Small Volume Pyroclastic Density Currents of the 22-23 April 2015 Eruption on the NE Flank of Calbuco Volcano, Southern Andes

Total Page:16

File Type:pdf, Size:1020Kb

Small Volume Pyroclastic Density Currents of the 22-23 April 2015 Eruption on the NE Flank of Calbuco Volcano, Southern Andes O EOL GIC G A D D A E D C E I H C I L E O S F u n 2 d 6 la serena octubre 2015 ada en 19 Small volume pyroclastic density currents of the 22-23 April 2015 eruption on the NE flank of Calbuco volcano, Southern Andes Jorge Clavero1,2*, Angelo Castruccio3, Bárbara Droguett1, Andrea Segura3,JL Le Pennec4, O Roche4, P Samaniego4 1 Amawta Geoconsultores Ltda. 2 Escuela de Geología, Universidad Mayor 3 Depto. de Geología, Universidad de Chile 4 IRD, UR 163 Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand, France *e-mail: [email protected] Abstract collapses in the Holocene. These factors, added to the fact that it surroundings have increased its populated areas, During the 22-23 April 2015 eruption of Calbuco volcano a poses important problems in terms of volcanic risks and series of pyroclastic density currents (PDC) were generated how to manage such risks during eruptive events. and directed to its SSW and NE flanks. To the latter, at least 8 PDC deposits have been recognized interbedded within the fallout generated by the 2 first and main pulses of the eruption. According to the stratigraphy, the flows are rd 2 April 2015 eruption associated to the second pulse of the eruption on the 23 of April. These PDCs correspond to both dense and dilute Calbuco volcano started a new eruptive cycle on the 22nd flows. Most of them contain cauliflower scoriaceous bombs, of April at 18:05 local time. Although reported seismicity some up to 1.5m in diameter, only the lower ones contain brownish vesicular pumices similar to the fallout juveniles. increased above background levels only a couple of hours One distinctive PDC deposit contains highly crystalline before the beginning of the eruption, regional reports silicic prismatically jointed bocks (PJB) that show magma (SERNAGEOMIN, 2015a) indicate a rise in the number of mixing textures (glassy, dense and vesicular juvenile VT events beneath the volcano during the previous material mixed together). months. The eruptive column height of the first pulse reached 16 km in a few minutes (SERNAGEOMIN, Key words: pyroclastic density current, Calbuco, 2015b). This first eruptive pulse lasted 1.5 h, with a plume Andes dispersion to the NE. On 23 April at 1:00 local time, a second eruption generated a column that reached 17 km of 1 Introduction altitude (SERNAGEOMIN, 2015c, d). This episode lasted 6 h approximately with the same plume dispersion to the NE than the first one. During these 2 pulses, pyroclastic Calbuco is an active and hazardous volcano located in the flows reached 8 km from the vent in the NE and SW flanks southern Andes of Chile (Stern et al., 2009), whose last and lahars reached the Chapo lake in the S flank eruption before the April 2015 event, occurred in AD 1961 (SERNAGEOMIN, 2015e).In the next days the activity (Petit Breuilh, 1999). Its evolution is mainly characterized decreased with sporadic events which generated weak by the extrusion of silicic andesite lavas and domes and plumes (< 2 km high). On 30 April, at 13:08 local time a their associated pyroclastic flows (mainly block-and-ash third pulse was generated with a 3-5 km column high, with flows and blasts), as well as cold and hot lahars (López et a SE dispersion. During the next weeks the eruptive and al., 1992; Hickey-Vargas et al, 1995; Castruccio et al., seismic activity decreased gradually and on 28 May the 2010; Castruccio and Clavero, 2015; Sellés and Moreno, alert level was lowered to yellow. 