Iter: Os Caminhos Da Energia De Fusão E O Brasil (2015)

Total Page:16

File Type:pdf, Size:1020Kb

Iter: Os Caminhos Da Energia De Fusão E O Brasil (2015) ITER Os caminhos da energia de fusão e o Brasil MINISTÉRIO DAS RELAÇÕES EXTERIORES Ministro de Estado Embaixador Mauro Luiz Iecker Vieira Secretário -Geral Embaixador Sérgio França Danese FUNDAÇÃO ALEXANDRE DE GUSMÃO Presidente Embaixador Sérgio Eduardo Moreira Lima Instituto de Pesquisa de Relações Internacionais Diretor Embaixador José Humberto de Brito Cruz Centro de História e Documentação Diplomática Diretor Embaixador Maurício E. Cortes Costa Conselho Editorial da Fundação Alexandre de Gusmão Presidente Embaixador Sérgio Eduardo Moreira Lima Membros Embaixador Ronaldo Mota Sardenberg Embaixador Jorio Dauster Magalhães e Silva Embaixador Gonçalo de Barros Carvalho e Mello Mourão Embaixador José Humberto de Brito Cruz Embaixador Julio Glinternick Bitelli Ministro Luís Felipe Silvério Fortuna Professor Francisco Fernando Monteoliva Doratioto Professor José Flávio Sombra Saraiva Professor Eiiti Sato A Fundação Alexandre de Gusmão, instituída em 1971, é uma fundação pública vinculada ao Ministério das Relações Exteriores e tem a finalidade de levar à sociedade civil informações sobre a realidade internacional e sobre aspectos da pauta diplomática brasileira. Sua missão é promover a sensibilização da opinião pública nacional para os temas de relações internacionais e para a política externa brasileira. Augusto Pestana ITER Os caminhos da energia de fusão e o Brasil Brasília, 2015 Direitos de publicação reservados à Fundação Alexandre de Gusmão Ministério das Relações Exteriores Esplanada dos Ministérios, Bloco H Anexo II, Térreo 70170 ‑900 Brasília–DF Telefones:(61) 2030 ‑6033/6034 Fax:(61) 2030 ‑9125 Site: www.funag.gov.br E ‑mail: [email protected] Equipe Técnica: Eliane Miranda Paiva Fernanda Antunes Siqueira Gabriela Del Rio de Rezende Luiz Antônio Gusmão André Luiz Ventura Ferreira Projeto Gráfico e Capa: Yanderson Rodrigues Programação Visual e Diagramação: Gráfica e Editora Ideal Impresso no Brasil 2015 P476 Pestana, Augusto. ITER, os caminhos da energia de fusão e o Brasil / Augusto Pestana. – Brasília : FUNAG, 2015. 376 p. – (Coleção CAE) ISBN 978 ‑85 ‑7631 ‑572‑8 Trabalho apresentado originalmente como tese, aprovada no LIX Curso de Altos Estudos do Instituto Rio Branco, em 2014. 1. Fusão nuclear ‑ aspectos históricos. 2. Organização Internacional de Energia de Fusão ITER (OI‑ITER). 3. Cooperação internacional. 4. Comunidade Europeia de Energia Atômica (Euratom). 5. Agência Internacional de Energia Atômica (AIEA). 6. Agência Internacional de Energia (AIE). 7. Fusão nuclear ‑ atuação ‑ Brasil. I. Título. II. Série. CDD 333.7924 Depósito Legal na Fundação Biblioteca Nacional conforme Lei no 10.994, de 14/12/2004. Para Rafaela e Virgínia, futuro do Brasil. Scientia vinces [“pela ciência, vencerás”] Lema da Universidade de São Paulo Agradecimentos presente trabalho não teria sido possível sem o O encorajamento, a generosidade e a amizade de um grande círculo de mentores, colegas e fontes de inspiração. Gostaria de agradecer, em especial, ao professor doutor Ricardo Osório Magnus Galvão, aos embaixadores Laércio Antonio Vinhas e Hadil Fontes da Rocha Vianna e aos engenheiros Leonam dos Santos Guimarães e Alejandro Zurita Centelles, pelas informações e orientações; à ministra Helena Chagas, aos embaixadores André Mattoso Maia Amado, André Aranha Corrêa do Lago, Tovar da Silva Nunes e Roberto Abdalla e ao ministro Rodrigo de Lima Baena Soares, pelas oportunidades e pela confiança; aos ministros Luís Felipe Silvério Fortuna e Ademar Seabra da Cruz Junior, ao conselheiro Luís Guilherme Parga Cintra e ao primeiro- -secretário Daniel Machado da Fonseca, pelas sugestões e revisões; aos embaixadores Gonçalo de Barros Carvalho e Mello Mourão, Fernando Paulo de Mello Barreto, Mariangela Rebuá de Andrade Simões e Pedro Henrique Lopes Borio, ao professor doutor Gilberto de Martino Jannuzzi e ao oficial de chancelaria Henrique Madeira Garcia Alves, pelo apoio e pelas palavras benevolentes durante o LIX Curso de Altos Estudos do Instituto Rio Branco; a meus pais, pelos valores e pela educação; e a Elaine, Virgínia e Rafaela, por tudo. Apresentação ste livro é resultado da tese apresentada e defendida E em 2014 na 59ª edição do Curso de Altos Estudos do Instituto Rio Branco, um exemplo da importância atribuída pelo Ministério das Relações Exteriores à contínua forma- ção e aperfeiçoamento dos diplomatas brasileiros. O escopo do trabalho é a cooperação internacional em fusão nuclear, o estudo de caso da organização internacional criada em 2006 para demonstrar a viabilidade científica e tecnológica de um reator de energia de fusão, a OI-ITER (iter, “caminho” em latim), e a análise das implicações desse projeto para o Brasil e do papel que o Itamaraty poderá desempenhar na promoção de nossa mais