States of Matter

Total Page:16

File Type:pdf, Size:1020Kb

States of Matter Educator Guide: States of Matter This document is a resource for teachers whose classes are participating in the Museum of Science’s States of Matter Program. The information in this document may be used as a classroom resource and/or as background information for the teacher concerning the subject of the states of matter. Table of Contents: Vocabulary List……………………………………………………………………………2 Further Background Reading…………………………………………………………...6 Suggested Classroom Materials……………………………………………………... 7 Activity Description………………………………………………………………………8 PowerPoint Description………………………………………………………………… 9 1 Vocabulary List This is a list of common terms that teachers may wish to be familiar with for the States of Matter program. This list is also a suggestion of vocabulary for students attending the program to learn, though prior study of these words is not required for student participation. Air – the collection of breathable gases that makes up the lower portion of the Earth’s atmosphere. The main components of air are Nitrogen (78%), Oxygen (21%), and other trace gases (1% ‐ Aragon, Carbon dioxide, Neon, Helium, etc…). Boiling – the transition from a liquid to a gas. Boiling is a much more energetic process than evaporation and happens throughout the liquid, not just at the surface. Boiling only occurs when a substance has reached its boiling point. Celsius – the unit of measurement for the most common temperature scale used throughout the world today. This is the temperature scale also used frequently by scientists.1 Condensing – the transition from a gas to a liquid. The temperature at which this change occurs is called the condensation point. Cryogenic Liquids – any liquid that exists at a really low temperature. The table below lists the properties of a variety of elements that form liquids at very low temperatures. Although it is not a cryogenic liquid, water is also listed for comparison: Element Fahrenheit Celsius Freezes/Melts Condenses/Boils Freezes/Melts Condenses/Boils Water (not an 32 212 0 100 element but a molecule) Xenon -169 -162 -112 -108 Argon -310 -302 -190 -186 Nitrogen -346 -320 -210 -196 Oxygen -362 -297 -219 -183 Neon -416 -410 -249 -246 Hydrogen -434 -421 -259 -252 Helium -454 -452 -270 -269 1 The original Celsius scale was based on two significant temperatures related to water: its freezing point was assigned as 0°C and its boiling point became 100°C. 2 Cryogenics – the science of extremely low temperatures, typically well under ‐ 50 ˚ Fahrenheit Density – a measure of how closely packed together the atoms and molecules of a substance are. Density = mass/ volume. A less dense material will always float in denser material (like wood in water or helium in air). Dry Ice – the solid form of Carbon dioxide (CO2)2 Evaporating – the process when the surface of a liquid transforms into a gas. Evaporation is a gradual process and can happen at any temperature even at temperatures below a substance’s boiling point. Farenheit – the temperature scale that is used in the United States and a handful of other countries. Unlike the Celsius and Kelvin scales, the Fahrenheit scale does not use the chemical properties of different substances as reference points. Freezing – the transition from a liquid to a solid. The temperature at which this change occurs is called the freezing point. Gas – a state of matter that does not have either a definite shape or a definite volume. Gases will expand to take up the shape and volume of their container. Heat – a flow of thermal energy from one system to another due to a difference in temperature Kelvin – a temperature scale that is often used for very cold or very hot substances. The Kelvin (there is no degree marker used) is based on an absolute temperature scale where absolute zero (see definition) is defined as 0 Kelvin. Liquid – a state of matter that has a definite volume but not a definite shape. Liquids flow easily and take on the shape of their container. Mass – a measure of the amount of matter in a substance or material 2 At standard pressure, carbon dioxide will transform from a gas to a solid at -78°C or -109°F. This process of transforming from a gaseous state to a solid state is called deposition. The reverse (solid to gas) is called sublimation. Dry ice does not occur naturally on Earth because of the low temperatures involved, but any substance colder than -78°C (including liquid nitrogen) can be used to change carbon dioxide gas into a solid. 