenoptera Research
    c 3 Journal of Hymenoptera Research . .IV 6«** Volume 15, Number 2 October 2006 ISSN #1070-9428 CONTENTS BELOKOBYLSKIJ, S. A. and K. MAETO. A new species of the genus Parachremylus Granger (Hymenoptera: Braconidae), a parasitoid of Conopomorpha lychee pests (Lepidoptera: Gracillariidae) in Thailand 181 GIBSON, G. A. P., M. W. GATES, and G. D. BUNTIN. Parasitoids (Hymenoptera: Chalcidoidea) of the cabbage seedpod weevil (Coleoptera: Curculionidae) in Georgia, USA 187 V. Forest GILES, and J. S. ASCHER. A survey of the bees of the Black Rock Preserve, New York (Hymenoptera: Apoidea) 208 GUMOVSKY, A. V. The biology and morphology of Entedon sylvestris (Hymenoptera: Eulophidae), a larval endoparasitoid of Ceutorhynchus sisymbrii (Coleoptera: Curculionidae) 232 of KULA, R. R., G. ZOLNEROWICH, and C. J. FERGUSON. Phylogenetic analysis Chaenusa sensu lato (Hymenoptera: Braconidae) using mitochondrial NADH 1 dehydrogenase gene sequences 251 QUINTERO A., D. and R. A. CAMBRA T The genus Allotilla Schuster (Hymenoptera: Mutilli- dae): phylogenetic analysis of its relationships, first description of the female and new distribution records 270 RIZZO, M. C. and B. MASSA. Parasitism and sex ratio of the bedeguar gall wasp Diplolqjis 277 rosae (L.) (Hymenoptera: Cynipidae) in Sicily (Italy) VILHELMSEN, L. and L. KROGMANN. Skeletal anatomy of the mesosoma of Palaeomymar anomalum (Blood & Kryger, 1922) (Hymenoptera: Mymarommatidae) 290 WHARTON, R. A. The species of Stenmulopius Fischer (Hymenoptera: Braconidae, Opiinae) and the braconid sternaulus 316 (Continued on back cover) INTERNATIONAL SOCIETY OF HYMENOPTERISTS Organized 1982; Incorporated 1991 OFFICERS FOR 2006 Michael E. Schauff, President James Woolley, President-Elect Michael W. Gates, Secretary Justin O. Schmidt, Treasurer Gavin R.
    [Show full text]
  • RECOGNIZING ECONOMICALLY IMPORTANT CATERPILLAR PESTS of PACIFIC NORTHWEST ROW CROPS Prepared by A.L
    EB1892 RECOGNIZING ECONOMICALLY IMPORTANT CATERPILLAR PESTS OF PACIFIC NORTHWEST ROW CROPS Prepared by A.L. Antonelli, Ph.D., Washington State University Cooperative Extension entomologist, WSU Puyallup; P.J. Landolt, Ph.D., USDA, Wapato; D.F. Mayer, Ph.D., WSU research entomologist, WSU Prosser; and AH.W. Homan, University of Idaho entomologist (retired) Use pesticides with care. Apply them only to plants, animals, or sites listed on the label. When mixing and applying pesticides, follow all label precautions to protect yourself and others around you. It is a violation of the law to disregard label directions. If pesticides are spilled on skin or clothing, remove clothing and wash skin thoroughly. Store pesticides in their original containers and keep them out of the reach of children, pets, and livestock. Copyright 2000 Washington State University EB1892 RECOGNIZING ECONOMICALLY IMPORTANT CATERPILLAR PESTS OF pacific northwest ROW CROPS Most economically important “worms” or caterpillars in the Pacific Northwest belong to the family Noctuidae, comprising the cutworms, armyworms, and loopers. The moth adults of this family collectively are known as “millers.” Although in this bulletin we deal primarily with the noctuid group, we describe two other species, the imported cabbageworm and the diamondback moth. They also are noted pests of the Northwest’s important cole crops. Because it is often more efficient to monitor for adults than for larvae, we include descriptions and photos of adults in this guide. Larvae photos are as true to type as we could find to reinforce the text. Word descriptions follow the style and format previously given by Johansen, 1973 (Fig 1) and can be used only with mature larvae.
    [Show full text]
  • Winter Cutworm: a New Pest Threat in Oregon J
    OREGON STATE UNIVERSITY EXTENSION SERVICE Winter Cutworm: A New Pest Threat in Oregon J. Green, A. Dreves, B. McDonald, and E. Peachey Introduction Winter cutworm is the common name for the larval stage of the large yellow underwing moth (Noctua pronuba [Lepidoptera: Noctuidae]). The cutworm has tolerance for cold temperatures, and larval feeding activity persists throughout fall and winter. Adult N. pronuba moths have been detected in Oregon for at least a decade, and the species is common in many different ecological habitats. Epidemic outbreaks of adult moths have occurred periodically in this region, resulting in captures of up to 500 moths per night. However, larval feeding by N. pronuba has not been a problem in Oregon until recently. In 2013 and 2014, there were isolated instances reported, including damage by larvae to sod near Portland and defoliation of herb and flower gardens in Corvallis. In 2015, large numbers of larvae were observed around homes, within golf courses, and in field crops located in Oregon and Washington. Winter cutworms have a wide host range across agricultural, urban, and natural landscapes (Table Photo: Nate McGhee, © Oregon State University. 1, page 2) and are a concern as a potential crop pest that can cause considerable damage in a short highlights general information about winter amount of time. Above-ground damage occurs when cutworm, including identification, scouting recom- larvae chew through tissues near ground level, cut- mendations, and potential control measures. ting the stems off plants. Leaf chewing and root feeding also have been observed. Winter cutworms Jessica Green, faculty research assistant, Department of are gregarious, which means they feed and move in Horticulture; Amy J.
    [Show full text]
  • Sustainable Energy Based on Sunflower Seed Husk Boiler For
    sustainability Article Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings Miguel-Angel Perea-Moreno 1,* , Francisco Manzano-Agugliaro 2 and Alberto-Jesus Perea-Moreno 1 1 Departamento de Física Aplicada, Universidad de Córdoba, ceiA3, Campus de Rabanales, 14071 Córdoba, Spain; [email protected] 2 Department of Engineering, University of Almeria, ceiA3, 04120 Almeria, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-957-212-633 Received: 13 September 2018; Accepted: 20 September 2018; Published: 25 September 2018 Abstract: Buildings account for one third of the world’s energy consumption, 70% of which is devoted to heating and cooling. To increase the share of renewables in the energy consumption of buildings, it is necessary to research and promote new sources of green energy. World production of sunflower (Helianthus annuus) was 47.34 million tons in 2016, with a harvested area of 26.20 million hectares, and the main producing countries being Ukraine, the Russian Federation, and Argentina, which produce about half of world production of sunflower seed. The sunflower husk, which represents a percentage by weight of 45%–60% of the seed depending on the sunflower variety, is widely used for the production of feed; however, its energy use is very scarce. The objectives of this study were to analyse the energy properties of sunflower husk as a solid biofuel and to carry out an energy, environmental, economic and operational analysis of a thermal installation fed with this by-product of the sunflower oil industry. The results show that this agro-industrial waste has a Higher Heating Value (HHV) of 17.844 MJ/kg, similar to that of other solid biofuels currently used.
    [Show full text]