ampla capacitação nesse e em outros campos do conhecimento. A fusão nuclear encontra-se na origem da energia do Sol e das demais estrelas. Seu domínio prático e controlado na Terra asseguraria uma fonte limpa, segura e virtualmente inesgotável à humanidade, pois permitiria utilizar o hidro- gênio contido na água para a geração de eletricidade – em um processo muito diferente da energia nuclear “convencional”, baseada na fissão de elementos radioativos como o urânio. No entanto, os desafios tecnológicos e industriais da fusão são gigantescos e, apesar de sete décadas de pesquisa, ainda não foram vencidos por nenhum país. A longa jornada em busca da energia de fusão controlada está hoje um pouco mais próxima de seu destino graças ao estabelecimento da OI-ITER, cujos membros fundadores são a Comunidade Europeia de Energia Atômica (Euratom), a China, os EUA, a Índia, o Japão, a República da Coreia e a Rússia. Seus integrantes incluem, portanto, todos os membros permanentes do Conselho de Segurança da ONU, três dos Brics (Rússia, China e Índia) e nove das dez maiores economias do mundo em 2014 (a única exceção é o Brasil). Singularizada por seus inovadores e complexos mecanismos de financiamento e de compras, a Organização ITER parece fadada a servir de modelo de como fazer – ou, para alguns, de como não fazer – um grande projeto de cooperação internacional em ciência e tecnologia. A entrada do Brasil na OI-ITER chegou a ser cogitada na década passada, mas o governo brasileiro optou por uma abordagem pragmática e gradual que previa, em paralelo ao fortalecimento da pesquisa nacional sobre fusão, a assinatura de acordo de cooperação bilateral com a Euratom, o principal participante do projeto. Em contraste com os membros da Organização ITER, o Brasil tem à disposição diversas alternativas para ampliar a oferta interna de energia nas próximas décadas. Os motivos que explicam nossa ausência não significam, porém, que devamos ficar alheios aos rumos da energia de fusão e à formação desse novo “clube” internacional de conhecimento – entre outras razões, pelo fato de que os supercondutores de um reator de fusão como o ITER consumirão grandes quantidades de nióbio, metal que tem 98% de suas reservas mundiais concentradas no território brasileiro. Este trabalho espera contribuir, portanto, para o melhor conhecimento da OI-ITER e da dimensão internacional da energia de fusão, além de recomendar linhas de ação para que o Brasil – em esforço conjunto de governo, academia e indústria – não fique à margem de uma iniciativa científico-tecnológica com evidentes impactos geopolíticos e geoeconômicos. Depois de uma introdução que busca situar o problema e demonstrar sua relevância para as relações internacio- nais e para a política externa brasileira, “ITER: os caminhos da energia de fusão e o Brasil” oferece em seu primeiro capítulo um escorço histórico da evolução da ciência e da principal rota tecnológica da fusão nuclear controlada no contexto da Guerra Fria, oscilando da rivalidade à coope- ração e culminando no projeto ITER. Esse capítulo trata também da bomba de hidrogênio – a comprovação de que a fusão, em termos práticos e experimentais, é possível na Terra – e das “explosões termonucleares para fins pacíficos”, bem como do confinamento inercial a laser e das rotas falsas, incluindo o programa argentino do primeiro governo Perón e a fusão a frio – exemplos da perigosa combinação das ambições políticas ou econômicas com a ciência inescrupulosa. O segundo capítulo proporciona a descrição e a análise mais detida do arcabouço jurídico-institucional da Organização ITER, com base em seu acordo constitutivo de 2006, bem como faz avaliação crítica sobre sua estrutura e seu modus operandi, com base em recente relatório independente de gestão. Os inovadores mecanismos de financiamento e de compras são discutidos em detalhe, pois evidenciam o caráter sui generis do projeto. Seu forte componente de mobilização do desenvolvimento tecnológico e industrial das Partes é ilustrado por meio da descrição dos sistemas do reator, que é, afinal, o objeto central da organização. O terceiro capítulo esmiúça os programas de fusão dos membros da OI-ITER – seja por meio da atuação de suas Agências Domésticas, seja nas linhas de pesquisa complementares ou paralelas a Cadarache – e suas diferen- tes motivações. As Partes do acordo constitutivo de 2006 representam cerca da metade da população e 72% do Produto Interno Bruto mundial, mais de dois terços do consumo global de energia e eletricidade e aproximadamente 90% da geração nucleolétrica no planeta. Atenção particular é dada à Euratom, verdadeiro pilar do ITER e a única Parte com a qual o Brasil mantém instrumento bilateral específico na área de energia de fusão. O papel de atores como a Agência Internacional de Energia Atômica
Recommended publications
  • LANL Fusion Capabilities