3 Matter – anything that has mass and volume. All objects in the visible universe are composed of matter. Melting – the transition from a solid to a liquid. The temperature at which this change occurs is called the melting point. Molecule – a grouping of at least two atoms held together by chemical bonds. Water is an example of a molecule (H2O ‐ 2 hydrogen atoms bonded to an oxygen atom). Nitrogen – an element that is the main component of the Earth’s atmosphere (about 78%) and is found bonded to other elements in various compounds found here on Earth. We use nitrogen in its liquid form during the program and as a liquid it is clear and colorless.3 Plasma – a state of matter that is composed of ionized gas. An ionized gas is a gas which has lost electrons (negative charges found in the atom). Although plasmas are rare on Earth (lightning is an example), it is the most common visible form of matter found in the universe. The Sun and other stars are made of plasma. Pressure – the amount of force (push or pull) acting on a given surface area. Pressure = force/ area. The greater the force acting on a surface, the greater the pressure. The liquids and gases that we use in the program all exert pressure on their containers. Solid – a state of matter that has both a definite shape and a definite volume States of Matter (or Phases of Matter) – the physical forms of matter. Here on Earth the most common states of matter are solids, liquids, and gases. Plasma is much rarer on Earth but is found almost everywhere else in the universe. A variety of additional states of matter also exist, but they form under extreme conditions and often need to be created in the laboratory. 3 The boiling point of liquid nitrogen is -196 °Celsius, -320 ° Fahrenheit, or 77 Kelvin so nitrogen must be at this temperature or lower to exist in its liquid from. These temperatures are too low to exist naturally on Earth, so liquid nitrogen must be manufactured. 4 Superconductor – a material that under the right conditions can act as a near perfect conductor of electricity4 Temperature – a measure of the relative hotness or coolness of a substance. The temperature as measured by a thermometer is really a measure of the average moving energy (kinetic energy) of atoms and molecules in a system. Note that this is a subtly different idea than simply measuring how much heat is in a substance. Thermal Energy – the energy associated with the random motion of atoms and molecules Volume – the amount of space that a solid, liquid, gas, or plasma occupies 4 A few materials can become superconductors when they reach a low enough temperature. The superconductor we use in the program is a manmade ceramic. Using liquid nitrogen, we are able to cool the disk below the needed temperature. When such a material becomes a superconductor, there are two main effects. First, a superconductor is a perfect conductor of electricity. Second, the material will push away all magnetic fields. It is this second property that allows us to repel and levitate a small magnet above our superconducting disk. But once the temperature of the disk goes back up, it stops being a superconductor and the magnet falls back down. 5 Further Background Reading This is a suggested reading list for teachers looking to improve their understanding of the states of matter, as well as a resource for classroom ideas on the subject. Curricula Changes of State – Insights: An Elementary Hands-on Inquiry Science Curriculum by Educational Development Center, Inc. Kendall/ Hunt Publishing Company. Dubuque, IA. 2003. Inquiry in Action: Investigating Matter through Inquiry by James H. Kessler and Patricia M. Galvan. American Chemical Society. Also available for free online at: http://www.inquiryinaction.org/ Links PBS NOVA: Absolute Zero Website – http://www.pbs.org/wgbh/nova/zero/ American Institute of Physics: Superconductivity – http://www.aip.org/history/mod/superconductivity/ Rader’s Chem4Kids: States of Matter – http://www.chem4kids.com/files/matter_intro.html Exploratorium: Outrageous Ooze (make a very interesting material called oobleck in the classroom and try and classify its state of matter) – http://www.exploratorium.edu/science_explorer/ooze.html Collaborative Learning: States of Matter Card Games – http://www.collaborativelearning.org/statesofmatter.pdf http://www.collaborativelearning.org/changingstates.pdf 6 Classroom Materials Below are some suggestions for books, videos, and websites to help students increase their understanding of the states of matter. Books Matter – Eyewitness Books by Christopher Cooper. Dorling Kindersley Publishing, Inc. New York, NY. 2000. The Story of Nitrogen by Karen Fitzgerald. Franklin Watts. New York, NY. 1997. States of Matter – The Library of Physical Science by Suzanne Slade. The Rosen Publishing Group, Inc. New York, NY. 2007. States of Matter by Robert Snedden. Heinemann Library. Chicago. 2001. Videos Absolute Zero (DVD). PBS NOVA. 2008. Also available to watch online: http://www.pbs.org/wgbh/nova/zero/program.html States of Matter by Robert Snedden. Heinemann Library. Chicago. 2001.
