Foraminiferal Community Response to Seasonal Anoxia in Lake Grevelingen

Total Page:16

File Type:pdf, Size:1020Kb

Foraminiferal Community Response to Seasonal Anoxia in Lake Grevelingen Foraminiferal community response to seasonal anoxia in Lake Grevelingen (the Netherlands) Julien Richirt, Bettina Riedel, Aurélia Mouret, Magali Schweizer, Dewi Langlet, Dorina Seitaj, Filip Meysman, Caroline Slomp, Frans Jorissen To cite this version: Julien Richirt, Bettina Riedel, Aurélia Mouret, Magali Schweizer, Dewi Langlet, et al.. Foraminiferal community response to seasonal anoxia in Lake Grevelingen (the Netherlands). Biogeosciences, Eu- ropean Geosciences Union, 2020, 17 (6), pp.1415-1435. 10.5194/bg-17-1415-2020. hal-02514878 HAL Id: hal-02514878 https://hal.archives-ouvertes.fr/hal-02514878 Submitted on 9 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Biogeosciences, 17, 1415–1435, 2020 https://doi.org/10.5194/bg-17-1415-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Foraminiferal community response to seasonal anoxia in Lake Grevelingen (the Netherlands) Julien Richirt1, Bettina Riedel1,2, Aurélia Mouret1, Magali Schweizer1, Dewi Langlet1,3, Dorina Seitaj4, Filip J. R. Meysman5,6, Caroline P. Slomp7, and Frans J. Jorissen1 1UMR 6112 LPG-BIAF Recent and Fossil Bio-Indicators, University of Angers, 2 Boulevard Lavoisier, 49045 Angers, France 2First Zoological Department, Vienna Museum of Natural History, Burgring 7, 1010 Vienna, Austria 3Univ. Lille, CNRS, Univ. Littoral Côte d’Opale, UMR8187, LOG, Laboratoire d’Océanologie et de Géosciences, 62930 Wimereux, France 4Department of Ecosystem Studies, Royal Netherlands Institute for Sea Research (NIOZ), Yerseke, the Netherlands 5Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium 6Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, the Netherlands 7Department of Earth Sciences (Geochemistry), Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands Correspondence: Julien Richirt ([email protected]) Received: 23 September 2019 – Discussion started: 1 October 2019 Revised: 6 February 2020 – Accepted: 10 February 2020 – Published: 20 March 2020 Abstract. Over the last decades, hypoxia in marine coastal surface sediment resulted in an almost complete disappear- environments has become more and more widespread, pro- ance of the foraminiferal community. Conversely, at the shal- longed and intense. Hypoxic events have large consequences lower site (23 m), where the duration of anoxia and free H2S for the functioning of benthic ecosystems. In severe cases, was shorter (1 month or less), a dense foraminiferal com- they may lead to complete anoxia and the presence of toxic munity was found throughout the year except for a short pe- sulfides in the sediment and bottom-water, thereby strongly riod after the stressful event. Interestingly, at both sites, the affecting biological compartments of benthic marine ecosys- foraminiferal community showed a delayed response to the tems. Within these ecosystems, benthic foraminifera show a onset of anoxia and free H2S, suggesting that the combina- high diversity of ecological responses, with a wide range of tion of anoxia and free H2S does not lead to increased mortal- adaptive life strategies. Some species are particularly resis- ity, but rather to strongly decreased reproduction rates. At the tant to hypoxia–anoxia, and consequently it is interesting to deepest site, where highly stressful conditions prevailed for 1 study the whole foraminiferal community as well as species- to 2 months, the recovery time of the community takes about specific responses to such events. Here we investigated the half a year. In Lake Grevelingen, Elphidium selseyense and temporal dynamics of living benthic foraminiferal commu- Elphidium magellanicum are much less affected by anoxia nities (recognised by CellTracker™ Green) at two sites in and free H2S than Ammonia sp. T6. We hypothesise that this the saltwater Lake Grevelingen in the Netherlands. These is not due to a higher tolerance for H2S, but rather related to sites are subject to seasonal anoxia with different durations the seasonal availability of food sources, which could have and are characterised by the presence of free sulfide (H2S) been less suitable for Ammonia sp. T6 than for the elphidi- in the uppermost part of the sediment. Our results indicate ids. that foraminiferal communities are impacted by the pres- ence of H2S in their habitat, with a stronger response in the case of longer exposure times. At the deepest site (34 m), in summer 2012, 1 to 2 months of anoxia and free H2S in the Published by Copernicus Publications on behalf of the European Geosciences Union. 