Oligochaetes from Underground Waters of Oman with Descriptions of Two New of Phreodrilidae Antarctodrilus Arabicus N

Total Page:16

File Type:pdf, Size:1020Kb

Oligochaetes from Underground Waters of Oman with Descriptions of Two New of Phreodrilidae Antarctodrilus Arabicus N Contributions to Zoology. 71 (4) 147-158 (2002) SPB Academic Publishing bv, The Hague Oligochaetes from underground waters of Oman with descriptions of two new of Phreodrilidae Antarctodrilus arabicus n. and species (Oligochaeta): sp. Phreodrilus stocki n. sp. Stygofauna of Oman, 7* ¹, ³ Martínez-Ansemil Narcisse Giani ² & Beatrice Enrique ¹, Sambugar 1 Bioloxia Bioloxia Departamento de Animal, Vexetal e Ecoloxia, Facultade de Ciencias, Universidade da 2 Coruna, Campus da Zapateira s/n, E-15071 A Coruna, Spain, [email protected]; Centre d’Ecologie des Systemes Aquatiques Continentaux, UMR C5576 CNRS, Universite Paul Sabatier, 118 route de Narhonne, 3 F-31062 Toulouse Cedex, France, [email protected]; Museo Civico di Storia Naturale, Lungadige Porta Vittoria 9, 1-37126 Verona, Italy, [email protected] Keywords: Groundwater oligochaetes, Phreodrilidae, new species, Oman, biogeography Abstract driloidinae), previously known from Puerto Rico and Belize in the Atlantic western Ocean, represents a large extension ofits known distribution area. The study oftwenty-nineoligochaete samples collected in 1996 by J. H. Stock and J. J. Vermeulen (University ofAmsterdam), in the of allowed draw in- Sultanate Oman, us to up an initial of the Arabian ventory of the freshwater oligochaete fauna pe- Contents ninsula, a fauna totally unknown until now. The 147 specimens examined belong to nine species offour families: Phreodrilidae, Introduction 147 Naididae, Tubificidae and Enchytraeidae. The Phreodrilidae(2 Material and methods 148 whilst species) represent more than half ofthe total specimens; Systematic account 148 the rest belong mainly to the Naididae. Faunistic remarks 155 arabicus Two new species ofPhreodrilidae(Antarctodrilus Acknowledgements 157 described. Both n. sp. and Phreodrilus stocki n. sp.) are belong References to 157 the subfamily Phreodrilinae,untilnow not reported from north ofthe tropic ofCapricorn. Otheridentifiedspecies include Dero Allonais and Doliodrilus (Dero) zeylanica, paraguayensis puer- recorded subterranean toricensis, which are for the first time in Introduction habitats. the of the of These studies confirm hypothesis presence Marine oligochaetes of the Arabian Gulf have been Phreodrilidae in the Arabian peninsula as relict taxa inhabiting studied refuges in hyporheic/groundwater habitats. by Erseus( 1985, 1986a, 1986b, 1988, 1989) marine The of an fauna with phyletic presence oligochaete but the freshwater oligochaete fauna of the Ara- affinities in underground waters already highlighted in Europe bian peninsula was totally unknown until now. We now equally applies to the Arabian peninsula with the discov- had the of of the tubificid and in the opportunity studying twenty-nine oligo- ery genera Aktedrilus Doliodrilus chaete from underground habitats ofOman. As these genera already are well samples this part of the world forwarded known from littoral marine or brackish water with a wide the to one of us (BS) by R. Vonk of the University of range of salinity, we have additional evidence that the migra- Amsterdam. The material was collected by J. H. tion of interstitialmarine meiobenthic tubificid species through Stock and J. J. Vermeulen of the of water of be the University decreasing salinity may a way of colonising subterranean freshwaters. Amsterdam in 1996, during an expedition in the The Doliodrilus arid present record of puertoricensis (Limno- Sultanate of Oman, an country situated along Stygofauna Oman 7. issue, nr. is published & in Muss. Nat. of nr. The previous 6, by Ruffo Holsinger Boll. Civ. Stor. Verona - Botanica, Zoologia, vol. 27 (2003) Downloaded from Brill.com10/05/2021 05:43:57PM via free access 148 E. Martinez-Ansemil, N. Giani & B. Sambugar - Oligochaetes from underground waters of Oman - The