Recommended publications
  • Companion Q&A Fact Sheet: What Mars Reveals About Life in Our
    What Mars Reveals about Life in Our Universe Companion Q&A Fact Sheet Educators from the Smithsonian’s Air and Space and Natural History Museums assembled this collection of commonly asked questions about Mars to complement the Smithsonian Science How webinar broadcast on March 3, 2021, “What Mars Reveals about Life in our Universe.” Continue to explore Mars and your own curiosities with these facts and additional resources: • NASA: Mars Overview • NASA: Mars Robotic Missions • National Air and Space Museum on the Smithsonian Learning Lab: “Wondering About Astronomy Together” Guide • National Museum of Natural History: A collection of resources for teaching about Antarctic Meteorites and Mars 1 • Smithsonian Science How: “What Mars Reveals about Life in our Universe” with experts Cari Corrigan, L. Miché Aaron, and Mariah Baker (aired March 3, 2021) Mars Overview How long is Mars’ day? Mars takes 24 hours and 38 minutes to spin around once, so its day is very similar to Earth’s. How long is Mars’ year? Mars takes 687 days, almost two Earth years, to complete one orbit around the Sun. How far is Mars from Earth? The distance between Earth and Mars changes as both planets move around the Sun in their orbits. At its closest, Mars is just 34 million miles from the Earth; that’s about one third of Earth’s distance from the Sun. On the day of this program, March 3, 2021, Mars was about 135 million miles away, or four times its closest distance. How far is Mars from the Sun? Mars orbits an average of 141 million miles from the Sun, which is about one-and-a-half times as far as the Earth is from the Sun.
    [Show full text]
  • Sounds of a Supersolid A
    NEWS & VIEWS RESEARCH hypothesis came from extensive population humans, implying possible mosquito exposure long-distance spread of insecticide-resistant time-series analysis from that earlier study5, to malaria parasites and the potential to spread mosquitoes, worsening an already dire situ- which showed beyond reasonable doubt that infection over great distances. ation, given the current spread of insecticide a mosquito vector species called Anopheles However, the authors failed to detect resistance in mosquito populations. This would coluzzii persists locally in the dry season in parasite infections in their aerially sampled be a matter of great concern because insecticides as-yet-undiscovered places. However, the malaria vectors, a result that they assert is to be are the best means of malaria control currently data were not consistent with this outcome for expected given the small sample size and the low available8. However, long-distance migration other malaria vectors in the study area — the parasite-infection rates typical of populations of could facilitate the desirable spread of mosqui- species Anopheles gambiae and Anopheles ara- malaria vectors. A problem with this argument toes for gene-based methods of malaria-vector biensis — leaving wind-powered long-distance is that the typical infection rates they mention control. One thing is certain, Huestis and col- migration as the only remaining possibility to are based on one specific mosquito body part leagues have permanently transformed our explain the data5. (salivary glands), rather than the unknown but understanding of African malaria vectors and Both modelling6 and genetic studies7 undoubtedly much higher infection rates that what it will take to conquer malaria.
    [Show full text]
  • Current Status of Equation of State in Nuclear Matter and Neutron Stars
    Open Issues in Understanding Core Collapse Supernovae June 22-24, 2004 Current Status of Equation of State in Nuclear Matter and Neutron Stars J.R.Stone1,2, J.C. Miller1,3 and W.G.Newton1 1 Oxford University, Oxford, UK 2Physics Division, ORNL, Oak Ridge, TN 3 SISSA, Trieste, Italy Outline 1. General properties of EOS in nuclear matter 2. Classification according to models of N-N interaction 3. Examples of EOS – sensitivity to the choice of N-N interaction 4. Consequences for supernova simulations 5. Constraints on EOS 6. High density nuclear matter (HDNM) 7. New developments Equation of State is derived from a known dependence of energy per particle of a system on particle number density: EA/(==En) or F/AF(n) I. E ( or Boltzman free energy F = E-TS for system at finite temperature) is constructed in a form of effective energy functional (Hamiltonian, Lagrangian, DFT/EFT functional or an empirical form) II. An equilibrium state of matter is found at each density n by minimization of E (n) or F (n) III. All other related quantities like e.g. pressure P, incompressibility K or entropy s are calculated as derivatives of E or F at equilibrium: 2 ∂E ()n ∂F ()n Pn()= n sn()=− | ∂n ∂T nY, p ∂∂P()nnEE() ∂2 ()n Kn()==9 18n +9n2 ∂∂nn∂n2 IV. Use as input for model simulations (Very) schematic sequence of equilibrium phases of nuclear matter as a function of density: <~2x10-4fm-3 ~2x10-4 fm-3 ~0.06 fm-3 Nuclei in Nuclei in Neutron electron gas + ‘Pasta phase’ Electron gas ~0.1 fm-3 0.3-0.5 fm-3 >0.5 fm-3 Nucleons + n,p,e,µ heavy baryons Quarks ???