2011). A distinctive hummocky terrain is well developed on its lower northern flank associated to two sector collapses that affected the volcano in postglacial times. Radiocarbon dating (uncalibrated) of some pyroclastic 3 Eruptive stratigraphy of the April 2015 deposits and palaeosoil horizons indicate that the two eruption on the NE flank avalanches occurred at ca. 6.500 years BP and ca. 1.200 years BP (Clavero et al., 2008). According to its evolution, The 22-23 April eruption generated a series of pyroclastic geochemistry and historical eruptive activity, Calbuco is and lahar deposits distributed around the volcano. The considered to be one of the most hazardous active following stratigraphic units, included in this work, volcanoes in the Chilean Andes (Petit Breuilh, 1999; correspond to those identified on the N-NE flanks of the Clavero et al., 2008; Castruccio and Clavero, 2015), as it volcano (Fig. 1), in the Río Blanco-Río Hueñu Hueñu- has generated subplinian eruptions in historical times Ensenada area. (1893-1895; 1929 and 1961) as well as suffered sector 198 AT 4 Impacto de las GeocIencIas en la socIedad In this sector the units identified and shown in Fig. 2 Figure 2 shows the pyroclastic stratigraphy of the sequence correspond initially to a fallout deposit formed by 4 identified on Calbuco’s NE flank associated to the 22-23 subunits (described in more detail in Segura et al., this April eruption, where 8 PDCs, both dense and diluted have congress). Within this fallout deposit, specifically between been recognized. These small-volume deposits show the second and the third units, a series of at least 8 diverse petrographic and structural characteristics, pyroclastic density currents were generated which partially suggesting different emplacement dynamics, probably inundated the Río Frío-Río Blanco valleys (described in related to different generation mechanisms. From base to more detail later in this work). These PDC deposits are top (Figure 2), the deposits are: overlain by the third and fourth subunits of the fallout deposit (Fig. 2), and partially eroded (and dissected) by a Deposit I: PDC deposited on top of layers 0 and 1 (see series of lahar deposits, most of them of secondary origin, Segura et al., this congress) or on top of pre-2015 lahar forming a pyroclastic terrace in the valley up to 20 m thick. deposits or bedrock. It is up to 2 m thick and contains abundant (10-35% vol.) brownish vesicular subrounded pumices (<8 cm Ø, similar in petrography to those of the fallout) within a cohesive fine-grained massive ash matrix. It has gas segregation pipes cut by the overlying deposit. Deposit H: It shows a sharp subhorizontal contact with Dep. I (Figure 3) and is up to 80 cm thick. It has gas segregation pipes cut by the overlying deposit. It is formed by “cauliflower” scoriaceous bombs (up to 25 cm Ø) as well as brownish pumices incorporated from the lower deposit (at its base), within a semi-consolidated fine ash matrix. Locally, it shows a laminated fines-depleted base (<20 cm thick). Deposit G: PDC deposit up to 2.8m thick with undulated (syn-depositional deformation structures) upper and lower contacts (Figure 3). It contains large “cauliflower” scoriaceous bombs (up to 80 cm Ø), “silicic” highly- crystalline (40-70% crystals) whitish PJB fragments (up to 25 cm Ø), glassy black fragments (up to 15 cm Ø) within an unconsolidated massive medium ash to fine lapilli gray matrix. Some PJB fragments show internal undulated contacts with glassy bands. Deposit F: PDC up to 1.5m thick with undulated (deformed) base and subhorizontal upper contact. It contains cauliflower scoriaceous bombs (<40 cm Ø), subangular lithic fragments (<20 cm Ø) within a massive medium to coarse ash grey to reddish matrix. Deposit E: Dilute PDC deposit up to 2.5 m thick formed by two distinct layers. The lower (E1) layer shows well- developed lamination, cauliflower bombs up to 40 cm Ø, lithic fragments (<35 cm Ø) within a fine to medium ash crystal-rich matrix with carbonized material. The upper Figure1. Location of the study area and the stratigraphic columns layer (E2) has well-developed lamination 2-10 cm thick analyzed in this study. layers formed by fine to medium lapilli with some scoriaceous bombs (up to 23 cm Ø). 