the south-eastern margin of the Arabian peninsula. Remarks. branchial fossa displays one pair They sampled several different subterranean habi- of parallel palps and three pairs of gills. The meas- tats in which oligochaetes were found. The habi- urements for the anterior ventral setae are 50-70 the tats include the interstitial coarse sediments of dry pm, for posterior ventral setae 44-60 pm, for beds and the needle 34-48 and for the hair stream (wadis), wells, springs, one cave. setae pm setae This paper presents the results of the identifica- 120-180pm. These setal lengths are within the range tion of this material including the description of recorded for African (Grimm, 1987) and Caribbean two new species of Phreodrilidae, a family largely specimens (Dumnicka, 1986a; Chagne & Giani, distributed in the southern and but lie the lower end of The hemisphere reported 1998), they at range. twice from the northern from Sri Lanka 1914 only one: Dero (A.) africana Michaelsen, has much larger intermedi- (Stephenson, 1913) and Morocco (Giani et al., 1995). setae (Grimm, 1985). The presence of ate teeth in the needle setae was noted in the new material, a feature already reported for Dero (Aulo- Material and methods phorus) furcata (Sambugar, 1986; Grimm, 1987). The specimens were collected in wells using a Cvetkov closing Distribution and habitat. - Known vertical in the of and the Cosmopolitan. net, and hyporheon wadis, springs to inhabit lentic and lotic habitats of surface ofthe Bou-Rouch from the wa- cave by means pump. Samples cave with in the As and some springs were collected in superficial waters a ters, mainly intertropical region. regards handnet. subterraneanwaters it was previously foundin wells labora- The formalin preserved samples were sorted in the of West Indian Islands (Dumnicka, 1986a) and in tory under a dissecting microscope andtransferred to 70 % etha- Morocco (Giani, unpublished data). nol. In the field, some physical-chemical parameters were directly the electrical in mS/ measured, e.g., conductivity (eC pS/cm or cm) and the water temperature. The geographical position of the sampling stations is given Dero (Dero) zeylanica Stephenson, 1913 by UTM coordinates. Every site has its code in relation to a station list provided by the University of Amsterdam. Examined material. - Eight immature specimens from a well at All specimens were mounted in Canada balsam, most ofthem Dibab (96/23), UTM 0700988/2553839,eC 400 pS/cm, 25 March as whole mounted worms. Mature specimens were previously 1996,Legit: J. H. Stock. stained with Harris haematoxylin and some were dissected un- der a stereo-microscope. Drawings were made by means ofa - in camera lucida. Remarks. The material collected Oman is mor- of is stored in the The type material the new species collec- phologically in accordance with the literature data tions of the Zoological Museum of Amsterdam (ZMA). Other (Sperber, 1948; Brinkhurst & Jamieson, 1971). reference specimens are in the authors’ own collections. Distribution and habitat. - Previously known only from Southern India and Sri Lanka. Not Systematic account previously found in subterranean waters. Family: NAID1DAE Subfamily: Naidinae Allonais Dero (Aulophorus) furcata (Muller, 1773) paraguayensis (Michaelsen, 1905) Examined material.-Twelveimmaturespecimens: 1 from inter- Examined material. - Thirty-five immaturespecimens, all col- stitial waters of a spring formed in 1995 in Bait Qura lected by J.H. Stock: 10 from a well at Majaz Al Sugra (96/65), Rustaq, (96/69), UTM 0443405/2587376,eC 818 pS/cm, I April 1996, onplantation, UTM 0483567/2679077,eC 1004 pS/cm, 30 March J. H. Stock; 3 from a well in South Dahariz UTM 1996; 2 from interstitial waters of a spring formed in 1995 in Legit: (96/99), Rustaq, Bait Qura (96/69), UTM 0443405/2587376,eC 818 pS/ 0196965/1883319,eC 4210 pS/cm, 5 April 1996, Legit: ,1. H. 1996; from 0254392/ Stock; 1 from a well in the A’Muotazah area (Salalah cm, 1 April 5 a well at Marbat (96/84), UTM Centre) (96/100),UTM 189032/1882511,eC3490 5 1996, 