1416 J. Richirt et al.: Foraminiferal community response to seasonal anoxia 1 Introduction last decades, so that a large amount of environmental data are available (e.g. Wetsteijn, 2011; Donders et al., 2012). Hypoxia affects numerous marine environments, from the The annual net primary production in the Den Osse Basin open ocean to coastal areas. Over the last decades, a general (i.e. 225 g C m−2 yr−1; Hagens et al., 2015) is comparable to decline in oxygen concentration was observed in marine wa- other estuarine systems in Europe (Cloern et al., 2014). How- ters (Stramma et al., 2012), with an extent varying between ever, there is almost no nutrient input from external sources; the concerned regions. In coastal areas, oxygen concentra- thus primary production is largely based on autochthonous tions have been estimated to decrease 10 times faster than recycling (> 90 %; Hagens et al., 2015), both in the water col- in the open ocean, with indications of a recent acceleration, umn and in the sediment, with a very strong pelagic–benthic expressed by increasing frequency, intensity, extent and du- coupling (de Vries and Hopstaken, 1984). The benthic envi- ration of hypoxic events (Diaz and Rosenberg, 2008; Gilbert ronment is characterised by the presence of two antagonis- et al., 2010). This is due to the combination of (1) global tic groups of bacteria, with contrasting seasonal population warming, which is strengthening seasonal stratification of the dynamics (i.e. cable bacteria in winter–spring and Beggia- water column and decreasing oxygen solubility, and (2) eu- toaceae in autumn–winter), which have a profound impact trophication resulting from increased anthropogenic nutri- on all biogeochemical cycles in the sediment column (Seitaj ent and/or organic matter input, which is enhancing benthic et al., 2015; Sulu-Gambari et al., 2016a, b). The combination oxygen consumption in response to increased primary pro- of hypoxia–anoxia with sulfidic conditions, which is rather duction (Diaz and Rosenberg, 2008). Bottom-water hypoxia unusual in coastal systems without external nutrient input, has serious consequences for the functioning of all benthic and the activity of antagonistic bacterial communities makes ecosystem compartments (see Riedel et al., 2016, for a re- Lake Grevelingen a very peculiar environment. In the Den view). Benthic faunas are strongly impacted by these events Osse Basin, seasonal anoxia coupled with the presence of (Diaz and Rosenberg, 1995), even though the meiofauna, H2S at or very close to the sediment–water interface occurs especially foraminifera, appears to be less sensitive to low in summer (i.e. between July–September). However, euxinia dissolved oxygen (DO) concentrations than the macrofauna (i.e. diffusion of free H2S in the water column) does not oc- (e.g. Josefson and Widbom, 1988). Many foraminiferal taxa cur, because of cable bacterial activity (Seitaj et al., 2015). are able to withstand seasonal hypoxia–anoxia (see Koho et Although the tolerance of foraminifera towards low DO al., 2012, for a review), and consequently they can play a ma- contents and long-term anoxia (from weeks to 10 months) jor role in carbon cycling in ecosystems affected by seasonal has been well documented for many species from different low-oxygen concentrations (Woulds et al., 2007). Anoxia types of environments in laboratory culture (e.g. Moodley is often accompanied by free sulfide (H2S) in pore and/or and Hess, 1992; Alve and Bernhard, 1995; Bernhard and bottom waters (e.g. Jørgensen, 1982; Seitaj et al., 2015), Alve, 1996; Moodley et al., 1997; Duijnstee et