4 Pyroclastic Density Current deposits on the NE flank Deposit D: Dense massive PDC deposit with abundant cauliflower scoriaceous bombs (up to 60 cm Ø), 4.1 Distribution, Stratigraphy and Petrography subrounded lava lithics (up to 1.4 m Ø) within a fine to A series of pyroclastic density currents were generated medium ash massive matrix. It contains large carbonized during the 22-23 eruption of Calbuco volcano, mainly to semi-carbonized trunks. Locally, it has high directed towards its NE and S flanks. Here we describe the lithic/bombs concentrations (almost clast-supported). stratigraphy of those directed to the NE that partially filled up the Río Frío-Río Blanco valleys. 199 ST 11 TERREMOTOS, VOLCANES Y OTROS PELIGROS GEOLÓGICOS Deposit A: Layered PDC deposit with 3 distinct subunits. 5 Discussions The lower one, up to 20 cm thick, is a fines-depleted layer According to the stratigraphic relationship of the PDC formed by polylithologic lithic-rich fine lapilli fragments. deposits and the fallout, it is possible to suggest that the The intermediate layer, up to 6 cm thick, is formed by a occurrence of the pyroclastic flows marked a disruption in discontinuous non-carbonized vegetation-rich paeleosoil the eruptive conditions, probably associated to the start of horizon deformed and incorporated by the flow. The upper the second, and more energetic, pulse. layer, up to 2.5 m thick, has an undulated surface and is The PDC deposit characteristics suggest different flow formed by large cauliflower bombs (up to 1.1 m Ø), dynamics probably also associated to different origins. subrounded lithic fragments (up to 1.2 m Ø) within a Juvenile material variations within the deposits suggest massive fine to medium ash matrix. Large bombs and that important magma mixing processes during the lithics increase towards the upper part of the deposit.
Recommended publications
  • Chronology and Impact of the 2011 Cordón Caulle Eruption, Chile
    Nat. Hazards Earth Syst. Sci., 16, 675–704, 2016 www.nat-hazards-earth-syst-sci.net/16/675/2016/ doi:10.5194/nhess-16-675-2016 © Author(s) 2016. CC Attribution 3.0 License. Chronology and impact of the 2011 Cordón Caulle eruption, Chile Manuela Elissondo1, Valérie Baumann1, Costanza Bonadonna2, Marco Pistolesi3, Raffaello Cioni3, Antonella Bertagnini4, Sébastien Biass2, Juan-Carlos Herrero1, and Rafael Gonzalez1 1Servicio Geológico Minero Argentino (SEGEMAR), Buenos Aires, Argentina 2Department of Earth Sciences, University of Geneva, Geneva, Switzerland 3Dipartimento di Scienze della Terra, Università di Firenze, Firenze, Italia 4Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italia Correspondence to: Costanza Bonadonna ([email protected]) Received: 7 July 2015 – Published in Nat. Hazards Earth Syst. Sci. Discuss.: 8 September 2015 Accepted: 29 January 2016 – Published: 10 March 2016 Abstract. We present a detailed chronological reconstruction 1 Introduction of the 2011 eruption of the Cordón Caulle volcano (Chile) based on information derived from newspapers, scientific re- Recent volcanic crises (e.g. Chaitén 2008, Cordón Caulle ports and satellite images. Chronology of associated volcanic 2011 and Calbuco 2015, Chile; Eyjafjallajökull 2010, Ice- processes and their local and regional effects (i.e. precursory land) clearly demonstrated that even small–moderate to sub- activity, tephra fallout, lahars, pyroclastic density currents, plinian eruptions, particularly if long-lasting, can paralyze lava flows) are also presented. The eruption had a severe entire sectors of societies with a significant economic im- impact on the ecosystem and on various economic sectors, pact. The increasing complexity of the impact of eruptions on including aviation, tourism, agriculture and fishing industry.
