Aldosterone Stimulates Proliferation of Mesangial Cells by Activating Mitogen-Activated Protein Kinase 1/2, Cyclin D1, and Cyclin A

Total Page:16

File Type:pdf, Size:1020Kb

Aldosterone Stimulates Proliferation of Mesangial Cells by Activating Mitogen-Activated Protein Kinase 1/2, Cyclin D1, and Cyclin A Aldosterone Stimulates Proliferation of Mesangial Cells by Activating Mitogen-Activated Protein Kinase 1/2, Cyclin D1, and Cyclin A Yoshio Terada, Takahiko Kobayashi, Hitoshi Kuwana, Hiroyuki Tanaka, Seiji Inoshita, Michio Kuwahara, and Sei Sasaki Department of Nephrology, Tokyo Medical and Dental University, Tokyo, Japan Recently, attention has been focused on the role of aldosterone in the pathophysiology of hypertension and cardiovascular disease. Several clinical and experimental data support the hypothesis that aldosterone contributes to the progression of renal injury. However, the molecular mechanisms of the effects of aldosterone in signal transduction and the cell-cycle progression of mesangial cells are not well known. For determining the signaling pathway of aldosterone in cultured mesangial cells, the effects of aldosterone on the mitogen-activated protein kinase 1/2 (MAPK1/2) pathway and the promoter activities of cyclin D1, cyclin A, and cyclin E were investigated. First, it was shown that the mineralocorticoid receptor (MR) was expressed in rat mesangial cells and glomeruli and that aldosterone stimulated the proliferation of mesangial cells via the MR and MAPK1/2 pathway. Next, it was demonstrated that aldosterone stimulated Ki-RasA, c-Raf kinase, MEK1/2, and MAPK1/2 in rat mesangial cells. Aldosterone induced cyclin D1 and cyclin A promoter activities and protein expressions, as well as the increments of CDK2 and CDK4 kinase activities. The presence of CYP11B2 and 11␤-HSD2 mRNA in rat mesangial cells also was shown. In conclusion, aldosterone seems to exert mainly MR-induced effects that stimulate c-Raf, MEK1/2, MAPK1/2, the activities of CDK2 and CDK4, and the cell-cycle progression in mesangial cells. MR antagonists may serve as a potential therapeutic approach to mesangial proliferative disease. J Am Soc Nephrol 16: 2296–2305, 2005. doi: 10.1681/ASN.2005020129 n recent years, evidence has accumulated that angiotensin- Mesangial cell proliferation is an essential component of converting enzyme (ACE) inhibition or angiotensin II recep- glomerulonephritis. Many cytokines have been shown either to I tor blockage attenuates the decline in renal function and promote or to suppress the cell cycle of mesangial cells in recent structural damage in various kidney diseases (1–5). These benefi- studies (11–13). Because the regulational mechanisms of the cial effects of ACE inhibition and angiotensin II receptor blockage mesangial cell cycle by aldosterone are not well known, learn- are most likely due to the suppression of intrarenal angiotensin II ing more about them would be of great help in developing a concentrations and consequential effects (6). Recent clinical and curative treatment for mesangial proliferative glomerulone- experimental studies have shown that elevated plasma aldoste- phritis. rone levels may also contribute to the progression of cardiac (7) The full complement of hormones and the mechanisms by and renal disease (8–10). In a remnant kidney model, designed which they influence mesangial cell proliferation are not fully using rats that were treated with enalapril and losartan, Greene et appreciated. As in most other cell types, mitogen-activated al. (9) showed a significant suppression of hyperaldosteronism, as protein kinase 1/2 (MAPK1/2; also known as extracellular well as a marked attenuation of proteinuria, hypertension, and signal-regulated kinases 1/2 and p42/p44-MAPK) signaling glomerulosclerosis. In a similar study, Rocha et al. (10) showed mediates the proliferation of mesangial cells through the acti- renoprotective effects of eplerenone and spironolactone in