al., 2003, which is considered very harmful for the benthic macrofauna 2005; Geslin et al., 2004, 2014; Ernst et al., 2005; Pucci et (Wang and Chapman, 1999). Neutral molecular H2S can dif- al., 2009; Koho et al., 2011) as well as in field studies (e.g. fuse through cellular membranes and inhibits the function- Piña-Ochoa et al., 2010b; Langlet et al., 2013, 2014), their ing of cytochrome c oxidase (a mitochondrial enzyme in- tolerance of free H2S is still debated. In the vast majority of volved in ATP production), finally inhibiting aerobic respi- previous studies, no decrease in the total abundances of living ration (Nicholls and Kim, 1982; Khan et al., 1990; Dorman foraminifera (i.e. strongly increased mortality) was observed
Recommended publications
  • Kaart Natura 2000-Gebied Grevelingen
    Natura 2000-gebied #115 kaartblad 4 Grevelingen 67000 68000 69000 70000 71000 72000 73000 74000 75000 76000 g Weg Sint terin Dijk Krammerzicht We Oude Weg Polder Slikweg de Tille dijk Bouwlust Nieuwe-Tonge La nd sedijk Polder he Klinkerland 25 Polder Klinkerlandse Weg 't Anker rlandsc Eben-Haëzer Lage e Dijk Zeedijk noordse Tilse Klinkerlandse Klink Battenoordse Dijk Sl Batte 414000 Pl 51 414000 Tonisseweg Battenoord Katendrecht Oostendesche Dijk Korte Tilse Weg Tilse Pl 50 Bou Lust De Bouwstee Straalenburg Schenkelweg Lange dse Watering Jachthaven 2 Polder het Oudeland Polder Biermansweg Polder Battenoord Oudelan -1 Pannenweg Lage 26 -1 Pl 49 Weg Gemeente Huize Grietje Oostflakkee Havenweg (Gemeentehuis te Oude-Tonge) Weg Zeldenrust Oudelandsche Zonne-Hoeve De Pannenstee Oostende Oudelandsche van Oude-Tonge Blauwe Pl 48 Maranatha 27 Wilhelmina hoeve 413000 Weg 413000 2 Groene 36 Battenoord Kreek Stationsweg De Tille Tilseweg -2 -1 Sl -1 37 N59 Tweede Polder Terlon 35 38 Magdalenapolder Pl 47 Blaakweg Sl Bouwlust 39 Polder het -2 -2 Sl Weg -1 Polder Magdalenapolder OudelandseOudeland van Oude-Tonge Mag IJsbaan Km kreek Gemeente Middelharnis Batten 34 oord dalena weg Polder 412000 412000 -2 N59 -2 Eerste Groene 2 Dijk Sl Magdalenadijk Le Frans 29 Dijk Sl Magdalena Sl Spuikom N498 Pl 46 Molenpolder Sl -10 landse 30 -16 Helledijk -15 -5 Zuider Oude-Tonge Polder ZuiderlandseWeg Zuiderland Sl Mijn Eiland -13 33 Sl -12 Zuiveringsinst Polder Zuiderlandse Kreek Zeedijk Jacob -3 Sl St Pl 45 Heeren polder Pl 44 Bungalowpark Schinkelweg -6 De Eendracht
    [Show full text]
  • The Ecology O F the Estuaries of Rhine, Meuse and Scheldt in The
    TOPICS IN MARINE BIOLOGY. ROS. J. D. (ED.). SCIENT. MAR . 53(2-3): 457-463 1989 The ecology of the estuaries of Rhine, Meuse and Scheldt in the Netherlands* CARLO HEIP Delta Institute for Hydrobiological Research. Yerseke. The Netherlands SUMMARY: Three rivers, the Rhine, the Meuse and the Scheldt enter the North Sea close to each other in the Netherlands, where they form the so-called delta region. This area has been under constant human influence since the Middle Ages, but especially after a catastrophic flood in 1953, when very important coastal engineering projects changed the estuarine character of the area drastically. Freshwater, brackish water and marine lakes were formed and in one of the sea arms, the Eastern Scheldt, a storm surge barrier was constructed. Only the Western Scheldt remained a true estuary. The consecutive changes in this area have been extensively monitored and an important research effort was devoted to evaluate their ecological consequences. A summary and synthesis of some of these results are presented. In particular, the stagnant marine lake Grevelingen and the consequences of the storm surge barrier in the Eastern Scheldt have received much attention. In lake Grevelingen the principal aim of the study was to develop a nitrogen model. After the lake was formed the residence time of the water increased from a few days to several years. Primary production increased and the sediments were redistributed but the primary consumers suchs as the blue mussel and cockles survived. A remarkable increase ofZostera marina beds and the snail Nassarius reticulatus was observed. The storm surge barrier in the Eastern Scheldt was just finished in 1987.