    [Show full text]
  • Cantidades De Votantes Por Grupos Etarios En Cada Sexo Por Comuna Y
    CANTIDADES DE VOTANTES POR GRUPOS ETARIOS Página 1 de 25 EN CADA SEXO POR COMUNA Y TOTALES DEL PAIS ELECCIONES MUNICIPALES 23 DE OCTUBRE DE 2016 Comuna Sexo [ 18 - 19 ][ 20 - 24 ][ 25 - 29 ][ 30 - 34 ][ 35 - 39 ][ 40 - 44 ][ 45 - 49 ][ 50 - 54 ][ 55 - 59 ][ 60 - 64 ][ 65 - 69 ][ 70 - 74 ][ 75 - 79 ] [ 80 + ] Total REGION DE TARAPACA ALTO HOSPICIO M 242 693 766 742 748 824 988 1.030 770 591 376 243 138 76 8.227 ALTO HOSPICIO V 181 435 549 462 494 544 648 769 636 512 379 181 87 58 5.935 Total ALTO HOSPICIO T 423 1.128 1.315 1.204 1.242 1.368 1.636 1.799 1.406 1.103 755 424 225 134 14.162 CAMIÑA M 34 86 88 63 77 89 96 87 76 63 55 24 33 19 890 CAMIÑA V 22 62 69 65 65 75 66 75 80 66 37 32 22 36 772 Total CAMIÑA T 56 148 157 128 142 164 162 162 156 129 92 56 55 55 1.662 COLCHANE M 54 149 156 128 153 106 88 72 41 47 38 31 16 19 1.098 COLCHANE V 49 120 128 132 130 108 86 60 45 48 50 33 32 21 1.042 Total COLCHANE T 103 269 284 260 283 214 174 132 86 95 88 64 48 40 2.140 HUARA M 26 84 103 116 112 129 128 142 117 108 78 46 33 47 1.269 HUARA V 20 82 77 102 111 93 110 108 127 99 86 63 35 50 1.163 Total HUARA T 46 166 180 218 223 222 238 250 244 207 164 109 68 97 2.432 IQUIQUE M 535 1.262 1.649 2.022 2.174 2.245 2.295 2.621 2.669 2.470 1.814 1.295 778 704 24.533 IQUIQUE V 418 1.000 1.378 1.826 1.939 2.226 2.116 2.307 2.501 2.411 1.742 1.215 655 548 22.282 Total IQUIQUE T 953 2.262 3.027 3.848 4.113 4.471 4.411 4.928 5.170 4.881 3.556 2.510 1.433 1.252 46.815 PICA M 32 113 144 140 121 149 169 145 160 134 136 81 77 68 1.669 PICA V 48 93 116 128 118 108
    [Show full text]
  • Arzilli Unexpected Calbuco 2019
    The University of Manchester Research The unexpected explosive sub-Plinian eruption of Calbuco volcano (22–23 April 2015; southern Chile): Triggering mechanism implications DOI: 10.1016/j.jvolgeores.2019.04.006 Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Arzilli, F., Morgavi, D., Petrelli, M., Polacci, M., Burton, M., Di Genova, D., Spina, L., La Spina, G., Hartley, M. E., Romero, J. E., Fellowes, J., Diaz-alvarado, J., & Perugini, D. (2019). The unexpected explosive sub-Plinian eruption of Calbuco volcano (22–23 April 2015; southern Chile): Triggering mechanism implications. Journal of Volcanology and Geothermal Research, 378, 35-50. https://doi.org/10.1016/j.jvolgeores.2019.04.006 Published in: Journal of Volcanology and Geothermal Research Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:10.