1879929, eC 2.35 pS/cm, 4 April 1996; 1 from a well at Dahariz pS/cm, April South (96/99), UTM 0196965/1883319,eC 4210 pS/cm, 5 April Legit: J. H. Stock; 3 from surface waters of the spring head of Wadi Darbat catchment 1996; 17 from a well at Auwqad South (96/101), UTM 0184857/ the (96/103), UTM 0230717/1897256, 1881731, eC 4010 pS/cm, 5 April 1996. eC 754 pS/cm, 5 April 1996, Legit: J. H, Stock; 2 from surface Downloaded from Brill.com10/05/2021 05:43:57PM via free access Contributions to Zoology, 71 (4) - 2002 149 waters ofthe Ain Hamran spring (Salah UTM region) (96/106), lip associated with circular muscle. Cutaneous glands 0210592/1892363, eC 576 gS/cm, 6 April 1996, Legit: J. H. in more or less arranged parallel rows, particularly Stock; 2 from the interstitial waters ofWadi Nakhal (96/126), setal each numerous at level of segment. Clitellum UTM 0584918/2592170, eC 1210 pS/cm, 9 April 1996, Legit: XII-X1II J. J. Vermeulen. extending over with glandular cells ar- in ranged more or less parallel rows. - Ventral from 11 1 Each bundle Remarks. The material from Oman is morpho- setae (Fig. A). of of consisting a pair dissimilar one logically in accordance with the literature data (e.g. setae; single and thin Sperbcr, 1948; Brinkhurst & Jamieson, 1971). The pointed (1.5-1.8 pm wide), without nodu- needle setae in lus, the other bifid, thicker (2-2.8 and begin segment VI, bifid, with very pm wide) nodulus reduced distal teeth. with distinct at about 1/3 from distal end. Distal ends of setae of anterior bundles strongly curved. teethof bifid setae of II and III minute Distribution and habitat. - Known from Asia, Af- Upper and difficult to but about halfthe rica, N. and S. America. Not previously known to see, reaching length of lower teeth in middle inhabit subterranean habitats. region of body. Setal length from 64-80 in ranging pm segment II to 80-100 pm in middle region of body. Except for anterior bundles, the thinner, single pointed setae seem to Family: PHREODRILIDAE be than bifid but latter longer setae, extending more Subfamily: Phreodrilinae into coelomic Ventral setae absent Antarctodrilus arabicus deeply cavity.
Recommended publications
  • Download Full Report 2.4MB .Pdf File
    Museum Victoria Science Reports 18: 1–20 (2013) ISSN 1833-0290 https://doi.org/10.24199/j.mvsr.2013.18 Tools for identifying Australian aquatic oligochaetes of the families Phreodrilidae, Lumbriculidae and Capilloventridae (Clitellata: Annelida) ADRIAN PINDER Science Division, Department of Parks and Wildlife, P.O. Box 51, Wanneroo, 6946, Western Australia; email: [email protected] Abstract Keys are provided to three families of aquatic Oligochaeta: Phreodrilidae, Lumbriculidae and Capilloventridae. There are currently 32 described phreodrilids known from Australia, out of 54 described worldwide, but there are at least 17 more undescribed. Three of the five described capilloventrids are known only from south-eastern Australia. There are only two species of Lumbriculidae in Australia, both of which are believed to be recent introductions. Keywords Aquatic oligochaetes, Annelida, Clitellata, identification, Australia, Phreodrilidae, Capilloventridae, Lumbriculidae Introduction There have been significant changes in oligochaete known from streams, rivers and wetlands, several in systematics and gains in knowledge of Australian Australia, New Zealand, North Africa and the Middle East, oligochaete1 diversity in the two decades since Pinder and occur in groundwater, with some Australian species occurring Brinkhurst (1994) produced their guide to identifying in both epigean and subterranean waters. A few species of Australian freshwater oligochaetes. Pinder (2010) Astacopsidrilus are ectocommensal on crayfish, but the summarised these changes and provided new keys to families majority are free-living. All seem to be detritivores. The two of oligochaetes occurring in Australia and to species of non- Schizodrilus (both New Zealand endemics) occur in forest tubificoid Naididae (former Naididae sensu strictu). This leaf litter.