    LANL Fusion Capabilities INFUSE workshop Jan 22-23, 2019 1 Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA Los Alamos has a long history of fusion research James Tuck, Ivy Mike, 1952 Perhapsatron, 1953 • Today magnetic and inertial fusion work resides in the Physics Division, Theory Division, and X Division (Weapons). There are also related capabilities in detectors, radiation damage, and tritium handling. • Dr. John Kline ( [email protected] ) is the present Fusion Energy Sciences (and Inertial Fusion) program manager, and a point-of-contact. 2 Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA 3 Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA FRC’s were developed in Russia and Los Alamos FRC’s are high beta plasmas, with many interesting features 4 Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA Today FRC plasmas are still being explored 5 Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA Magnetized Plasma Team in P-24 Plasma Physics We do experimental plasma work for FES, APRA-E, and NNSA sponsors, with national and international partners, including small businesses. We use our knowledge of plasma diagnostics, pulsed power expertise, and HED plasmas in the areas of fusion energy, weapons support, and basic plasma science. Team Leader: Glen Wurden ([email protected]) Staff: Hsu, Weber, Langendorf, Dunn, Shimada Postdocs: Tom Byvank, Kevin Yates, John Boguski Student: Chris Roper (Summer) 6 Managed by Triad National Security, LLC for the U.S.
    [Show full text]
  • SCIENCE and INNOVATION at Los Alamos
    SCIENCE AND INNOVATION at Los Alamos Los Alamos Science Number 21 1993 1993 Number 21 Los Alamos Science 1 . Fred Reines (left) helps lower Wright Langham into a detector similar to the one used by Reines to detect neutrinos for the first time. The active medium of the detector was a liquid scintillator developed by F. Newton Hayes for assays of large biological sam- ples. The availability of liquid scintillators led to the whole-body counter, a device for monitoring the amount of certain radionu- clides in the bodies of workers exposed to radioactive materials. Wright Langham was one of the world’s experts on the metabo- lism of plutonium. Lattice-gas hydrodynamics, a discrete model for fluid flow, was invented by Brosl Hasslacher at Los Alamos with U. Frisch and Y. Pomeau. This novel formulation provides a fast, efficient, reliable method for simulating the Navier-Stokes equations and two-phase flow. A modification by Ken Eggert and coworkers is now being applied to model flow through porous media, a problem of great interest to oil companies. Norman Doggett and Judy Tesmer examine a gel at the Laboratory’s Center for Human Genome Studies. The Human Genome Project, a joint DOE-NIH effort, was largely conceived at a DOE meeting in Santa Fe in 1986. Researchers at the Los Alamos Center developed a widely used technique for fingerprinting DNA, discovered the human telomere (the se- quence at the ends of every human chromosome), are developing physical maps of several human chromosomes, and are preparing chromosome-specific libraries of clones, which are extremely useful in physical-mapping projects.
    [Show full text]
  • Operational Characteristics of the Stabilized Toroidal Pinch Machine, Perhapsatron S-4
    P/2488 USA Operational Characteristics of the Stabilized Toroidal Pinch Machine, Perhapsatron S-4 By J. P. Conner, D. C. H age r m an, J. L. Honsaker, H. J. Karr, J. P. Mize, J. E. Osher, J. A. Phillips and E. J. Stovall Jr. Several investigators1"6 have reported initial success largely inductance-limited and not resistance-limited in stabilizing a pinched discharge through the utiliza- as observed in PS-3. After gas breakdown about 80% tion of an axial Bz magnetic field and conducting of the condenser voltage appears around the secondary, walls, and theoretical work,7"11 with simplifying in agreement with the ratio of source and load induct- assumptions, predicts stabilization under these con- ances. The rate of increase of gas current is at first ditions. At Los Alamos this approach has been large, ~1.3xlOn amp/sec, until the gas current examined in linear (Columbus) and toroidal (Per- contracts to cause an increase in inductance, at which hapsatron) geometries. time the gas current is a good approximation to a sine Perhapsatron S-3 (PS-3), described elsewhere,4 was curve. The gas current maximum is found to rise found to be resistance-limited in that the discharge linearly with primary voltage (Fig. 3), deviating as current did not increase significantly for primary expected at the higher voltages because of saturation vçltages over 12 kv (120 volts/cm). The minor inside of the iron core. diameter of this machine was small, 5.3 cm, and the At the discharge current maximum, the secondary onset of impurity light from wall material in the voltage is not zero, and if one assumes that there is discharge occurred early in the gas current cycle.