aldo- vation of a number of tyrosine kinase–associated receptors and sterone-stimulated rat models. Chrysostomou and Becker (8) re- ported that the addition of spironolactone to ACE inhibitors mark- G protein–coupled receptors (14,15). Aldosterone was recently edly reduced the urinary excretion rate of protein in chronic renal reported to stimulate MAPK1/2 in cardiac fibroblast (16), epi- failure patients without exerting hemodynamic effects. These thelial cells (17), and renal cortex (18). However, the effects of studies strongly suggested that aldosterone was involved in the aldosterone on mesangial cell signaling, including MAPK1/2, pathogenesis of renal injury. are not known. The growth of mesangial cells and other eukaryotic cells is tightly regulated through a precious balance of positive and Received February 2, 2005. Accepted May 10, 2005. negative regulatory components that confer their effects during the first gap phase (G1) of the cell cycle (19,20). The most critical Published online ahead of print. Publication date available at www.jasn.org. positive-acting components are G1 cyclins (cyclin D, cyclin E, Address correspondence to: Dr. Yoshio Terada, Department of Nephrology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan. and cyclin A) (20,21). These cyclins assemble with cyclin- Phone: 81-3-5803-5214; Fax: 81-3-5803-5215; E-mail: [email protected] dependent kinase (CDK) and phosphorylate the key physio- Copyright © 2005 by the American Society of Nephrology ISSN: 1046-6673/1608-2296 J Am Soc Nephrol 16: 2296–2305, 2005 Aldosterone and Mesangial Cells 2297 logic substrate retinoblastoma protein (22). However, no re- product was predicted to be 382 bp in length. CYP11B2 primer 1 ports have described the effects of aldosterone on the cyclins. (antisense) was 5Ј-GATATCTTCAAAAGAGAGG-3Ј, and primer 2 was Ј Ј The purpose of this study was to investigate the mechanisms 5 -TACTGTTCAGCTAATCACG-3 . The predominant cDNA amplifi- ␤ of aldosterone-induced cell-cycle progression in mesangial cation product was predicted to be 269 bp in length. 11 -HSD2 primer 1 (antisense) was 5Ј-GACTAATGTGAACCTCTGGGAG-3Ј, and primer cells. We attempted to determine the mechanisms of the mes- 2 was 5Ј-TCAGTGCTCGGGGTAGAAGGTG-3Ј. The predominant angial cell proliferation of aldosterone by investigating the cDNA amplification product was predicted to be 269 bp in length. activities of the MAPK cascades, the activities of CDK2 and Glyceraldehyde-3-phosphate-dehydrogenase served as a positive con- CDK4, and cell-cycle analysis in rat mesangial cells. We dem- trol. Primer 1 (antisense) was 5Ј-AGATCCACAACGGATACATT-3Ј, onstrated that aldosterone stimulates MAPK1/2, MEK1/2, and primer 2 was 5Ј-TCCCTCAAGATTGTCAGCAA-3Ј. The predom- c-Raf, Ki-RasA, the activities of CDK2 and CDK4, and the inant cDNA amplification product was predicted to be 309 bp in length. cell-cycle progression in mesangial cells mainly via the mineralocor- The PCR products were size-fractionated by 2% agarose gel electro- ticoid receptor (MR). MR antagonists may serve as a potential ther- phoresis. After electrophoresis and ethidium bromide staining, DNA apeutic approach to mesangial proliferative disease. bands were visualized with an ultraviolet transilluminator (Funakoshi, Tokyo, Japan). The PCR products were sequenced to confirm that these Materials and Methods bands were actually the predicted cDNA. The PCR products were subcloned into a pGEM-TM vector (Promega, Biotec, Madison, WI) and Mesangial Cell Culture and Histologic Examination sequenced as described previously (28). Mesangial cell strains from male Sprague-Dawley rats were isolated and characterized as previously reported (23). Cells were cultured in an RPMI 1640 medium that contained 20% FBS, 100 units/ml penicillin, Reporter Constructs 100 ␮g/ml streptomycin, 5 ␮g/ml insulin, 5 ␮g/ml transferrin, and 5 The cyclin D1 reporter construct used for luciferase assays contained Ϫ ng/ml selenite