    [Show full text]
  • DNA-Based Environmental Monitoring for the Invasive Myxozoan Parasite, Myxobolus Cerebralis, in Alberta, Canada
    ! ! ! ! "#$%&'()*!+,-./0,1),2'3!40,.20/.,5!60/!27)!!8,-'(.-)!49:0;0',!<'/'(.2)=!!"#$%$&'() *+,+%,-&.(=!.,!$3>)/2'=!?','*'! ! >9! ! "',.)33)!+/.,!&'//9! ! ! ! ! ! ! ! ! $!27)(.(!(@>1.22)*!.,!A'/2.'[email protected]),2!06!27)!/)B@./)1),2(!60/!27)!*)5/))!06! ! ! 4'(2)/!06!CD.),D)! ! .,! ! +,-./0,1),2'3!E)'327!CD.),D)(! ! ! ! ! ! CD7003!06!<@>3.D!E)'327! F,.-)/(.29!06!$3>)/2'! ! ! ! ! ! ! ! ! ! ! ! G!"',.)33)!+/.,!&'//9=!HIHI! !! ! ! ! ! ! !"#$%&'$( ! J7./3.,5!*.()'()!.(!'!*.()'()!06!6.(7!D'@()*!>9!',!.,-'(.-)!19:0(A0/)',!A'/'(.2)=! !"#$%$&'()*+,+%,-&.(K!82!L'(!6./(2!*)2)D2)*!.,!?','*'!.,!M07,(0,!N'O)!.,!&',66!#'2.0,'3!<'/O=! $3>)/2'=!.,!$@5@(2!HIPQ=!',*!3.223)!.(!O,0L,!'>0@2!27)!2/',(1.((.0,!06!27.(!A'/'(.2)!.,!?','*'K! ?@//),2!2)(2.,5!60D@()(!0,!27)!*)2)D2.0,!06!!/)*+,+%,-&.(!.,!6.(7!2.((@)(=!/)B@./.,5!3)27'3!2)(2.,5!06! >027!.,6)D2)*!',*!,0,%.,6)D2)*!6.(7K!E0L)-)/=!27)!A'/'(.2)!7'(!'!*)6.,.2.-)!70(2=!27)!03.50D7')2)! L0/1!0'%.1+#)2'%.1+#!',*!2L0!),-./0,1),2'3!(2'5)(!60@,*!.,!L'2)/!',*!()*.1),2!27'2!D/)'2)! 027)/!'-),@)(!60/!*)2)D2.0,K!J)!A/0A0()!27'2!@(.,5!27)!A'/'(.2)!(2'5)(!60@,*!.,!L'2)/!',*! ()*.1),2!',*!27)!'32)/,'2)!L0/1!70(2=!0'%.1+#)2'%.1+#3!'/)!'!/)'(0,'>3)!D01A3)1),2!20!6.(7! ('1A3.,5!',*!L.33!>)!)(A)D.'339!@()6@3!60/!('1A3.,5!.,!'/)'(!L7)/)!6.(7!D033)D2.0,!.(!D7'33),5.,5! 0/!A/07.>.2.-)!*@)!20!-@3,)/'>.3.29!06!27)!6.(7!A0A@3'2.0,(K!8,!'**.2.0,=!0/)2'%.1+#!(@(D)A2.>.3.29!20! !/)*+,+%,-&.(!.(!,02!D0,(.(2),2!'D/0((!27)!(A)D.)(=!L.27!):A)/.1),2(!(70L.,5!(01)!'/)!/)6/'D20/9K! ?7'/'D2)/.;'2.0,!06!27)()!L0/1!A0A@3'2.0,(!L.33!7)3A!2'/5)2!6@2@/)!10,.20/.,5!',*!D0,2/03!
    [Show full text]
  • Annelida: Clitellata: Naididae): a New Non-Indigenous Species for Europe, and Other Non-Native Annelids in the Schelde Estuary
    Aquatic Invasions (2013) Volume 8, Issue 1: 37–44 doi: http://dx.doi.org/10.3391/ai.2013.8.1.04 Open Access © 2013 The Author(s). Journal compilation © 2013 REABIC Research Article Bratislavia dadayi (Michaelsen, 1905) (Annelida: Clitellata: Naididae): a new non-indigenous species for Europe, and other non-native annelids in the Schelde estuary Jan Soors1*, Ton van Haaren2, Tarmo Timm3 and Jeroen Speybroeck1 1 Research Institute for Nature and Forest (INBO), Kliniekstraat 25, 1070 Brussel, Belgium 2 Grontmij, Sciencepark 406, 1090 HC Amsterdam, The Netherlands 3 Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartumaa, Estonia E-mail: [email protected] (JS), [email protected] (TvH), [email protected] (JS), [email protected] (TT) *Corresponding author Received: 18 November 2011 / Accepted: 24 January 2013 / Published online: 21 February 2013 Handling editor: Vadim Panov Abstract For the first time, the freshwater oligochaete species Bratislavia dadayi (Michaelsen, 1905) is recorded in Europe. The species was found at three subtidal stations in the Schelde estuary in Belgium, where it was probably introduced from the Americas. We provide an overview of the species’ nomenclature, diagnostics, distribution, and ecology. Bratislavia dadayi is one of 11 non-indigenous annelids currently known to occur in the Schelde estuary. Key words: alien species; Annelida; Clitellata; Oligochaeta; Polychaeta; Belgium Introduction Annelids, and oligochaetes in particular, are a less-studied group, often overlooked when Over the last 150 years, the number of non- considering alien species. Yet the best studied native species turning up in areas far from their Annelid species, Lumbricus terrestris (L., 1758), original range has increased significantly (Bax et is now considered a widespread invasive species al.
