Phylogeny and Taxonomic Revision of Microascaceae with Emphasis on Synnematous Fungi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sequencing Abstracts Msa Annual Meeting Berkeley, California 7-11 August 2016
M S A 2 0 1 6 SEQUENCING ABSTRACTS MSA ANNUAL MEETING BERKELEY, CALIFORNIA 7-11 AUGUST 2016 MSA Special Addresses Presidential Address Kerry O’Donnell MSA President 2015–2016 Who do you love? Karling Lecture Arturo Casadevall Johns Hopkins Bloomberg School of Public Health Thoughts on virulence, melanin and the rise of mammals Workshops Nomenclature UNITE Student Workshop on Professional Development Abstracts for Symposia, Contributed formats for downloading and using locally or in a Talks, and Poster Sessions arranged by range of applications (e.g. QIIME, Mothur, SCATA). 4. Analysis tools - UNITE provides variety of analysis last name of primary author. Presenting tools including, for example, massBLASTer for author in *bold. blasting hundreds of sequences in one batch, ITSx for detecting and extracting ITS1 and ITS2 regions of ITS 1. UNITE - Unified system for the DNA based sequences from environmental communities, or fungal species linked to the classification ATOSH for assigning your unknown sequences to *Abarenkov, Kessy (1), Kõljalg, Urmas (1,2), SHs. 5. Custom search functions and unique views to Nilsson, R. Henrik (3), Taylor, Andy F. S. (4), fungal barcode sequences - these include extended Larsson, Karl-Hnerik (5), UNITE Community (6) search filters (e.g. source, locality, habitat, traits) for 1.Natural History Museum, University of Tartu, sequences and SHs, interactive maps and graphs, and Vanemuise 46, Tartu 51014; 2.Institute of Ecology views to the largest unidentified sequence clusters and Earth Sciences, University of Tartu, Lai 40, Tartu formed by sequences from multiple independent 51005, Estonia; 3.Department of Biological and ecological studies, and for which no metadata Environmental Sciences, University of Gothenburg, currently exists. -
Secondary Metabolites of Marine-Derived Fungi: Natural Product Chemistry and Biological Activity
Secondary Metabolites of Marine-Derived Fungi: Natural Product Chemistry and Biological Activity D i s s e r t a t i on zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Ahmed Abdel-Azim Mahdy Abdel-Lateff aus Ägypten Bonn 2004 Angefertig mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Referentin: Prof. Dr. G. M. König 2. Referent: PD. Dr. W. Knöss Vorveröffentlichungen der Dissertation /In Advance Publications of the Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Mathematisch- Naturwissenschaftlichen Fakultät, vertreten durch die Mentorin/Betreuerin der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Parts of the results of this study have been published in advance by permission of the Mathematisch-Naturwissenschaftlichen Fakultät, represented by the supervisor of this study: Publikationen /Research Papers Ahmed Abdel-Lateff, Gabriele M. König, Katja M. Fisch, Ulrich Höller, Peter G. Jones, and Anthony D. Wright; New Antioxidant Hydroquinone Derivatives from the Algicolous Marine Fungus Acremonium sp. J. Nat. Prod. 2002, 65, 1605-1611. Ahmed Abdel-Lateff, Christine Klemke, Gabriele M. König, and Anthony D. Wright; Two New Xanthone Derivatives from the Algicolous Marine Fungus Wardomyces anomalus J. Nat. Prod. 2003, 66, 706-708. Ahmed Abdel-Lateff, Katja M. Fisch, Gabriele M. König, and A. D. Wright; A New Antioxidant Isobenzofuranone Derivative from the Algicolous Marine Fungus Epicoccum sp. Planta Med. 2003, 69, 831-834. Ahmed Abdel-Lateff, Stefan Kehraus, Anja Krick, Anthony D. Wright, and Gabriele M. König, Novel Sorbicillinoid Derivatives from the Marine Fungus Trichoderma viride Associated with the Caribbean Sponge Agelas dispar, in preparation. -
Complete Issue