at 37°C in a 5% CO2 incubator. The cells were seeded in a human cyclin D1 promoter from residues 944 to 139 cloned up- 10-cm dishes for all experiments except the experiment on [3H]thymi- stream of the luciferase gene (gift from Dr. M. Eilers) (29). The cyclin A dine incorporation, which used 24-well dishes. reporter construct contained a human cyclin A promoter from residues Mesangial cells were fixed with 70% ethanol for 10 min for the Ϫ924 to 245 (gift from Dr. J. Sobczak-Thepot) (30), and the cyclin E immunohistologic examination of the MR. The primary antibody was reporter construct contained a human cyclin E promoter from residues anti–human MR purchased from Santa Cruz Biotechnology (Santa Ϫ1195 to 79 cloned upstream of the luciferase gene (gift from Dr. K. Cruz, CA). The secondary antibody was an anti-rabbit IgG FITC-con- Ohtani) (31). Wild-type MEK1 and dominant-negative MEK1 S222A jugated antibody (Sigma, St. Louis, MO). Once fixed, the mesangial were gifts from Dr. E.G. Krebs (32). cells were examined under a confocal laser microscope (Carl Zeiss Japan, Tokyo, Japan) as described previously (24). Transient Transfection and Luciferase Assay Mesangial cells were transfected by the electroporation method with Renal Glomerular Isolation 4 ␮gofthe␤-galactosidase construct and 20 ␮g of the cyclin D1, A, or Male Sprague-Dawley rats that weighed 100 to 150 g were used for E promoter construct. After transfection, the cells were cultured in a these studies. Renal glomerular isolation was performed using previ- medium that contained 20% FCS for 12 h and then changed to either an ously described techniques (25). After incubation in the collagenase FCS(Ϫ) medium that contained an indicated dose of aldosterone or an solution described above, glomeruli were isolated from the cortex using FCS(Ϫ) medium that contained aldosterone for indicated times. Lucif- a grading sieving technique (25). One hundred
Recommended publications
  • Significant Shortest Paths for the Detection of Putative Disease Modules
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.01.019844; this version posted April 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. SIGNIFICANT SHORTEST PATHS FOR THE DETECTION OF PUTATIVE DISEASE MODULES Daniele Pepe1 1Department of Oncology, KU Leuven, LKI–Leuven Cancer Institute, Leuven, Belgium Email address: DP: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.04.01.019844; this version posted April 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Keywords Structural equation modeling, significant shortest paths, pathway analysis, disease modules. Abstract Background The characterization of diseases in terms of perturbated gene modules was recently introduced for the analysis of gene expression data. Some approaches were proposed in literature, but many times they are inductive approaches. This means that starting directly from data, they try to infer key gene networks potentially associated to the biological phenomenon studied. However they ignore the biological information already available to characterize the gene modules. Here we propose the detection of perturbed gene modules using the combination of data driven and hypothesis-driven approaches relying on biological metabolic pathways and significant shortest paths tested by structural equation modeling.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • N-Glycan Trimming in the ER and Calnexin/Calreticulin Cycle