    [Show full text]
  • Species(Annelida:Clitellata: from Lake
    JapaneseJapaneseSociety Society ofSystematicZoologyof Systematic Zoology Species Diversity, 2008, 13, 221-230 A New Phreodrilid Species (Annelida: Clitellata: Phreodrilidae) from Lake Biwa, Japan Patrick Martiniand Akifumi Ohtaka2 i Freshwater Biology, Rayal Beigian institute of IVcttural Sciences, Rue Vtiutier 29, B-1000 Brussels, Belgriunz E-maig:Patrich.Martin@naturalsciences,be 2Department ofIVicitural Sciences, haculty ofEducation, Hirosaki Uhiver:sdy, 1 Bunltyo-cho, Hirosaki, 036-8560 Jic]pan E-mail: [email protected] (Received 24 January 2008; Accepted 15 October 2008) using A new species of Phreodrilidae is described flrom Lake Biwa, Japan, classical morphology and a 658bp long fragment of the mitochondrial cy- "DNA tochrome c oxidase subunit I (COI) gene as a potenttal barcode". Asta- cQpsidrilus ru,uteki sp. nov, is unusual in possessing dorsal bundles each rep- resented by only a single seta, instead of the usual hair and support setae. Among other phreodrilids, this feature has been reported only in IVesodrilus isochaeta Pinder and Brinkhurst, 1997 and insulodrilus butdus Pinder and Brinkhurst, 1997, both described firom Australia. The new species pessesses This is paired spermathecal setae and peeuliar voluminous, pendant penes, the first record of the family in Japan, a circumstance that contradiets the assumed Gondwanan origin of the Phreodrilidae. Because any hypothesis of Asia) a former zoogeographical connection between Japan (or other parts of and Australia is unsupported by any other biogeographical data, it is proba- ble that A. ryuteki was introduced to Japan from the Southern Hemisphere. Conversely, the tubificid Embolocqphalus yanzaguchii (Brinkhurst, 1971) ap- pears to have been introduced into Australia from Japan. Key Words: Clitellata, oligochaetes, Phreodrilidae, AstacQpsidrigus, new species, Lake Biwa.
    [Show full text]
  • Annelida, Oligochaeta) from the Island of Elba (Italy)
    Org. Divers. Evol. 2, 289–297 (2002) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ode Taxonomy and new bacterial symbioses of gutless marine Tubificidae (Annelida, Oligochaeta) from the Island of Elba (Italy) Olav Giere1,*, Christer Erséus2 1 Zoologisches Institut und Zoologisches Museum, Universität Hamburg, Germany 2 Department of Invertebrate Zoology, Swedish Museum of Natural History, Stockholm Received 15 April 2002 · Accepted 9 July 2002 Abstract In shallow sublittoral sediments of the north-west coast of the Island of Elba, Italy, a new gutless marine oligochaete, Olavius ilvae n. sp., was found together with a congeneric but not closely related species, O. algarvensis Giere et al., 1998. In diagnostic features of the genital organs, the new species differs from other Olavius species in having bipartite atria and very long, often folded spermathecae, but lacking penial chaetae.The Elba form of O. algarvensis has some structural differences from the original type described from the Algarve coast (Portugal).The two species from Elba share characteristics not previously reported for gutless oligochaetes: the lumen of the body cavity is unusually constrict- ed and often filled with chloragocytes, and the symbiotic bacteria are often enclosed in vacuoles of the epidermal cells. Regarding the bacterial ultrastructure, the species share three similar morphotypes as symbionts; additionally, in O. algarvensis a rare fourth type was found.The diver- gence of the symbioses in O. algarvensis, and the coincidence in structural
    [Show full text]
  • Phylogenetic and Phenetic Systematics of The