    [Show full text]
  • Half a Century of Morphological Change in the Haringvliet and Grevelingen Ebb-Tidal Deltas (SW Netherlands) - Impacts of Large-Scale Engineering 1964-2015
    Half a century of morphological change in the Haringvliet and Grevelingen ebb-tidal deltas (SW Netherlands) - Impacts of large-scale engineering 1964-2015 Ad J.F. van der Spek1,2; Edwin P.L. Elias3 1Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands; [email protected] 2Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht 3Deltares USA, 8070 Georgia Ave, Silver Spring, MD 20910, U.S.A.; [email protected] Abstract The estuaries in the SW Netherlands, a series of distributaries of the rivers Rhine, Meuse and Scheldt known as the Dutch Delta, have been engineered to a large extent. The complete or partial damming of these estuaries in the nineteensixties had an enormous impact on their ebb-tidal deltas. The strong reduction of the cross-shore tidal flow triggered a series of morphological changes that includes erosion of the ebb delta front, the building of a coast-parallel, linear intertidal sand bar at the seaward edge of the delta platform and infilling of the tidal channels. The continuous extension of the port of Rotterdam in the northern part of the Haringvliet ebb-tidal delta increasingly sheltered the latter from the impact of waves from the northwest and north. This led to breaching and erosion of the shore-parallel bar. Moreover, large-scale sedimentation diminished the average depth in this area. The Grevelingen ebb-tidal delta has a more exposed position and has not reached this stage of bar breaching yet. The observed development of the ebb-tidal deltas caused by restriction or even blocking of the tidal flow in the associated estuary or tidal inlet is summarized in a conceptual model.
    [Show full text]
  • Veilig Veerkrachtig Vitaal Uitvoeringsprogramma Zuidwestelijke Delta 2010-2015+
    Veilig Veerkrachtig Vitaal Uitvoeringsprogramma Zuidwestelijke Delta 2010-2015+ Versie voor behandeling in provinciale staten en besturen waterschappen December 2010 Ontwerp-Uitvoeringsprogramma Zuidwestelijke Delta 2010-2015+ Maart 2010 Veilig Veerkrachtig Vitaal Uitvoeringsprogramma Zuidwestelijke Delta 2010-2015+ Versie voor behandeling in provinciale staten en besturen waterschappen Stuurgroep Zuidwestelijke Delta in samenwerking met de Adviesgroep Zuidwestelijke Delta December 2010 g - levin iden en tit m ei Economisch sa t Ecologisch vitaal veerkrachtig r g u e u Nationale b t i l e u wateropgave d c re g gi in on el ale ikk gebiedsontw Klimaatbestendig en veilig Samenvatting: balans veilig, veerkrachtig en vitaal herstellen Een veilige, veerkrachtige en vitale zuidwestelijke delta. In de stilstaande, zoete of zoute wateren die zo ontston- Voor een betere balans tussen veilig, veerkrachtig en Dat is wat de provincies, waterschappen en ministeries, den ging de kwaliteit van het water echter sterk achter- vitaal, bevat het programma twee typen acties: verenigd in de Stuurgroep Zuidwestelijke Delta, als ideaal uit, met negatieve gevolgen voor recreatie, visserij en • Gebiedsprogramma’s voor herstel van het watermilieu, voor ogen staat. landbouw. Het Volkerak-Zoommeer heeft problemen met waarborgen van de veiligheid en verbeteren van leef- blauwalgen, stankoverlast, vissterfte en momenten van omgeving en economie. Dat betekent: onvoldoende geschikt water voor beregening. In de • Deltathema’s waar de stuurgroep zich op richt om vol- • Veilig: voldoende beschermd tegen overstromingen, Oosterschelde, die zijn getijdenritme behield, verdwij- gende stappen richting het ideaal van een veilige, ook wanneer de verwachte klimaatverandering meer nen intergetijdengebieden door erosie van de zand- veerkrachtige en vitale delta voor te bereiden.