    Neurotransmitter receptorsGABA and A postsynapticreceptor activation signal transmission Ligand-gated ion channel transport GABAGABA Areceptor receptor alpha-5 alpha-1/beta-1/gamma-2 subunit GABA A receptor alpha-2/beta-2/gamma-2GABA receptor alpha-4 subunit GABAGABA receptor A receptor beta-3 subunitalpha-6/beta-2/gamma-2 GABA-AGABA receptor; A receptor alpha-1/beta-2/gamma-2GABA receptoralpha-3/beta-2/gamma-2 alpha-3 subunit GABA-A GABAreceptor; receptor benzodiazepine alpha-6 subunit site GABA-AGABA-A receptor; receptor; GABA-A anion site channel (alpha1/beta2 interface) GABA-A receptor;GABA alpha-6/beta-3/gamma-2 receptor beta-2 subunit GABAGABA receptorGABA-A receptor alpha-2receptor; alpha-1 subunit agonist subunit GABA site Serotonin 3a (5-HT3a) receptor GABA receptorGABA-C rho-1 subunitreceptor GlycineSerotonin receptor subunit3 (5-HT3) alpha-1 receptor GABA receptor rho-2 subunit GlycineGlycine receptor receptor subunit subunit alpha-2 alpha-3 Ca2+ activated K+ channels Metabolism of ingested SeMet, Sec, MeSec into H2Se SmallIntermediateSmall conductance conductance conductance calcium-activated calcium-activated calcium-activated potassium potassium potassiumchannel channel protein channel protein 2 protein 1 4 Small conductance calcium-activatedCalcium-activated potassium potassium channel alpha/beta channel 1 protein 3 Calcium-activated potassiumHistamine channel subunit alpha-1 N-methyltransferase Neuraminidase Pyrimidine biosynthesis Nicotinamide N-methyltransferase Adenosylhomocysteinase PolymerasePolymeraseHistidine basic
    [Show full text]
  • Modulation of NF-Κb Signalling by Microbial Pathogens
    REVIEWS Modulation of NF‑κB signalling by microbial pathogens Masmudur M. Rahman and Grant McFadden Abstract | The nuclear factor-κB (NF‑κB) family of transcription factors plays a central part in the host response to infection by microbial pathogens, by orchestrating the innate and acquired host immune responses. The NF‑κB proteins are activated by diverse signalling pathways that originate from many different cellular receptors and sensors. Many successful pathogens have acquired sophisticated mechanisms to regulate the NF‑κB signalling pathways by deploying subversive proteins or hijacking the host signalling molecules. Here, we describe the mechanisms by which viruses and bacteria micromanage the host NF‑κB signalling circuitry to favour the continued survival of the pathogen. The nuclear factor-κB (NF-κB) family of transcription Signalling targets upstream of NF‑κB factors regulates the expression of hundreds of genes that NF-κB proteins are tightly regulated in both the cyto- are associated with diverse cellular processes, such as pro- plasm and the nucleus6. Under normal physiological liferation, differentiation and death, as well as innate and conditions, NF‑κB complexes remain inactive in the adaptive immune responses. The mammalian NF‑κB cytoplasm through a direct interaction with proteins proteins are members of the Rel domain-containing pro- of the inhibitor of NF-κB (IκB) family, including IκBα, tein family: RELA (also known as p65), RELB, c‑REL, IκBβ and IκBε (also known as NF-κBIα, NF-κBIβ and the NF-κB p105 subunit (also known as NF‑κB1; which NF-κBIε, respectively); IκB proteins mask the nuclear is cleaved into the p50 subunit) and the NF-κB p100 localization domains in the NF‑κB complex, thus subunit (also known as NF‑κB2; which is cleaved into retaining the transcription complex in the cytoplasm.
    [Show full text]
  • Supplementary Table 1. in Vitro Side Effect Profiling Study for LDN/OSU-0212320. Neurotransmitter Related Steroids
    Supplementary Table 1. In vitro side effect profiling study for LDN/OSU-0212320. Percent Inhibition Receptor 10 µM Neurotransmitter Related Adenosine, Non-selective 7.29% Adrenergic, Alpha 1, Non-selective 24.98% Adrenergic, Alpha 2, Non-selective 27.18% Adrenergic, Beta, Non-selective -20.94% Dopamine Transporter 8.69% Dopamine, D1 (h) 8.48% Dopamine, D2s (h) 4.06% GABA A, Agonist Site -16.15% GABA A, BDZ, alpha 1 site 12.73% GABA-B 13.60% Glutamate, AMPA Site (Ionotropic) 12.06% Glutamate, Kainate Site (Ionotropic) -1.03% Glutamate, NMDA Agonist Site (Ionotropic) 0.12% Glutamate, NMDA, Glycine (Stry-insens Site) 9.84% (Ionotropic) Glycine, Strychnine-sensitive 0.99% Histamine, H1 -5.54% Histamine, H2 16.54% Histamine, H3 4.80% Melatonin, Non-selective -5.54% Muscarinic, M1 (hr) -1.88% Muscarinic, M2 (h) 0.82% Muscarinic, Non-selective, Central 