J. Fernholz and Q.E. Phelps – Influence of PIT tags on growth and survival of banded sculpin (Cottus carolinae): implications for endangered grotto sculpin (Cottus specus). Journal of Cave and Karst Studies, v. 78, no. 3, p. 139–143. DOI: 10.4311/2015LSC0145 INFLUENCE OF PIT TAGS ON GROWTH AND SURVIVAL OF BANDED SCULPIN (COTTUS CAROLINAE): IMPLICATIONS FOR ENDANGERED GROTTO SCULPIN (COTTUS SPECUS) 1 2 JACOB FERNHOLZ * AND QUINTON E. PHELPS Abstract: To make appropriate restoration decisions, fisheries scientists must be knowledgeable about life history, population dynamics, and ecological role of a species of interest. However, acquisition of such information is considerably more challenging for species with low abundance and that occupy difficult to sample habitats. One such species that inhabits areas that are difficult to sample is the recently listed endangered, cave-dwelling grotto sculpin, Cottus specus. To understand more about the grotto sculpin’s ecological function and quantify its population demographics, a mark-recapture study is warranted. However, the effects of PIT tagging on grotto sculpin are unknown, so a passive integrated transponder (PIT) tagging study was performed. Banded sculpin, Cottus carolinae, were used as a surrogate for grotto sculpin due to genetic and morphological similarities. Banded sculpin were implanted with 8.3 3 1.4 mm and 12.0 3 2.15 mm PIT tags to determine tag retention rates, growth, and mortality. Our results suggest sculpin species of the genus Cottus implanted with 8.3 3 1.4 mm tags exhibited higher growth, survival, and tag retention rates than those implanted with 12.0 3 2.15 mm tags. -
Diversity of Wood-Inhabiting Fungi in Woodpecker Nest Cavities In
Acta Mycologica DOI: 10.5586/am.1126 ORIGINAL RESEARCH PAPER Publication history Received: 2019-03-15 Accepted: 2019-04-23 Diversity of wood-inhabiting fungi in Published: 2019-06-28 woodpecker nest cavities in southern Handling editor Wojciech Pusz, Faculty of Life Sciences and Technology, Poland Wrocław University of Environmental and Life Sciences, Poland Robert Jankowiak1*, Michał Ciach2, Piotr Bilański3, Riikka 4 Authors’ contributions Linnakoski RJ and MC designed the study; 1 Department of Forest Pathology, Mycology and Tree Physiology, Institute of Forest Ecosystem RJ performed the phenotypic Protection, University of Agriculture in Krakow, 29 Listopada 46, 31-425 Krakow, Poland and molecular characterization, 2 Department of Forest Biodiversity, Institute of Forest Ecology and Silviculture, University of wrote the original draft; MC Agriculture in Krakow, 29 Listopada 46, 31-425 Krakow, Poland collected samples, wrote the 3 Department of Forest Protection, Entomology and Forest Climatology, Institute of Forest original draft; PB performed Ecosystem Protection, University of Agriculture in Krakow, 29 Listopada 46, 31-425 Krakow, the phenotypic and molecular Poland characterization; RL edited the 4 Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland original draft * Corresponding author. Email: [email protected] Funding This study was funded by the National Science Center, Abstract Poland (contract No. UMO- 510 2014/15/NZ9/00560). This Globally, tree-holes are important ecological component of forest and woodlands. research was also supported Numerous microorganisms rely on cavities, both natural and those excavated by by statutory research activity primary cavity nesting birds, mainly by woodpeckers, for their survival and reproduc- founds by Minister of Science and Higher Education assigned tion. -
Savoryellales (Hypocreomycetidae, Sordariomycetes): a Novel Lineage
Mycologia, 103(6), 2011, pp. 1351–1371. DOI: 10.3852/11-102 # 2011 by The Mycological Society of America, Lawrence, KS 66044-8897 Savoryellales (Hypocreomycetidae, Sordariomycetes): a novel lineage of aquatic ascomycetes inferred from multiple-gene phylogenies of the genera Ascotaiwania, Ascothailandia, and Savoryella Nattawut Boonyuen1 Canalisporium) formed a new lineage that has Mycology Laboratory (BMYC), Bioresources Technology invaded both marine and freshwater habitats, indi- Unit (BTU), National Center for Genetic Engineering cating that these genera share a common ancestor and Biotechnology (BIOTEC), 113 Thailand Science and are closely related. Because they show no clear Park, Phaholyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120, Thailand, and Department of relationship with any named order we erect a new Plant Pathology, Faculty of Agriculture, Kasetsart order Savoryellales in the subclass Hypocreomyceti- University, 50 Phaholyothin Road, Chatuchak, dae, Sordariomycetes. The genera Savoryella and Bangkok 10900, Thailand Ascothailandia are monophyletic, while the position Charuwan Chuaseeharonnachai of Ascotaiwania is unresolved. All three genera are Satinee Suetrong phylogenetically related and form a distinct clade Veera Sri-indrasutdhi similar to the unclassified group of marine ascomy- Somsak Sivichai cetes comprising the genera Swampomyces, Torpedos- E.B. Gareth Jones pora and Juncigera (TBM clade: Torpedospora/Bertia/ Mycology Laboratory (BMYC), Bioresources Technology Melanospora) in the Hypocreomycetidae incertae -