    [Show full text]
  • Bose-Einstein Condensation
    Physics monitor The oldest galaxy, as seen by the European Southern Observatory's NTT telescope. The left picture shows the target quasar, with right, the quasar image removed to make the galaxy, situated just to the north-west of the quasar, easier to see. superfluidity. Condensates could also play an important role in particle physics and cosmology, explaining, for example, why the pion as a bound quark-antiquark state is so much lighter than the three-quark proton. A hunt to create a pure Bose- Einstein condensate has been underway for over 15 years, with different groups employing different techniques to cool their bosons. The two recent successes have been achieved by incorporating several techniques. In both cases, the bosons have been atoms. In Colo­ just 2 arcsec away from the quasar. led to Einstein's prediction. Unlike rado, rubidium-87 was used, whilst at This tiny angular separation corre­ fermions, which obey the Pauli Rice University, the condensate was sponds to a distance 'on the ground' exclusion principle of only one formed from lithium-7. Both teams of 40,000 light-years. resident particle per allowed quantum started with the technique of laser There are strong indications that state, any number of bosons can cooling. This works by pointing finely this galaxy contains all the necessary pack into an identical quantum state. tuned laser beams at the sample nuclei to produce the observed This led Einstein to suggest that such that any atoms moving towards absorption effects. Only hydrogen under certain conditions, bosons a beam are struck by a photon, which and helium were produced in the Big would lose their individual identities, slows them down.
    [Show full text]
  • Physical Changes
    How Matter Changes By Cindy Grigg Changes in matter happen around you every day. Some changes make matter look different. Other changes make one kind of matter become another kind of matter. When you scrunch a sheet of paper up into a ball, it is still paper. It only changed shape. You can cut a large, rectangular piece of paper into many small triangles. It changed shape and size, but it is still paper. These kinds of changes are called physical changes. Physical changes are changes in the way matter looks. Changes in size and shape, like the changes in the cut pieces of paper, are physical changes. Physical changes are changes in the size, shape, state, or appearance of matter. Another kind of physical change happens when matter changes from one state to another state. When water freezes and makes ice, it is still water. It has only changed its state of matter from a liquid to a solid. It has changed its appearance and shape, but it is still water. You can change the ice back into water by letting it melt. Matter looks different when it changes states, but it stays the same kind of matter. Solids like ice can change into liquids. Heat speeds up the moving particles in ice. The particles move apart. Heat melts ice and changes it to liquid water. Metals can be changed from a solid to a liquid state also. Metals must be heated to a high temperature to melt. Melting is changing from a solid state to a liquid state.
    [Show full text]
  • Cosmic Microwave Background
    1 29. Cosmic Microwave Background 29. Cosmic Microwave Background Revised August 2019 by D. Scott (U. of British Columbia) and G.F. Smoot (HKUST; Paris U.; UC Berkeley; LBNL). 29.1 Introduction The energy content in electromagnetic radiation from beyond our Galaxy is dominated by the cosmic microwave background (CMB), discovered in 1965 [1]. The spectrum of the CMB is well described by a blackbody function with T = 2.7255 K. This spectral form is a main supporting pillar of the hot Big Bang model for the Universe. The lack of any observed deviations from a 7 blackbody spectrum constrains physical processes over cosmic history at redshifts z ∼< 10 (see earlier versions of this review). Currently the key CMB observable is the angular variation in temperature (or intensity) corre- lations, and to a growing extent polarization [2–4]. Since the first detection of these anisotropies by the Cosmic Background Explorer (COBE) satellite [5], there has been intense activity to map the sky at increasing levels of sensitivity and angular resolution by ground-based and balloon-borne measurements. These were joined in 2003 by the first results from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)[6], which were improved upon by analyses of data added every 2 years, culminating in the 9-year results [7]. In 2013 we had the first results [8] from the third generation CMB satellite, ESA’s Planck mission [9,10], which were enhanced by results from the 2015 Planck data release [11, 12], and then the final 2018 Planck data release [13, 14]. Additionally, CMB an- isotropies have been extended to smaller angular scales by ground-based experiments, particularly the Atacama Cosmology Telescope (ACT) [15] and the South Pole Telescope (SPT) [16].