    195 PHYLOGENETICAND PHENETICSYSTEMATICS OF THE OPISTHOP0ROUSOLIGOCHAETA (ANNELIDA: CLITELLATA) B.G.M. Janieson Departnent of Zoology University of Queensland Brisbane, Australia 4067 Received September20, L977 ABSTMCT: The nethods of Hennig for deducing phylogeny have been adapted for computer and a phylogran has been constructed together with a stereo- phylogran utilizing principle coordinates, for alL farnilies of opisthopor- ous oligochaetes, that is, the Oligochaeta with the exception of the Lunbriculida and Tubificina. A phenogran based on the sane attributes conpares unfavourably with the phyLogralnsin establishing an acceptable classification., Hennigrs principle that sister-groups be given equal rank has not been followed for every group to avoid elevation of the more plesionorph, basal cLades to inacceptabl.y high ranks, the 0ligochaeta being retained as a Subclass of the class Clitellata. Three orders are recognized: the LumbricuLida and Tubificida, which were not conputed and the affinities of which require further investigation, and the Haplotaxida, computed. The Order Haplotaxida corresponds preciseLy with the Suborder Opisthopora of Michaelsen or the Sectio Diplotesticulata of Yanaguchi. Four suborders of the Haplotaxida are recognized, the Haplotaxina, Alluroidina, Monil.igastrina and Lunbricina. The Haplotaxina and Monili- gastrina retain each a single superfanily and fanily. The Alluroidina contains the superfamiJ.y All"uroidoidea with the fanilies Alluroididae and Syngenodrilidae. The Lurnbricina consists of five superfaniLies.
    [Show full text]
  • The Relation of Tidal Height and Sediment Type to the Intertidal Distribution of Marine Oligochaetes in Coos Bay, Oregon
    AN ABSTRACT OF THE THESIS OF David Randall Strehiow for the degree of Master of Science in the School of Oceanography presentedon 3 May 1982 Title: The Relation of.Tidal Height and Sediment Type to the Inter- tidal Distributi Redacted for privacy Abstract approved: .J. Gonor The taxonomy of intertidal oligochaetès, and the relationships between oligochaete species distributions, tidal height, and sediment type, were studied in detail for a sand and mud flat in lower Coos Bay, Oregon. Eighteen species, representing four families, were identified. Three species of Enchytraeidae (Marionina vaucheriae, Marionina callianassae, and Marionina gpnori) and one species of Tubificidae (Aktedrilus oregpnensis) are new to science. A preliminary description of a new family, Psamotheriidae, based on Psarrrnotheriuni hastatus n.g. n.sp. is given. Other species present were Marionina vancouverensis, M. sjaelandica, N. subterranea, and N. achaeta (Enchytraeidae); Aktedrilus locyi, Li.mnodriloides monothecus, L. victoriensis, L. vérrucosus, Tubificoides coatesae, and T. pseudogaster (Tubificidae); and Paranais litoralis (Naididae). Individuals of Enchytraeus sp. and Lumbricillus spp. (Enchytraeidae) were found but were not fully mature, and therefore could not be identified to species. Nine of the eighteen species are known oniy from the northeast Pacific littoral zone, indicating the existence of a distinct regthnal oligochaete fauna. Earlier studies of the Enchytraeidae (Coates and Ellis 1981) and Tubificidae (Brinkhurst and Baker 1979) support this conclusion. Distinct oligochaete species assemblages were closely associated with physical habitat types defined by tidal exposure and sediment type. The distributions of species were not correlated with each other or with physical habitat types, however. Tide levels at which large changes in maximum continuous tidal exposure or submergence occur (critical tide levels) are strongly associated with.