29.04% Muscarinic, Non-selective, Peripheral 0.29% Nicotinic, Neuronal (-BnTx insensitive) 7.85% Norepinephrine Transporter 2.87% Opioid, Non-selective -0.09% Opioid, Orphanin, ORL1 (h) 11.55% Serotonin Transporter -3.02% Serotonin, Non-selective 26.33% Sigma, Non-Selective 10.19% Steroids Estrogen 11.16% 1 Percent Inhibition Receptor 10 µM Testosterone (cytosolic) (h) 12.50% Ion Channels Calcium Channel, Type L (Dihydropyridine Site) 43.18% Calcium Channel, Type N 4.15% Potassium Channel, ATP-Sensitive -4.05% Potassium Channel, Ca2+ Act., VI 17.80% Potassium Channel, I(Kr) (hERG) (h) -6.44% Sodium, Site 2 -0.39% Second Messengers Nitric Oxide, NOS (Neuronal-Binding) -17.09% Prostaglandins Leukotriene,
    [Show full text]
  • Activating MAPK1 (ERK2) Mutation in an Aggressive Case of Disseminated Juvenile Xanthogranuloma
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 28), pp: 46065-46070 Research Paper Activating MAPK1 (ERK2) mutation in an aggressive case of disseminated juvenile xanthogranuloma Rikhia Chakraborty1,2, Oliver A. Hampton3,5, Harshal Abhyankar1,2, Daniel J. Zinn1,2, Amanda Grimes1,2, Brooks Skull1,2, Olive Eckstein1,2, Nadia Mahmood6, David A. Wheeler3,5, Dolores Lopez-Terrada1,4, Tricia L. Peters4, John M. Hicks4, Tarek Elghetany4, Robert Krance1,2,7, Poulikos I. Poulikakos8,9,10, Miriam Merad8,9,11, Kenneth L. McClain1,2, Carl E. Allen1,2 and Donald W. Parsons1,2,3,4,5 1Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA 2Department of Pediatrics, Division of Pediatric Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA 3Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA 4Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA 5Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA 6Body and Nuclear Radiology Sections, Texas Children’s Hospital, Houston, TX 77030, USA 7Center for Cell and Gene Therapy, Houston, TX 77030, USA 8Department of Oncological Sciences, Icahn School of Medicine, New York, NY 10029, USA 9Tisch Cancer Institute, Icahn School of Medicine, New York, NY 10029, USA 10Immunology Institute, Icahn School of Medicine, New York, NY 10029, USA 11Department of Dermatology, Icahn School of Medicine, New York, NY 10029, USA Correspondence to: Donald W. Parsons, email: [email protected] Carl E. Allen, email: [email protected] Keywords: juvenile xanthogranuloma, MAPK1, ERK activation, histiocytic disorder, somatic mutation Received: October 13, 2016 Accepted: March 13, 2017 Published: April 29, 2017 Copyright: Chakraborty et al.
    [Show full text]
  • Characterization of the Small Molecule Kinase Inhibitor SU11248 (Sunitinib/ SUTENT in Vitro and in Vivo
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Genetik Characterization of the Small Molecule Kinase Inhibitor SU11248 (Sunitinib/ SUTENT in vitro and in vivo - Towards Response Prediction in Cancer Therapy with Kinase Inhibitors Michaela Bairlein Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ. -Prof. Dr. K. Schneitz Prüfer der Dissertation: 1. Univ.-Prof. Dr. A. Gierl 2. Hon.-Prof. Dr. h.c. A. Ullrich (Eberhard-Karls-Universität Tübingen) 3. Univ.-Prof. A. Schnieke, Ph.D. Die Dissertation wurde am 07.01.2010 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 19.04.2010 angenommen. FOR MY PARENTS 1 Contents 2 Summary ................................................................................................................................................................... 5 3 Zusammenfassung .................................................................................................................................................... 6 4 Introduction .............................................................................................................................................................. 8 4.1 Cancer ..............................................................................................................................................................