    [Show full text]
  • The 'Voordelta', the Contiguous Ebb-Tidal Deltas in the SW
    Netherlands Journal of Geosciences — Geologie en Mijnbouw |96 – 3 | 233–259 | 2017 doi:10.1017/njg.2016.37 The ‘Voordelta’, the contiguous ebb-tidal deltas in the SW Netherlands: large-scale morphological changes and sediment budget 1965–2013; impacts of large-scale engineering Edwin P.L. Elias1,∗, Ad J.F. van der Spek2 & Marian Lazar3 1 Deltares USA, 8601 Georgia Ave., Suite 508, Silver Spring, MD 20910, USA 2 Deltares, AMO, P.O. Box 177, 2600 MH Delft, The Netherlands 3 Rijkswaterstaat, Sea and Delta, P.O. Box 556, 3000 AN Rotterdam, The Netherlands ∗ Corresponding author. Email: [email protected] Manuscript received: 20 December 2015, accepted: 9 September 2016 Abstract The estuaries in the SW Netherlands, a series of distributaries of the rivers Rhine, Meuse and Scheldt known as the Dutch Delta, have been engineered to a large extent as part of the Delta Project. The Voordelta, a coalescing system of the ebb-tidal deltas of these estuaries, extends c.10 km offshore and covers c.90 km of the coast. The complete or partial damming of the estuaries had an enormous impact on the ebb-tidal deltas. The strong reduction of the cross-shore directed tidal flow triggered a series of morphological changes that continue until today. This paper aims to give a concise overview of half a century of morphological changes and a sediment budget, both for the individual ebb-tidal deltas and the Voordelta as a whole, based on the analysis of a unique series of frequent bathymetric surveys. The well-monitored changes in the Voordelta, showing the differences in responses of the ebb-tidal deltas, provide clear insight into the underlying processes.
    [Show full text]
  • Getijdencentrale Brouwersdam
    Getijdencentrale Brouwersdam Deltatechnologie impuls voor regionale economie Getijdencentrale Brouwersdam De provincies Zuid-Holland en Zeeland, De provincies, Rijkswaterstaat en gemeenten willen Rijkswater staat en de gemeenten Goeree- het getijde op de Grevelingen voor een goede waterkwaliteit herstellen. Daarmee willen zij tevens de Overflakkee en Schouwen-Duiveland zetten gebiedsontwikkeling op en rond het meer een impuls zich in voor de bouw van een getijdencentrale geven. Het getijde verdween met de bouw van de Brouwersdam in 1971. Een doorlaat in de dam moet het op de Brouwersdam en een testcentrum voor getijde weer terugbrengen. Het zuurstofrijke zeewater dat turbines op de Grevelingendam. Samen met onder invloed van eb en vloed op zee dan weer het meer kan instromen, verbetert de condities voor natuur, bedrijven, kennisinstellingen en maatschappelijke (water)recreatie, toerisme en visserij en de regionale organisaties willen zij meerdere publieke economie als geheel. en private belangen tegelijkertijd dienen. Duurzame energie opwekken Resultaat: een nieuw icoon van de Nederlandse Bijkomend voordeel van een doorlaat in de Brouwersdam is dat die kan worden vormgegeven als een getijden- deltatechnologie met regionale, landelijke én centrale: turbines die elektriciteit opwekken uit de internationale uitstraling. waterstroom door de dam. Een getijdencentrale in de Brouwersdam kan naar verwachting groene stroom produceren voor alle circa vijftigduizend huishoudens op Goeree-Overflakkee en Schouwen-Duiveland. De centrale levert zo een bijdrage aan het regeringsbeleid voor duurzame groei én aan de ambitie van de beide gemeenten om op termijn energieneutraal te zijn. TESTCENTRUM GREVELINGENDAM Naast de getijdencentrale werken de twee provincies samen met het Rijk en het bedrijfsleven aan de realisatie van een ‘Testcentrum Grevelingendam’.