    [Show full text]
  • Volcanes Cercanos Volcanes Cercanos
    Localidades al interior de un radio de 30 km respecto de volcanes activos Volcanes cercanos Localidad Comuna Provincia Región Olca, Irruputuncu Collaguasi Pica Iquique Tarapacá Taapaca, Parinacota Putre Putre Parinacota Tarapacá Callaqui, Copahue Ralco Santa Bárbara Bio Bio Bio Bio Nevados de Chillán Recinto Los Lleuques Pinto Ñuble Bio Bio Villarrica, Quetrupillán, Lanín, Sollipulli Curarrehue Curarrehue Cautín La Araucanía Llaima, Sollipulli Mellipeuco Melipeuco Cautín La Araucanía Villarrica, Quetrupillán, Lanín Pucón Pucón Cautín La Araucanía Llaima Cherquenco Vilcún Cautín La Araucanía Villarrica Lican Ray Villarrica Cautín La Araucanía Villarrica Villarrica Villarrica Cautín La Araucanía Llaima, Lonquimay Curacautín Curacautín Malleco La Araucanía Llaima, Lonquimay Lonquimay Lonquimay Malleco La Araucanía Villarrica, Quetrupillán, Lanín, Mocho Coñaripe Panguipulli Valdivia Los Rios Calbuco, Osorno Alerce Puerto Montt Llanquihue Los Lagos Calbuco, Osorno Las Cascadas Puerto Octay Osorno Los Lagos Chaitén, Michinmahuida, Corcovado Chaitén Chaitén Palena Los Lagos Hornopirén, Yate, Apagado, Huequi Rio Negro Hualaihue Palena Los Lagos Localidades al interior de un radio de 50 km respecto de volcanes activos Volcanes cercanos Localidad Comuna Provincia Región Olca, Irruputuncu Collaguasi Pica Iquique Tarapacá Taapaca, Parinacota Putre Putre Parinacota Tarapacá San José San Alfonso San José de Maipo Cordillera Metropolitana San José San José de Maipo San José de Maipo Cordillera Metropolitana Tupungatito La Parva Lo Barnechea Santiago
    [Show full text]
  • United States-Chile Binational Exchange for Volcanic Risk Reduction, 2015—Activities and Benefits
    Prepared in cooperation with Red Nacional de Vigilancia Volcánica del Servicio Nacional de Geología y Minería de Chile United States-Chile Binational Exchange for Volcanic Risk Reduction, 2015—Activities and Benefits Circular 1432 U.S. Department of the Interior U.S. Geological Survey Cover. Chilean and American delegates on caldera rim of Chaitén Volcano, Chile, March 28, 2015. The steaming lava dome is in the background. (Photograph by Christopher Wills, California Geological Survey.) United States-Chile Binational Exchange for Volcanic Risk Reduction, 2015— Activities and Benefits By Thomas C. Pierson, Margaret T. Mangan, Luis E. Lara Pulgar, and Álvaro Amigo Ramos Prepared in cooperation with Red Nacional de Vigilancia Volcánica del Servicio Nacional de Geología y Minería de Chile Circular 1432 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey William H. Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.
    [Show full text]
  • Along Arc Petrochemical Variations in the Southernmost Andean SVZ (43.5-46°S): Implications for Magma Genesis
    O EOL GIC G A D D A E D C E I H C I L E O S F u n 2 d 6 la serena octubre 2015 ada en 19 Along Arc Petrochemical Variations in the Southernmost Andean SVZ (43.5-46°S): Implications for Magma Genesis Charles R Stern* Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309-0399, USA José Antonio Naranjo SERNAGEOMIN, Av. Santa María 0104, Santiago, Chile *Contact email: [email protected] Abstract. The southernmost Andean SVZ (43.5-46°S) (Sellés et al., 2004) further to the north. Among the smaller consists of six stratovolcanoes (Yanteles, Melimoyu, MEC, the Puyuhuapi group are HA type basalts (Fig. 2; Mentolat, Macá, Cay, Hudson). Hudson and Melimoyu are Lopéz et al. 1995a). In contrast, the Palena group just to high-K (K2O>1 wt% at 50 wt% SiO2), high incompatible the north of are LA type basalts (Fig. 2; Watt et al., 2013), element abundance (HA) types. Macá and Cay are low-K, as are all other MEC cones further to the south in the low incompatible element abundance (LA) centers, while Mentolat has very low K, Rb and other incompatible SSVZ. This paper addresses these regional variations in element contents (VLA), similar to Huequi, Calbuco and magma types along and across the SSVZ arc. Nevados de Longaví further north. Such differences have been attributed to differences in degree of mantle partial melting due to variability in the extent of contamination of the mantle source region by hydrous fluids and/or melts derived from subducted oceanic lithosphere, possibly as a result in down-dip temperature changes at the top of the subducted slab.