    [Show full text]
  • Solid State Insurrection
    INTRODUCTION WHAT IS SOLID STATE PHYSICS AND WHY DOES IT MATTER? Solid state physics sounds kind of funny. —GREGORY H. WANNIER, 1943 The Superconducting Super Collider (SSC), the largest scientific instrument ever proposed, was also one of the most controversial. The enormous parti- cle accelerator’s beam pipe would have encircled hundreds of square miles of Ellis County, Texas. It was designed to produce evidence for the last few elements of the standard model of particle physics, and many hoped it might generate unexpected discoveries that would lead beyond. Advocates billed the SSC as the logical apotheosis of physical research. Opponents raised their eyebrows at the facility’s astronomical price tag, which stood at $11.8 billion by the time Congress yanked its funding in 1993. Skeptics also objected to the reductionist rhetoric used to justify the project—which suggested that knowledge of the very small was the only knowledge that could be truly fun- damental—and grew exasperated when SSC boosters ascribed technological developments and medical advances to high energy physics that they thought more justly credited to other areas of science. To the chagrin of the SSC’s supporters, many such skeptics were fellow physicists. The most prominent among them was Philip W. Anderson, a No- bel Prize–winning theorist. Anderson had risen to prominence in the new field known as solid state physics after he joined the Bell Telephone Labora- tories in 1949, the ink on his Harvard University PhD still damp. In a House of Representatives committee hearing in July 1991, Anderson, by then at © 2018 University of Pittsburgh Press.
    [Show full text]
  • A Modern View of the Equation of State in Nuclear and Neutron Star Matter
    S S symmetry Article A Modern View of the Equation of State in Nuclear and Neutron Star Matter G. Fiorella Burgio * , Hans-Josef Schulze , Isaac Vidaña and Jin-Biao Wei INFN Sezione di Catania, Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; [email protected] (H.-J.S.); [email protected] (I.V.); [email protected] (J.-B.W.) * Correspondence: fi[email protected] Abstract: Background: We analyze several constraints on the nuclear equation of state (EOS) cur- rently available from neutron star (NS) observations and laboratory experiments and study the existence of possible correlations among properties of nuclear matter at saturation density with NS observables. Methods: We use a set of different models that include several phenomenological EOSs based on Skyrme and relativistic mean field models as well as microscopic calculations based on different many-body approaches, i.e., the (Dirac–)Brueckner–Hartree–Fock theories, Quantum Monte Carlo techniques, and the variational method. Results: We find that almost all the models considered are compatible with the laboratory constraints of the nuclear matter properties as well as with the +0.10 largest NS mass observed up to now, 2.14−0.09 M for the object PSR J0740+6620, and with the upper limit of the maximum mass of about 2.3–2.5 M deduced from the analysis of the GW170817 NS merger event. Conclusion: Our study shows that whereas no correlation exists between the tidal deformability and the value of the nuclear symmetry energy at saturation for any value of the NS mass, very weak correlations seem to exist with the derivative of the nuclear symmetry energy and with the nuclear incompressibility.
    [Show full text]
  • Supersolid State of Matter Nikolai Prokof 'Ev University of Massachusetts - Amherst, [email protected]
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Physics Department Faculty Publication Series Physics 2005 Supersolid State of Matter Nikolai Prokof 'ev University of Massachusetts - Amherst, [email protected] Boris Svistunov University of Massachusetts - Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/physics_faculty_pubs Part of the Physical Sciences and Mathematics Commons Recommended Citation Prokof'ev, Nikolai and Svistunov, Boris, "Supersolid State of Matter" (2005). Physics Review Letters. 1175. Retrieved from https://scholarworks.umass.edu/physics_faculty_pubs/1175 This Article is brought to you for free and open access by the Physics at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Physics Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. On the Supersolid State of Matter Nikolay Prokof’ev and Boris Svistunov Department of Physics, University of Massachusetts, Amherst, MA 01003 and Russian Research Center “Kurchatov Institute”, 123182 Moscow We prove that the necessary condition for a solid to be also a superfluid is to have zero-point vacancies, or interstitial atoms, or both, as an integral part of the ground state. As a consequence, superfluidity is not possible in commensurate solids which break continuous translation symmetry. We discuss recent experiment by Kim and Chan [Nature, 427, 225 (2004)] in the context of this theorem, question its bulk supersolid interpretation, and offer an alternative explanation in terms of superfluid helium interfaces. PACS numbers: 67.40.-w, 67.80.-s, 05.30.-d Recent discovery by Kim and Chan [1, 2] that solid 4He theorem.