    [Show full text]
  • Wader Research in the Delta of the Southwest Netherlands
    -26- WADER RESEARCHIN THE DELTAOF THE SOUTHWESTNETHERLANDS by HenkBcpfisf cmd Pcfrick Meire Introduction The Delta-area in the southwestern part of the Netherlands has been formed gradually by the estuaries of the rivers Rhine, Meuse and Scheldt during the last 2000-3000 years. After the storm-flood of 1953, when large parts of the area were inundated and over 1800 people were killed, the Dutch government decided to dam up five of the seven estuaries, the so called "Delta Plan". The Westerschelde and the Nieuwe Waterweg will remain open because these are the entrances of the ports of Antwerpen and Rotterdam respectively. Four estuaries have already been dammedup and changed frc• salt or brackish tidal areas into stagnant lakes. The present situation frc• north to south is (Figure 1): an open, but very small, harbour mouth (Nieuwe Waterweg), two fresh water lakes (Brielse Meer and Haringvliet), a salt water lake (Grevelingen), an open salt estuary (0osterschelde, a brackish lake (Veerse Meer) and an open salt to brackish estuary (Westerschelde). In the original Delta Plan the Oosterschelde would also have been dammedup, after which all enclosed estuaries would be chaDged into fresh water lakes. As a result of changed views regarding the environment and fisheries, this decision has been changed. In 1985 the Oosterschelde will be closed by means of a storm-surge barrier. As a result of this the tidal a•plitude will decrease frc• 3.1 to 2.7 m. In addition, in the eastern part of the estuary secondary dams will be constructed, which will cause a direct loss of tidal areas (Figure 1).
    [Show full text]
  • The 'Voordelta', the Contiguous Ebb-Tidal Deltas in the SW
    Netherlands Journal of Geosciences — Geologie en Mijnbouw |96 – 3 | 233–259 | 2017 doi:10.1017/njg.2016.37 The ‘Voordelta’, the contiguous ebb-tidal deltas in the SW Netherlands: large-scale morphological changes and sediment budget 1965–2013; impacts of large-scale engineering Edwin P.L. Elias1,∗, Ad J.F. van der Spek2 & Marian Lazar3 1 Deltares USA, 8601 Georgia Ave., Suite 508, Silver Spring, MD 20910, USA 2 Deltares, AMO, P.O. Box 177, 2600 MH Delft, The Netherlands 3 Rijkswaterstaat, Sea and Delta, P.O. Box 556, 3000 AN Rotterdam, The Netherlands ∗ Corresponding author. Email: [email protected] Manuscript received: 20 December 2015, accepted: 9 September 2016 Abstract The estuaries in the SW Netherlands, a series of distributaries of the rivers Rhine, Meuse and Scheldt known as the Dutch Delta, have been engineered to a large extent as part of the Delta Project. The Voordelta, a coalescing system of the ebb-tidal deltas of these estuaries, extends c.10 km offshore and covers c.90 km of the coast. The complete or partial damming of the estuaries had an enormous impact on the ebb-tidal deltas. The strong reduction of the cross-shore directed tidal flow triggered a series of morphological changes that continue until today. This paper aims to give a concise overview of half a century of morphological changes and a sediment budget, both for the individual ebb-tidal deltas and the Voordelta as a whole, based on the analysis of a unique series of frequent bathymetric surveys. The well-monitored changes in the Voordelta, showing the differences in responses of the ebb-tidal deltas, provide clear insight into the underlying processes.