Redefining Microascus, Scopulariopsis and Allied Genera
Persoonia 36, 2016: 1–36 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158516X688027 Redefining Microascus, Scopulariopsis and allied genera M. Sandoval-Denis1, J. Gené1, D.A. Sutton2, J.F. Cano-Lira1, G.S. de Hoog3, C.A. Decock4, N.P. Wiederhold 2, J. Guarro1 Key words Abstract The genera Microascus and Scopulariopsis comprise species commonly isolated from soil, decaying plant material and indoor environments. A few species are also recognised as opportunistic pathogens of insects Ascomycota and animals, including humans. In the past, the taxonomy of these fungi has been based on morphology only. With Microascaceae the aim to clarify the taxonomy and phylogeny of these fungi, we studied a large set of clinical and environmental Microascales isolates, including the available ex-type strains of numerous species, by means of morphological, physiological and multigene phylogeny molecular analyses. Species delineation was assessed under the Genealogical Phylogenetic Species Recogni- taxonomy tion (GCPSR) criterion using DNA sequence data of four loci (ITS region, and fragments of rDNA LSU, translation elongation factor 1-α and β-tubulin). The genera Microascus and Scopulariopsis were found to be separated in two distinct lineages. The genus Pithoascus is reinstated and the new genus Pseudoscopulariopsis is erected, typified by P. schumacheri. Seven new species of Microascus and one of Scopulariopsis are described, namely M. alveolaris, M. brunneosporus, M. campaniformis, M. expansus, M. intricatus, M. restrictus, M. verrucosus and Scopulariopsis cordiae. Microascus trigonosporus var. macrosporus is accepted as a species distinct from M. tri go nosporus. Nine new combinations are introduced. Microascus cinereus, M. -
Monilochaetes and Allied Genera of the Glomerellales, and a Reconsideration of Families in the Microascales
available online at www.studiesinmycology.org StudieS in Mycology 68: 163–191. 2011. doi:10.3114/sim.2011.68.07 Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales M. Réblová1*, W. Gams2 and K.A. Seifert3 1Department of Taxonomy, Institute of Botany of the Academy of Sciences, CZ – 252 43 Průhonice, Czech Republic; 2Molenweg 15, 3743CK Baarn, The Netherlands; 3Biodiversity (Mycology and Botany), Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada *Correspondence: Martina Réblová, [email protected] Abstract: We examined the phylogenetic relationships of two species that mimic Chaetosphaeria in teleomorph and anamorph morphologies, Chaetosphaeria tulasneorum with a Cylindrotrichum anamorph and Australiasca queenslandica with a Dischloridium anamorph. Four data sets were analysed: a) the internal transcribed spacer region including ITS1, 5.8S rDNA and ITS2 (ITS), b) nc28S (ncLSU) rDNA, c) nc18S (ncSSU) rDNA, and d) a combined data set of ncLSU-ncSSU-RPB2 (ribosomal polymerase B2). The traditional placement of Ch. tulasneorum in the Microascales based on ncLSU sequences is unsupported and Australiasca does not belong to the Chaetosphaeriaceae. Both holomorph species are nested within the Glomerellales. A new genus, Reticulascus, is introduced for Ch. tulasneorum with associated Cylindrotrichum anamorph; another species of Reticulascus and its anamorph in Cylindrotrichum are described as new. The taxonomic structure of the Glomerellales is clarified and the name is validly published. As delimited here, it includes three families, the Glomerellaceae and the newly described Australiascaceae and Reticulascaceae. Based on ITS and ncLSU rDNA sequence analyses, we confirm the synonymy of the anamorph generaDischloridium with Monilochaetes. -
Fungi of Forests: Examining the Diversity of Root- Associated Fungi and Their Responses to Acid Deposition Donald Jay Nelsen University of Arkansas, Fayetteville