    [Show full text]
  • Phylogenetic and Functional Characterization of Symbiotic Bacteria in Gutless Marine Worms (Annelida, Oligochaeta)
    Phylogenetic and functional characterization of symbiotic bacteria in gutless marine worms (Annelida, Oligochaeta) Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften -Dr. rer. nat.- dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Anna Blazejak Oktober 2005 Die vorliegende Arbeit wurde in der Zeit vom März 2002 bis Oktober 2005 am Max-Planck-Institut für Marine Mikrobiologie in Bremen angefertigt. 1. Gutachter: Prof. Dr. Rudolf Amann 2. Gutachter: Prof. Dr. Ulrich Fischer Tag des Promotionskolloquiums: 22. November 2005 Contents Summary ………………………………………………………………………………….… 1 Zusammenfassung ………………………………………………………………………… 2 Part I: Combined Presentation of Results A Introduction .…………………………………………………………………… 4 1 Definition and characteristics of symbiosis ...……………………………………. 4 2 Chemoautotrophic symbioses ..…………………………………………………… 6 2.1 Habitats of chemoautotrophic symbioses .………………………………… 8 2.2 Diversity of hosts harboring chemoautotrophic bacteria ………………… 10 2.2.1 Phylogenetic diversity of chemoautotrophic symbionts …………… 11 3 Symbiotic associations in gutless oligochaetes ………………………………… 13 3.1 Biogeography and phylogeny of the hosts …..……………………………. 13 3.2 The environment …..…………………………………………………………. 14 3.3 Structure of the symbiosis ………..…………………………………………. 16 3.4 Transmission of the symbionts ………..……………………………………. 18 3.5 Molecular characterization of the symbionts …..………………………….. 19 3.6 Function of the symbionts in gutless oligochaetes ..…..…………………. 20 4 Goals of this thesis …….…………………………………………………………..
    [Show full text]
  • Envall Et Al
    Molecular Phylogenetics and Evolution 40 (2006) 570–584 www.elsevier.com/locate/ympev Molecular evidence for the non-monophyletic status of Naidinae (Annelida, Clitellata, TubiWcidae) Ida Envall a,b,c,¤, Mari Källersjö c, Christer Erséus d a Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden b Department of Invertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden c Laboratory of Molecular Systematics, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden d Department of Zoology, Göteborg University, Box 463, SE-405 30 Göteborg, Sweden Received 24 October 2005; revised 9 February 2006; accepted 15 March 2006 Available online 8 May 2006 Abstract Naidinae (former Naididae) is a group of small aquatic clitellate annelids, common worldwide. In this study, we evaluated the phylo- genetic status of Naidinae, and examined the phylogenetic relationships within the group. Sequence data from two mitochondrial genes (12S rDNA and 16S rDNA), and one nuclear gene (18S rDNA), were used. Sequences were obtained from 27 naidine species, 24 species from the other tubiWcid subfamilies, and Wve outgroup taxa. New sequences (in all 108) as well as GenBank data were used. The data were analysed by parsimony and Bayesian inference. The tree topologies emanating from the diVerent analyses are congruent to a great extent. Naidinae is not found to be monophyletic. The naidine genus Pristina appears to be a derived group within a clade consisting of several genera (Ainudrilus, Epirodrilus, Monopylephorus, and Rhyacodrilus) from another tubiWcid subfamily, Rhyacodrilinae. These results dem- onstrate the need for a taxonomic revision: either Ainudrilus, Epirodrilus, Monopylephorus, and Rhyacodrilus should be included within Naidinae, or Pristina should be excluded from this subfamily.
    [Show full text]
  • A Test of Monophyly of the Gutless Phallodrilinae (Oligochaeta
    A test of monophyly of the gutless Phallodrilinae (Oligochaeta, Tubificidae) and the use of a 573-bp region of the mitochondrial cytochrome oxidase I gene in analysis of annelid phylogeny JOHAN A. A. NYLANDER,CHRISTER ERSEÂ US &MARI KAÈ LLERSJOÈ Accepted 7 Setember 1998 Nylander, J. A. A., ErseÂus, C. & KaÈllersjoÈ , M. (1999) A test of monophyly of the gutless Phallodrilinae (Oligochaeta, Tubificidae) and the use of a 573 bp region of the mitochondrial cytochrome oxidase I sequences in analysis of annelid phylogeny. Ð Zoologica Scripta 28, 305±313. A 573-bp region of the mitochondrial gene cytochrome c oxidase subunit I (COI) of two species of Inanidrilus ErseÂus and four species of Olavius ErseÂus (Phallodrilinae, Tubificidae) is used in a parsimony analysis together with a selection of 35 other annelids (including members of Polychaeta, Pogonophora, Aphanoneura, and the clitellate taxa Tubificidae, Enchytraeidae, Naididae, Lumbriculidae, Haplotaxidae, Lumbricidae, Criodrilidae, Branchiobdellida and Hirudinea), and with two molluscs as outgroups. The data support the monophyly of the Olavius and Inanidrilus group, with a monophyletic Inanidrilus. However, parsimony jackknife analyses show that most of the other groups are unsupported by the data set, thus revealing a large amount of homoplasy in the selected gene region. Practically no information is given of within/between family relationships except for a few, closely related species. This suggests that the analysed COI region is not useful, when used alone, for inferring higher level relationships among the annelids. Johan A. A. Nylander, Department of Systematic Zoology, Evolutionary Biology Center, Uppsala University, NorbyvaÈgen 18D, SE-752 36 Uppsala, Sweden. Christer ErseÂus, Department of Invertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden.