    [Show full text]
  • Strategisch Ontwikkelplan Grevelingen 2020-2030
    Strategisch Ontwikkelplan Grevelingen 2020-2030 1 Strategisch Ontwikkelplan Grevelingen 2020-2030 2 Gebied Grevelingen - Zuidwestelijke Delta Opdrachtgever Bestuurlijk Overleg Grevelingen Opgesteld door Gemeente Schouwen-Duiveland Gemeente Goeree-Overflakkee Provincie Zeeland Rijkswaterstaat Staatsbosbeheer April 2020 Inhoud 3 4 Inhoud 7.2.2.2 Natuurwaarden 27 7.2.2.3 Natura 2000 27 7.2.2.4 Instandhouding en medegebruik 31 1 Aanleiding 7 7.2.2.5 Conclusie 31 1.1 Status van het rapport Ontwikkelplan Grevelingen 8 7.2.3 Recreatie 31 2 De opgave voor dit rapport 9 7.2.3.1 Huidig recreatief aanbod 31 3 Scope ontwikkelplan 9 7.2.3.2 Huidige bezoekers Grevelingen: Brouwersdam en Grevelingendam 33 4 Het gebied de Grevelingen 11 7.2.3.3 Conclusie 35 5 Positionering van het gebied 12 7.2.4 Visserij 35 6 Context 13 7.2.4.1 Oestervisserij 35 7 Analyse 14 7.2.4.2 Sportvisserij 36 7.1 Beleidsmatige analyse 14 7.2.4.3 Interdisciplinaire werkgroep ‘Nieuwe kansen Grevelingen’ 36 7.2 Functionele analyse 19 7.2.4.4 Conclusie 36 7.2.1 Ruimtelijke kwaliteit 19 8 Trends en ontwikkelingen 39 7.2.1.1 Dammen en dijken 21 8.1 Terugbrengen van getij 39 7.2.1.2 Nollen, gorzen, slikken en inlagen 23 8.2 Klimaatverandering en zeespiegelstijging 39 7.2.1.3 De kreken en havenkanalen 23 8.3 Recreatietrends 41 7.2.1.4 Sedimentatie en erosie 24 8.4 Uitdagingen en kansen visserij 42 7.2.1.5 De kerken en torens 24 9 Knelpunten 44 7.2.1.6 Vergezichten en open ruimte 24 9.1 Ruimtelijke kwaliteit 44 7.2.1.7 Cultuurhistorie 25 9.2 Natuur 45 7.2.1.8 Beplanting 25 9.3 Recreatie
    [Show full text]
  • Re-Opening a Dam for Nature, Energy and Recreation, Lake Grevelingen - NL
    Re-opening a dam for nature, energy and recreation, Lake Grevelingen - NL Re-opening a dam for nature, energy and recreation, Lake Grevelingen - NL 1. Policy Objective & Theme SUSTAINABLE USE OF RESOURCES: Preserving coastal environment (its functioning and integrity) to share space SUSTAINABLE ECONOMIC GROWTH: Balancing economic, social, cultural development whilst enhancing environment 2. Key Approaches Integration Ecosystems based approach Technical 3. Experiences that can be exchanged The central and two regional governments (Zeeland and Zuid Holland) have produced a plan which determines how the 8km long Brouwersdam can be partially opened in order to restore the water quality of Lake Grevelingen. The opening of the dam with be used for the generation of sustainable tidal energy and coupled to improved natural areas, increased safety and enhanced socio-economic benefits. 4. Overview of the case The waters of Lake Grevelingen have deteriorated since they were cut off from the North Sea. This has negatively affected the tourist attraction of the lake and its biodiversity. The dam will be breached to allow salt-water intrusion and better connectivity between the lake and the shallow waters of the seawards delta area.. A tidal energy generator will be built into the opening as well as a lock to enhance social aspects. 5. Context and Objectives a) Context Decades ago, the Grevelingen and other inlets in the southwest of the Netherlands, together formed the outlets of the Rhine, Meuse, Waal and Scheldt rivers into the North Sea. The difference between low and high tide was around 2.5 metres. On 1 February 1953, the dykes burst during a heavy storm with the loss of over 1500 lives.