    [Show full text]
  • The Temperature of the Cosmic Microwave Background at 10 Ghz D
    The Astrophysical Journal, 612:86–95, 2004 September 1 # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND AT 10 GHZ D. J. Fixsen,1 A. Kogut,2 S. Levin,3 M. Limon,1 P. Lubin,4 P. Mirel,1 M. Seiffert,3 and E. Wollack2 Received 2004 February 23; accepted 2004 April 14 ABSTRACT We report the results of an effort to measure the low-frequency portion of the spectrum of the cosmic microwave background (CMB) radiation, using a balloon-borne instrument called the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE). These measurements are to search for deviations from a thermal spectrum that are expected to exist in the CMB as a result of various processes in the early universe. The radiometric temperature was measured at 10 and 30 GHz using a cryogenic open-aperture instrument with no emissive windows. An external blackbody calibrator provides an in situ reference. Systematic errors were greatly reduced by using differential radiometers and cooling all critical components to physical temperatures approxi- mating the antenna temperature of the sky. A linear model is used to compare the radiometer output to a set of thermometers on the instrument. The unmodeled residualsarelessthan50mKpeaktopeakwithaweightedrms of 6 mK. Small corrections are made for the residual emission from the flight train, atmosphere, and foreground Galactic emission. The measured radiometric temperature of the CMB is 2:721 Æ 0:010 K at 10 GHz and 2:694 Æ 0:032 K at 30 GHz. Subject headinggs: cosmic microwave background — cosmology: observations 1.
    [Show full text]
  • Extreme Cold Is a Dangerous Situation That Can Bring on Bring Can That Situation Dangerous a Is Cold Extreme
    Centers for Disease Control and Prevention and Control Disease for Centers U.S. Department of Health And Human Services Human And Health of Department U.S. U.S. Department of Health And Human Services Centers for Disease Control and Prevention http://www.bt.cdc.gov/disasters/winter/ 1-888-232-6789; [email protected] 1-888-232-6789; 4700 Buford Hwy, Atlanta, GA 30341-3717 GA Atlanta, Hwy, Buford 4700 National Center for Environmental Health, MS F52 MS Health, Environmental for Center National Centers for Disease Control and Prevention and Control Disease for Centers or more information on cold weather conditions and health, please contact: please health, and conditions weather cold on information more or F For more information on hot weather conditions and health, please contact: Centers for Disease Control and Prevention National Center for Environmental Health, MS F52 4700 Buford Hwy, Atlanta, GA 30341-3717 1-888-232-6789; [email protected] http://www.bt.cdc.gov/disasters/extremeheat/ 1 and what to do if a cold-weather health emergency arises. arises. emergency health cold-weather a if do to what and should know how to prevent cold-related health problems health cold-related prevent to how know should that is poorly insulated or without heat. without or insulated poorly is that can be affected. To keep yourself and your family safe, you safe, family your and yourself keep To affected. be can without shelter or who are stranded, or who live in a home a in live who or stranded, are who or shelter without Infants and the elderly are particularly at risk, but anyone but risk, at particularly are elderly the and Infants health emergencies in susceptible people, such as those as such people, susceptible in emergencies health can cause other serious or life-threatening health problems.
    [Show full text]
  • Chapter 9 Phases of Nuclear Matter
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Chapter 9 Phases of Nuclear Matter As we know, water (H2O) can exist as ice, liquid, or steam. At atmospheric pressure and at temperatures below the 0˚C freezing point, water takes the form of ice. Between 0˚C and 100˚C at atmospheric pressure, water is a liquid. Above the boiling point of 100˚C at atmospheric pressure, water becomes the gas that we call steam. We also know that we can raise the temperature of water by heating it— that is to say by adding energy. However, when water reaches its melting or boiling points, additional heating does not immediately lead to a temperature increase. Instead, we must overcome water's latent heats of fusion (80 kcal/kg, at the melting point) or vaporization (540 kcal/kg, at the boiling point). During the boiling process, as we add more heat more of the liquid water turns into steam. Even though heat is being added, the temperature stays at 100˚C. As long as some liquid water remains, the gas and liquid phases coexist at 100˚C. The temperature cannot rise until all of the liquid is converted to steam. This type of transition between two phases with latent heat and phase coexistence is called a “first order phase transition.” As we raise the pressure, the boiling temperature of water increases until it reaches a critical point at a pressure 218 times atmospheric pressure (22.1 Mpa) and a temperature of 374˚C is reached.
    [Show full text]