    [Show full text]
  • Integrated Molecular Characterisation of the MAPK Pathways in Human
    ARTICLE https://doi.org/10.1038/s42003-020-01552-6 OPEN Integrated molecular characterisation of the MAPK pathways in human cancers reveals pharmacologically vulnerable mutations and gene dependencies 1234567890():,; ✉ Musalula Sinkala 1 , Panji Nkhoma 2, Nicola Mulder 1 & Darren Patrick Martin1 The mitogen-activated protein kinase (MAPK) pathways are crucial regulators of the cellular processes that fuel the malignant transformation of normal cells. The molecular aberrations which lead to cancer involve mutations in, and transcription variations of, various MAPK pathway genes. Here, we examine the genome sequences of 40,848 patient-derived tumours representing 101 distinct human cancers to identify cancer-associated mutations in MAPK signalling pathway genes. We show that patients with tumours that have mutations within genes of the ERK-1/2 pathway, the p38 pathways, or multiple MAPK pathway modules, tend to have worse disease outcomes than patients with tumours that have no mutations within the MAPK pathways genes. Furthermore, by integrating information extracted from various large-scale molecular datasets, we expose the relationship between the fitness of cancer cells after CRISPR mediated gene knockout of MAPK pathway genes, and their dose-responses to MAPK pathway inhibitors. Besides providing new insights into MAPK pathways, we unearth vulnerabilities in specific pathway genes that are reflected in the re sponses of cancer cells to MAPK targeting drugs: a revelation with great potential for guiding the development of innovative therapies.
    [Show full text]
  • Whole Transcriptomic Expression Differences in EBV Immortalized Versus Primary B-Cells
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 12-2010 Whole Transcriptomic Expression Differences in EBV Immortalized versus Primary B-Cells Dolores Huberts College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Biology Commons Recommended Citation Huberts, Dolores, "Whole Transcriptomic Expression Differences in EBV Immortalized versus Primary B- Cells" (2010). Undergraduate Honors Theses. Paper 347. https://scholarworks.wm.edu/honorstheses/347 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Whole Transcriptomic Expression Differences in EBV Immortalized versus Primary B-Cells A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science with Honors in Biology from the College of William and Mary in Virginia By Dolores Huberts Accepted for Honors ________________________________________ Lizabeth A. Allison, Director ________________________________________ Matthew Wawersik ________________________________________ Drew LaMar ________________________________________ Beverly Sher Williamsburg, Virginia December 17, 2010 ABSTRACT The Epstein–Barr Virus (EBV) is a human gamma herpes virus that infects more than 90% of the human population worldwide. It is commonly known in the US as the cause of Infectious Mononucleosis, and around the world as the cause of nasopharyngeal carcinoma and malignant lymphomas such as non-Hodgkin lymphoma, endemic Burkett’s lymphoma and Hodgkin lymphoma. Additionally, the EBV is used to immortalize cells to create cell lines for in-vitro studies.
    [Show full text]
  • Cells Phenotype of Human Tolerogenic Dendritic Glycolytic
    High Mitochondrial Respiration and Glycolytic Capacity Represent a Metabolic Phenotype of Human Tolerogenic Dendritic Cells This information is current as of September 26, 2021. Frano Malinarich, Kaibo Duan, Raudhah Abdull Hamid, Au Bijin, Wu Xue Lin, Michael Poidinger, Anna-Marie Fairhurst and John E. Connolly J Immunol published online 27 April 2015 http://www.jimmunol.org/content/early/2015/04/25/jimmun Downloaded from ol.1303316 Supplementary http://www.jimmunol.org/content/suppl/2015/04/25/jimmunol.130331 http://www.jimmunol.org/ Material 6.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 26, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published April 27, 2015, doi:10.4049/jimmunol.1303316 The Journal of Immunology High Mitochondrial Respiration and Glycolytic Capacity Represent a Metabolic Phenotype of Human Tolerogenic Dendritic Cells Frano Malinarich,*,† Kaibo Duan,† Raudhah Abdull Hamid,*,† Au Bijin,*,† Wu Xue Lin,*,† Michael Poidinger,† Anna-Marie Fairhurst,† and John E.