    [Show full text]
  • Erupciones Volcanicas Un Riesgo Dormido
    CIRCULAR 04.15 Leza, Escriña & Asociados S.A. Consultores en Ingeniería de Riesgos y Valuaciones Zavalía 2125 Buenos Aires ERUPCIONES VOLCANICAS Argentina www.lea.com.ar UN RIESGO DORMIDO [email protected] tel: 4786-7000 La frecuencia de terremotos suele ser más alta que la frecuencia de erupciones Análisis de Riesgos volcánicas, y la principal afectación de las erupciones volcánicas no es el daño Protección contra directo por la lava, sinó la ceniza que se dispersan en grandes superficies del incendios territorio. Sin embargo, los daños directos por la lava volcánica, ignorados muchas veces por la baja frecuencia de daños, es también mucho más destructiva. Valuaciones Ajustes y peritajes Riesgos del trabajo Muchas áreas pobladas están sujetas a los daños directos por el vulcanismo, agravados por las inundaciones debido al derretimiento de nevados. En América, a lo largo de la Cordillera de los Andes hay más de 500 volcanes considerados activos, que pueden provocar daños amparados en las coberturas de terremoto. Un análisis de riesgos de la exposición a riesgos debe ser realizado en cada oportunidad, contemplando las circunstancias locales como distancias al volcán, vientos predominantes, pendientes y ríos. La Erupción del Vesubio en el año 79. Destrucción de Pompeya. En la mañana del 24 de Agosto del año 79, una columna de humo comenzó a ascender del volcán Vesubio, en un comienzo la población pensó que se trataba de un escape más de humo, pues ya había pasado en años anteriores, sin embargo una especie de fango, mezcla de cenizas, lava y lluvia, inundó las calzadas y callejuelas de la ciudad, cubrió los tejados y penetró por ventanas y rendijas.
    [Show full text]
  • Abrupt Climatic Changes As Triggering Mechanisms of Massive Volcanic Collapses
    Journal of Volcanology and Geothermal Research 155 (2006) 329–333 www.elsevier.com/locate/jvolgeores Short communication Abrupt climatic changes as triggering mechanisms of massive volcanic collapses Lucia Capra Instituto de Geografía, UNAM, CU Coyoacan, 04510, Mexico DF, Mexico Received 7 March 2006; received in revised form 31 March 2006; accepted 19 April 2006 Available online 5 June 2006 Abstract Abrupt climate change can trigger volcanic collapses, phenomena that cause the destruction of the entire sector of a volcano, including its summit. During the past 30 ka, major volcanic collapses occurred just after main glacial peaks that ended with rapid deglaciation. Glacial debuttressing, load discharge and fluid circulation coupled with the post-glacial increase of humidity and heavy rains can activate the failure of unstable edifices. Furthermore, significant global warming can be responsible for the collapse of ice-capped unstable volcanoes, an unpredictable hazard that in few minutes can bury inhabited areas. © 2006 Published by Elsevier B.V. Keywords: volcanic collapse; global warming 1. Introduction Wyk de Vries et al., 2001; Clavero et al., 2002). Several analogue experiments have been performed to demon- Although climate changes have been considered to be strate how faults can deform volcanoes that finally a triggering mechanism for large eruptions (Rampino et collapse (Van Wyk de Vries and Borgia, 1996; Lagmay et al., 1979; McGuire et al., 1997), they have not, so far, al., 2000; Acocella, 2005; Norini and Lagmay, 2005). been related to the collapse of volcanoes. Unstable This is probably a very common mechanism, but it is volcanoes, whatever the origin of their instability, can spatially localized and can occur in an indeterminate collapse from the same triggering mechanism (McGuire, period of time.