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2017 Fungi of Forests: Examining the Diversity of Root- associated Fungi and Their Responses to Acid Deposition Donald Jay Nelsen University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Environmental Indicators and Impact Assessment Commons, Environmental Microbiology and Microbial Ecology Commons, Forest Biology Commons, Fungi Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Nelsen, Donald Jay, "Fungi of Forests: Examining the Diversity of Root-associated Fungi and Their Responses to Acid Deposition" (2017). Theses and Dissertations. 2543. http://scholarworks.uark.edu/etd/2543 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Fungi of Forests: Examining the Diversity of Root-associated Fungi and Their Responses to Acid Deposition A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology by Donald Nelsen Minnesota State University, Mankato Bachelor of Science in Biology, 2010 Louisiana State University Master of Science in Plant Health, 2013 December 2017 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ____________________________________ Dr. Steven Lee Stephenson Dissertation Director ____________________________________ ____________________________________ Dr. Fred Spiegel Dr. Burt H. Bluhm Committee Member Committee Member ____________________________________ Dr. Ravi Damodar Barabote Committee Member Abstract Global importance of forests is difficult to overestimate, given their role in oxygen production, ecological roles in nutrient cycling and supporting numerous living species, and economic value for industry and as recreational zones. -
Fungal Planet Description Sheets: 625–715
Persoonia 39, 2017: 270–467 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2017.39.11 Fungal Planet description sheets: 625–715 P.W. Crous1,2, M.J. Wingfield3, T.I. Burgess4, A.J. Carnegie5, G.E.St.J. Hardy 4, D. Smith6, B.A. Summerell7, J.F. Cano-Lira8, J. Guarro8, J. Houbraken1, L. Lombard1, M.P. Martín9, M. Sandoval-Denis1,69, A.V. Alexandrova10, C.W. Barnes11, I.G. Baseia12, J.D.P. Bezerra13, V. Guarnaccia1, T.W. May14, M. Hernández-Restrepo1, A.M. Stchigel 8, A.N. Miller15, M.E. Ordoñez16, V.P. Abreu17, T. Accioly18, C. Agnello19, A. Agustin Colmán17, C.C. Albuquerque20, D.S. Alfredo18, P. Alvarado21, G.R. Araújo-Magalhães22, S. Arauzo23, T. Atkinson24, A. Barili16, R.W. Barreto17, J.L. Bezerra25, T.S. Cabral 26, F. Camello Rodríguez27, R.H.S.F. Cruz18, P.P. Daniëls28, B.D.B. da Silva29, D.A.C. de Almeida 30, A.A. de Carvalho Júnior 31, C.A. Decock 32, L. Delgat 33, S. Denman 34, R.A. Dimitrov 35, J. Edwards 36, A.G. Fedosova 37, R.J. Ferreira 38, A.L. Firmino39, J.A. Flores16, D. García 8, J. Gené 8, A. Giraldo1, J.S. Góis 40, A.A.M. Gomes17, C.M. Gonçalves13, D.E. Gouliamova 41, M. Groenewald1, B.V. Guéorguiev 42, M. Guevara-Suarez 8, L.F.P. Gusmão 30, K. Hosaka 43, V. Hubka 44, S.M. Huhndorf 45, M. Jadan46, Ž. Jurjević47, B. Kraak1, V. Kučera 48, T.K.A. -
1 the Genomic Study of an Environmental Isolate of Scedosporium Apiospermum Shows
1 The genomic study of an environmental isolate of Scedosporium apiospermum shows 2 its metabolic potential to degrade hydrocarbons. 3 Morales M. Laura Tatiana1, Gonzalez G. Laura Natalia2, Restrepo Silvia3, Vives F. Martha 4 Josefina 4 5 1 Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia 6 ([email protected]) 7 2 Universidad de los Andes, Bogotá, Colombia ([email protected]) 8 3 Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia 9 ([email protected]) 10 4 Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia 11 ([email protected]) 12 13 Keywords: bioremediation; metabolic pathway; hydrocarbons; illumina – solexa 14 sequencing 15 16 17 1 1 ABSTRACT 2 Crude oil contamination of soils and waters is a worldwide problem, which has been 3 actively addressed in recent years. Sequencing genomes of microorganisms involved in the 4 degradation of hydrocarbons have allowed the identification of several promoters, genes 5 and degradation pathways of these contaminants, allowing a better understanding of the 6 functional dynamics of microbial degradation. Here, we report a first draft of the 44.2 Mbp 7 genome assembly of an environmental strain of the fungus Scedosporium apiospermum. 