    [Show full text]
  • Rapport Vis in De Grevelingen
    Vis in de Grevelingen K. Didderen W. Lengkeek E.G.R. Bakker J. Tummers (RAVON) A. Gmelig Meyling (ANEMOON) Vis in de Grevelingen K. Didderen, W. Lengkeek, E.G.R. Bakker, J. Tummers, A. Gmelig Meyling Status uitgave: definitief Rapportnummer: 20-328 Projectnummer: 20-0740 Datum uitgave: 30 januari 2021 Foto's: Udo van Dongen / Karin Didderen / Wouter Lengkeek / Bureau Waardenburg bv Projectleider: K. Didderen Tweede lezer: N. Van Kessel/ M.Dorenbosch Opdrachtgever: Staatsbosbeheer Afdeling projecten Marieke de Gast/ Sander Terlouw Referentie opdrachtgever: E5411007 LIFE-lP C3-6 Visonderzoek Grevelingen Akkoord voor uitgave: drs. W.M. Liefveld Paraaf: Graag citeren als: Didderen, K., W. Lengkeek, E.G.R. Bakker, J. Tummers, A. Gmelig Meyling, 2021. Vis in de Grevelingen. Bureau Waardenburg Rapportnr. 20-328. Bureau Waardenburg/RAVON/ANEMOON, Culemborg. Trefwoorden: vis, kustwateren, estuaria, kraamkamer, vismigratie Bureau Waardenburg bv is niet aansprakelijk voor gevolgschade, alsmede voor schade welke voortvloeit uit toepassingen van de resultaten van werkzaamheden of andere gegevens verkregen van Bureau Waardenburg bv. Opdrachtgever hierboven aangegeven vrijwaart Bureau Waardenburg bv voor aanspraken van derden in verband met deze toepassing. © Bureau Waardenburg bv / Staatsbosbeheer Dit rapport is vervaardigd op verzoek van opdrachtgever en is zijn eigendom. Niets uit dit rapport mag worden verveelvoudigd en/of openbaar gemaakt worden d.m.v. druk, fotokopie, digitale kopie of op welke andere wijze dan ook, zonder voorafgaande schriftelijke toestemming van de opdrachtgever hierboven aangegeven en Bureau Waardenburg bv, noch mag het zonder een dergelijke toestemming worden gebruikt voor enig ander werk dan waarvoor het is vervaardigd. Lid van de branchevereniging Netwerk Groene Bureaus. Het kwaliteitsmanagementsysteem van Bureau Waardenburg bv is gecertificeerd door EIK Certificering overeenkomstig ISO 9001:2015.
    [Show full text]
  • Natuur- En Recreatieschap De Grevelingen MIRT-Verkenning Grevelingen Milieueffectrapport Deel B: Bijlagen
    Natuur- en recreatieschap de Grevelingen MIRT-verkenning Grevelingen milieueffectrapport deel B: bijlagen Powered by TCPDF (www.tcpdf.org) INHOUDSOPGAVE blz. 1. INVENTARISATIE VIGEREND BELEID 1 1.1. Inleiding 1 1.2. Structuurvisie Infrastructuur en Ruimte 1 1.3. Natura 2000 1 1.4. Deltaprogramma en de Zuidwestelijke Delta 1 1.5. Overig (inter)nationaal beleid: water en energie 2 1.6. Provinciaal 3 1.7. Provinciaal sociaal-economisch beleidsplan 2009 - 2012, provincie Zeeland 5 1.8. Structuurvisie Zuid-Holland 6 1.9. Gemeentelijk 8 2. ONDERBOUWING BOUWSTENEN EN ALTERNATIEVEN 13 2.1. Doel en methode 13 2.2. Groslijst van maatregelen 13 2.3. Beoordeling van de permanente maatregelen in de eerste zeef 14 2.4. Beoordeling van de beheermaatregelen in de eerste zeef 16 2.5. Overzicht kansrijke maatregelen 20 2.6. Mitigerende maatregelen 21 3. BEOORDELING VAN BOUWSTENEN IN FACTSHEETS 25 3.1. Factsheet bouwsteen Flakkeese spuisluis 25 3.2. Factsheet bouwsteen Waterkwaliteit en Energie: doorlaat Brouwersdam en getijdencentrale 25 3.3. Factsheet bouwsteen Recreatie en Toerisme 28 3.4. Factsheet bouwsteen Waterkwantiteit: bergingsregime en doorlaat Grevelingendam 29 3.5. Factsheet bouwsteen Kunstmatig opgewekte verticale waterbeweging 32 4. ACHTERGRONDEN BIJ DE EFFECTBESCHRIJVING HOOGWATERVEILIGHEID 34 4.1. Bergingscapaciteit 34 4.2. Bijdrage aan MHW daling rivieren 34 4.3. Afvoercapaciteit 35 5. EFFECTBESCHRIJVING WATERKWALITEIT EN ECOLOGIE 37 5.1. Inleiding 37 5.2. Beschrijving referentie 38 5.3. Doorlaatmiddel in de Brouwersdam 54 5.4. Getijdencentrale 61 5.5. Open verbinding in de Grevelingendam 63 5.6. Waterberging op de Grevelingen 67 5.7. Schutsluis/overtoom 69 5.8.
    [Show full text]