    [Show full text]
  • Look-Up Tables with Empirical Climatologies for Infrasound Detection, Location, and Characterization of Long Range Volcanic Eruptions T1.1-P21 R
    Look-up tables with empirical climatologies for infrasound detection, location, and characterization of long range volcanic eruptions T1.1-P21 R. S. De Negri [[email protected]]1,2 and R. S. Matoza1 1Department of Earth Science and Earth Research Institute, University of California, Santa Barbara 2National Data Center, Chile Motivation Results Methods Three big eruptions in the last 11 years in southern From each station, predicted azimuth deviations to a regular grid of source nodes are hemisphere (Chile-Argentina). calculated. Later, all predicted deviations are stored in a look-up table. *VEI: Volcanic Explosivity Index. It ranges from 1 to 7. It is a relative measure of the explosivity of the eruption. PMCC family detections from I02 For example, Mt. St. Helens (1985) was a VEI 4, while Pinatubo (1991) was a VEI 5. around PCCVC eruption (red box). Azimuth of associated detections is Infrasound and IMS positively deviated from true as Volcanic acoustic signals are proficiently expected. generated in the infrasound range (below 20 Hz), and can propagate thousands of kilometers. Zonal (E-W) and Meridonial (N-S) winds The IMS network of With the predicted azimuth deviations for the “narrow grid”, we corrected the effect of are predicted with empirical infrasound stations climatologies (NRMLSISE and HWM). can be used to crosswinds to better locate the infrasonic source for Puyehue-Cordón Caulle volcanic detect, locate, and complex (PCCVC) and Calbuco volcano eruptions. characterize those Calbuco source location test case signals. Considering the estimated climatologic Left: without correction at 498 km conditions, 3D ray tracing (GeoAc) is Acoustic signals Puyehue- from true.
    [Show full text]
  • Southern Chile
    Andean Geology 42 (2): 173-189. May, 2015 Andean Geology doi: 10.5027/andgeoV42n2-a02 www.andeangeology.cl Tephrochronology of the upper Río Cisnes valley (44°S), southern Chile Charles R. Stern1, María Eugenia de Porras2, Antonio Maldonado2,3 1 Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309-0399, USA. [email protected] 2 Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad de La Serena, Raúl Bitran 1305, La Serena, Chile. [email protected] 3 Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile. [email protected] ABSTRACT. Based on their petrography and chemistry, 18 tephra analyzed from two lake and bog cores and one outcrop in the upper Río Cisnes valley are believed to have been derived from nine different eruptions of the Mentolat volcano, four of the Melimoyu volcano, and one from the Hudson volcano. Some of these tephra correlate chronologically and petrochemically with previously documented large eruptions of these volcanoes, including the Late-Glacial Ho eruption of Hudson (17,340 cal yrs BP), the mid-Holocene MEN1 eruption of Mentolat (7,710 cal yrs BP), and the Late-Holocene MEL2 eruption of Melimoyu (1,680 cal yrs BP). A Melimoyu-derived tephra from the outcrop occurs in glacial-lacustrine sediments and is considered to pre-date the Last Glacial Maximum (>19,670 cal yrs BP). The data suggest that none of the tephra were produced by explosive eruptions of the Maca, Cay and Yanteles volcanoes. Keywords: Tephra, Tephrochronology, Tephrostratigraphy, Volcanism, Andes, Chile. RESUMEN. Tefrocronología en curso superior del valle del río Cisne (44°S), Chile Austral.