    [Show full text]
  • Microrna‑186‑5P Downregulation Inhibits Osteoarthritis Development by Targeting MAPK1
    MOLECULAR MEDICINE REPORTS 23: 253, 2021 MicroRNA‑186‑5p downregulation inhibits osteoarthritis development by targeting MAPK1 QING LI1, MINGJIE WU1, GUOFANG FANG1, KUANGWEN LI1, WENGANG CUI1, LIANG LI1, XIA LI2, JUNSHENG WANG2 and YANHONG CANG2 1Department of Orthopedics, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518101; 2Department of Orthopedics, The Second People's Hospital of Huai'an, Huai'an, Jiangsu 223002, P.R. China Received February 26, 2020; Accepted September 11, 2020 DOI: 10.3892/mmr.2021.11892 Abstract. As a chronic degenerative joint disease, the char‑ expression, suggesting that miR‑186‑5p may be used as a acteristics of osteoarthritis (OA) are degeneration of articular potential therapeutic target for OA. cartilage, subchondral bone sclerosis and bone hyperplasia. It has been reported that microRNA (miR)‑186‑5p serves a key Introduction role in the development of various tumors, such as osteosar‑ coma, non‑small‑cell lung cancer cells, glioma and colorectal As a chronic degenerative joint disease, the characteristics cancer. The present study aimed to investigate the effect of of osteoarthritis (OA) are degeneration of articular cartilage, miR‑186‑5p in OA. Different concentrations of IL‑1β were subchondral bone sclerosis and bone hyperplasia (1). OA used to treat the human chondrocyte cell line CHON‑001 affects an estimated 10% of men and 18% of women >60 years to simulate inflammation, and CHON‑001 cell injury was of age, worldwide (2). OA is affected by multiple factors, such assessed by detecting cell viability, apoptosis, caspase‑3 as age, sex, trauma history, obesity, heredity and joint defor‑ activity and the levels of TNF‑α, IL‑8 and IL‑6.
    [Show full text]
  • Activation of Diverse Signalling Pathways by Oncogenic PIK3CA Mutations
    ARTICLE Received 14 Feb 2014 | Accepted 12 Aug 2014 | Published 23 Sep 2014 DOI: 10.1038/ncomms5961 Activation of diverse signalling pathways by oncogenic PIK3CA mutations Xinyan Wu1, Santosh Renuse2,3, Nandini A. Sahasrabuddhe2,4, Muhammad Saddiq Zahari1, Raghothama Chaerkady1, Min-Sik Kim1, Raja S. Nirujogi2, Morassa Mohseni1, Praveen Kumar2,4, Rajesh Raju2, Jun Zhong1, Jian Yang5, Johnathan Neiswinger6, Jun-Seop Jeong6, Robert Newman6, Maureen A. Powers7, Babu Lal Somani2, Edward Gabrielson8, Saraswati Sukumar9, Vered Stearns9, Jiang Qian10, Heng Zhu6, Bert Vogelstein5, Ben Ho Park9 & Akhilesh Pandey1,8,9 The PIK3CA gene is frequently mutated in human cancers. Here we carry out a SILAC-based quantitative phosphoproteomic analysis using isogenic knockin cell lines containing ‘driver’ oncogenic mutations of PIK3CA to dissect the signalling mechanisms responsible for oncogenic phenotypes induced by mutant PIK3CA. From 8,075 unique phosphopeptides identified, we observe that aberrant activation of PI3K pathway leads to increased phosphorylation of a surprisingly wide variety of kinases and downstream signalling networks. Here, by integrating phosphoproteomic data with human protein microarray-based AKT1 kinase assays, we discover and validate six novel AKT1 substrates, including cortactin. Through mutagenesis studies, we demonstrate that phosphorylation of cortactin by AKT1 is important for mutant PI3K-enhanced cell migration and invasion. Our study describes a quantitative and global approach for identifying mutation-specific signalling events and for discovering novel signalling molecules as readouts of pathway activation or potential therapeutic targets. 1 McKusick-Nathans Institute of Genetic Medicine and Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 North Broadway, BRB 527, Baltimore, Maryland 21205, USA.
    [Show full text]