8 The assembly consisted of 186 high-quality DNA scaffolds with 1.62 % of sequence 9 repeats identified. A total of 11,195 protein-coding genes were predicted including a 10 diverse group of gene families involved in hydrocarbon degradation pathways like 11 dioxygenases and cytochrome P450 monooxygenases. The metabolic pathways identified 12 in the genome can potentially degrade hydrocarbons like chloroalkane/alkene, 13 chorocyclohexane and chlorobenzene, benzoate, aminobenzoate, fluorobenzoate, toluene, 14 caprolactam, geraniol, naphthalene, styrene, atrazine, dioxin, xylene, ethylbenzene and 15 polycyclic aromatic hydrocarbons. -
Rhizosphere Soil Fungal Communities of Aluminum-Tolerant and -Sensitive Soybean Genotypes Respond Differently to Aluminum Stress in an Acid Soil
Research Collection Journal Article Rhizosphere Soil Fungal Communities of Aluminum-Tolerant and -Sensitive Soybean Genotypes Respond Differently to Aluminum Stress in an Acid Soil Author(s): Shi, Qihan; Liu, Yuantai; Shi, Aoqing; Cai, Zhandong; Nian, Hai; Hartmann, Martin; Lian, Tengxiang Publication Date: 2020-05-28 Permanent Link: https://doi.org/10.3929/ethz-b-000421447 Originally published in: Frontiers in Microbiology 11, http://doi.org/10.3389/fmicb.2020.01177 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library fmicb-11-01177 May 27, 2020 Time: 16:11 # 1 ORIGINAL RESEARCH published: 28 May 2020 doi: 10.3389/fmicb.2020.01177 Rhizosphere Soil Fungal Communities of Aluminum-Tolerant and -Sensitive Soybean Genotypes Respond Differently to Aluminum Stress in an Acid Soil Qihan Shi1,2, Yuantai Liu1,2, Aoqing Shi1,2, Zhandong Cai1,2, Hai Nian1,2*, Martin Hartmann3 and Tengxiang Lian1,2* 1 The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China, 2 The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China, 3 Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland Different soybean genotypes can differ in their tolerance toward aluminum stress depending on their rhizosphere-inhabiting microorganisms. However, there is limited Edited by: understanding of the response of fungal communities to different aluminum Xiangming Xu, concentrations across different genotypes. Here, we used metabarcoding of fungal NIAB EMR, United Kingdom ribosomal markers to assess the effects of aluminum stress on the rhizosphere Reviewed by: Jay Prakash Verma, fungal community of aluminum-tolerant and aluminum-sensitive soybean genotypes. -
Phylogeny and Taxonomic Revision of Kernia and Acaulium
www.nature.com/scientificreports OPEN Phylogeny and taxonomic revision of Kernia and Acaulium Lei Su1,2, Hua Zhu1,2, Yongchun Niu3, Yaxi Guo1,2, Xiaopeng Du1,2, Jianguo Guo1,2, Ling Zhang1,2 & Chuan Qin1,2* The genera Kernia and Acaulium comprise species commonly isolated from dung, soil, decaying meat and skin of animal. The taxonomy of these fungi has been controversial and relies mainly on morphological criteria. With the aim to clarify the taxonomy and phylogeny of these fungi, we studied all the available ex-type strains of a large set of species by means of morphological and molecular phylogenetic analyses. Phylogenetic analysis of the partial internal transcribed spacer region (ITS) and the partial 28S rDNA (LSU) showed that the genera Kernia and Acaulium were found to be separated in two distinct lineages in Microascaceae. Based on morphological characters and multilocus phylogenetic analysis of the ITS, LSU, translation elongation factor 1α and β-tubulin genes, the species in Kernia and Acaulium were well separated and two new combinations are introduced, i.e. Acaulium peruvianum and Acaulium retardatum, a new species of Kernia is described, namely Kernia anthracina. Descriptions of the phenotypic features and molecular phylogeny for identifcation are discussed for accepted species in two genera in this study. Kernia was erected by Nieuwland 1 for a group of fungi with cleistothecial, with Kernia nitida (Saccardo) Nieu- wland as type species frstly and subsequent species have all been characterized by fascicled hair-like ascocarp appendages and reddish-brown to brown ascospores. In 1971, the ascomycete genus Kernia is emended to revised concepts by Malloch 2.