    [Show full text]
  • USGS Open-File Report 2009-1133, V. 1.2, Table 3
    Table 3. (following pages). Spreadsheet of volcanoes of the world with eruption type assignments for each volcano. [Columns are as follows: A, Catalog of Active Volcanoes of the World (CAVW) volcano identification number; E, volcano name; F, country in which the volcano resides; H, volcano latitude; I, position north or south of the equator (N, north, S, south); K, volcano longitude; L, position east or west of the Greenwich Meridian (E, east, W, west); M, volcano elevation in meters above mean sea level; N, volcano type as defined in the Smithsonian database (Siebert and Simkin, 2002-9); P, eruption type for eruption source parameter assignment, as described in this document. An Excel spreadsheet of this table accompanies this document.] Volcanoes of the World with ESP, v 1.2.xls AE FHIKLMNP 1 NUMBER NAME LOCATION LATITUDE NS LONGITUDE EW ELEV TYPE ERUPTION TYPE 2 0100-01- West Eifel Volc Field Germany 50.17 N 6.85 E 600 Maars S0 3 0100-02- Chaîne des Puys France 45.775 N 2.97 E 1464 Cinder cones M0 4 0100-03- Olot Volc Field Spain 42.17 N 2.53 E 893 Pyroclastic cones M0 5 0100-04- Calatrava Volc Field Spain 38.87 N 4.02 W 1117 Pyroclastic cones M0 6 0101-001 Larderello Italy 43.25 N 10.87 E 500 Explosion craters S0 7 0101-003 Vulsini Italy 42.60 N 11.93 E 800 Caldera S0 8 0101-004 Alban Hills Italy 41.73 N 12.70 E 949 Caldera S0 9 0101-01= Campi Flegrei Italy 40.827 N 14.139 E 458 Caldera S0 10 0101-02= Vesuvius Italy 40.821 N 14.426 E 1281 Somma volcano S2 11 0101-03= Ischia Italy 40.73 N 13.897 E 789 Complex volcano S0 12 0101-041
    [Show full text]
  • A Postglacial Tephrochronological Model for the Chilean Lake District
    Quaternary Science Reviews 137 (2016) 234e254 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Synchronisation of sedimentary records using tephra: A postglacial tephrochronological model for the Chilean Lake District * Karen Fontijn a, b, , Harriet Rawson a, Maarten Van Daele b, Jasper Moernaut c, d, Ana M. Abarzúa c, Katrien Heirman e,Sebastien Bertrand b, David M. Pyle a, Tamsin A. Mather a, Marc De Batist b, Jose-Antonio Naranjo f, Hugo Moreno g a Department of Earth Sciences, University of Oxford, UK b Department of Geology, Ghent University, Belgium c Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile d Geological Institute, ETH Zürich, Switzerland e Geological Survey of Denmark and Greenland, Department of Geophysics, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark f SERNAGEOMIN, Santiago, Chile g OVDAS e SERNAGEOMIN, Temuco, Chile article info abstract Article history: Well-characterised tephra horizons deposited in various sedimentary environments provide a means of Received 30 July 2015 synchronising sedimentary archives. The use of tephra as a chronological tool is however still widely Received in revised form underutilised in southern Chile and Argentina. In this study we develop a postglacial tephrochronological 1 February 2016 model for the Chilean Lake District (ca. 38 to 42S) by integrating terrestrial and lacustrine records. Accepted 15 February 2016 Tephra deposits preserved in lake sediments record discrete events even if they do not correspond to Available online 27 February 2016 primary fallout. By combining terrestrial with lacustrine records we obtain the most complete teph- rostratigraphic record for the area to date.
    [Show full text]