    [Show full text]
  • Annelida: Clitellata: Naididae) ⇑ Yingkui Liu A, Steven V
    Molecular Phylogenetics and Evolution 112 (2017) 244–257 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multi-locus phylogenetic analysis of the genus Limnodrilus (Annelida: Clitellata: Naididae) ⇑ Yingkui Liu a, Steven V. Fend b, Svante Martinsson a, Xu Luo a, Akifumi Ohtaka c, Christer Erséus a, a Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden b 17650 Kilkenny Rd., Los Gatos, CA 95030, USA c Department of Natural Science, Faculty of Education, Hirosaki University, Hirosaki, Aomori 036-8560, Japan article info abstract Article history: Limnodrilus species are annelid worms distributed worldwide in various freshwater sediments. The sys- Received 22 December 2016 tematics of Limnodrilus has chiefly been based on morphology, but the genus has not been subject to any Revised 24 March 2017 closer phylogenetic studies over the past two decades. To reconstruct the evolutionary history of Accepted 20 April 2017 Limnodrilus, and to assess the monophyly of this genus and its systematic position within the subfamily Available online 27 April 2017 Tubificinae (Annelida: Clitellata: Naididae), 45 Limnodrilus specimens, representing 19 species, and 35 other naidid species (representing 24 genera) were sampled. The data consisted of sequences of three Keywords: mitochondrial genes (COI, 12S and 16S rDNA) and four nuclear markers (18S and 28S rDNA, Histone 3, Oligochaetes and ITS). The phylogeny was estimated, using Maximum Likelihood and Bayesian analyses of concate- Clitellates Limnodrilus nated data of seven DNA loci, as well as a multi-locus coalescent-based approach. All analyses strongly Phylogeny suggest that Limnodrilus is monophyletic, but only if the morphospecies L.
    [Show full text]
  • Zootaxa 1304: 31–48 (2006) ISSN 1175-5326 (Print Edition) ZOOTAXA 1304 Copyright © 2006 Magnolia Press ISSN 1175-5334 (Online Edition)
    Zootaxa 1304: 31–48 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1304 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) New phallodrilines (Annelida: Clitellata: Tubificidae) from Western Australian groundwater ADRIAN M. PINDER1, STEFAN M. EBERHARD1 & WILLIAM F. HUMPHREYS2 1Science Division, Department of Environment and Conservation, P.O. Box 51, Wanneroo, 6946, Western Aus- tralia, Australia. E-mail: [email protected], [email protected] 2Western Australian Museum, Francis St, Perth, Western Australia, Australia. E-mail: [email protected] Abstract Four species of phallodriline tubificids (Clitellata: Tubificidae) from karst aquifers and caves along the west coast of the state of Western Australia are the first records of this subfamily from non- marine waters in the southern hemisphere. Aktedrilus parvithecatus (Erséus 1978) and Pectinodrilus ningaloo n. sp. occur in anchialine groundwater of Cape Range, along with other taxa of marine affinity. Aktedrilus leeuwinensis n. sp. and Aktedrilus podeilema n. sp. occur in caves of the Leeuwin-Naturaliste Ridge and Perth Basin respectively and are the first taxa of marine lineage to have been collected from these systems. Key words: Clitellata, oligochaete, Tubificidae, Phallodrilinae, stygofauna, cave fauna, groundwater, Western Australia Introduction Surveys over the last decade have revealed the presence of diverse aquatic invertebrate communities in caves and groundwater aquifers of Western Australia (e.g. Eberhard et al. 2005; Eberhard et al. 2004; Humphreys 1999a, 2000; Humphreys & Harvey 2001; Jasinska et al. 1996; Leys et al. 2003). Examination of oligochaetes from these surveys has revealed numerous new undescribed species, including three species of the tubificid subfamily Phallodrilinae, belonging to Aktedrilus and Pectinodrilus, described below.
    [Show full text]