    [Show full text]
  • India's Stocks of Civil and Military Plutonium and Highly Enriched Uranium, End 2014
    PlutoniumPlutonium andand HighlyHighly EnrichedEnriched UraniumUranium 20152015 INSTITUTEINSTITUTE FOR FOR SCIENCE SCIENCE AND AND INTERNATIONAL INTERNATIONAL SECURITY SECURITY India’s Stocks of Civil and Military Plutonium and Highly Enriched Uranium, End 20141 By David Albright and Serena Kelleher-Vergantini November 2, 2015 1 This report is part of a series on national and global stocks of nuclear explosive materials in both civil and military nuclear programs. This work was generously funded by a grant from the Nuclear Threat Initiative (NTI). This work builds on earlier work done at ISIS by one of the authors. 440 First Street NW, Suite 800, Washington, DC 20001 TEL 202.547.3633 Twitter @TheGoodISIS E-MAIL [email protected] • www.isis-online.org Contents Summary .............................................................................................................................................. 2 1. India’s Civil Plutonium Stockpile .................................................................................................... 3 1.1 Civil Plutonium Production ........................................................................................................ 3 1.2 Plutonium Separation ................................................................................................................. 5 1.2.1 India’s Fast Breeder Reactors .............................................................................................. 6 1.3 Unirradiated Plutonium Inventory .............................................................................................
    [Show full text]
  • EPORT 2017 -18 of TATA MEMORIAL CENTRE (A Grant-In-Aid Institute of the Department of Atomic Energy, Government of India)
    ANNUAL REPORT 2017 -18 of TATA MEMORIAL CENTRE (A Grant-in-Aid Institute of the Department of Atomic Energy, Government of India) Tata Memorial Hospital, Mumbai. Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai. Centre for Cancer Epidemiology, Navi Mumbai. Homi Bhabha Cancer Hospital and Research Centre, Visakhapatnam. Homi Bhabha Cancer Hospital, Sangrur. Homi Bhabha Cancer Hospital and Research Centre, Mohali. Dr. Bhubaneswar Borooah Cancer Institute, Guwahati. Homi Bhabha Cancer Hospital, Varanasi. Mahamana Pandit Madan Mohan Malviya Cancer Centre, Varanasi. Tata Memorial Centre Mission and Vision of the Tata Memorial Centre Mission The Tata Memorial Centre’s mission is to provide comprehensive cancer care to one and all, through its motto of excellence in service, education and research. Vision As the premier cancer centre in the country, we will provide leadership in guiding the national policy and strategy for cancer care by: Promoting outstanding services through evidence based practice of oncology Commitment of imparting education in cancer to students, trainees, professionals, employees and the public and, Emphasis on research that is affordable, innovative and relevant to the needs of the country. Tata Memorial Centre, Annual Report 2017 - 2018 Contents Tata Memorial Centre (TMC) Governing Council ...................................................................................... 9 Messages Director TMC ..............................................................................................
    [Show full text]
  • Nuclear Security Governance in India: Institutions, Instruments, and Culture (2019)
    SANDIA REPORT SAND2020-10916 Printed October 2020 Nuclear Security Governance in India: Institutions, Instruments, and Culture (2019) Sitakanta Mishra (Associate Professor, School of Liberal Studies, Pandit Deendayal Petroleum University, Gujarat, India) Happymon Jacob (Associate Professor, School of International Studies, Jawaharlal Nehru University, New Delhi, India) Visiting Research Scholars Cooperative Monitoring Center Sandia National Laboratories P.O. Box 5800 Albuquerque, New Mexico 87185-MS1373 Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology & Engineering Solutions of Sandia, LLC. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy.
    [Show full text]
  • Importance of Closing the Nuclear Fuel Cycle
    ChidambaraBOOK.qxp 31/8/06 10:53 am Page 90 Nuclear Fuel Cycle Importance of Closing the Nuclear Fuel Cycle a report by R Chidambaram and Ratan Kumar Sinha Principal Scientific Adviser, Government of India and Director of Reactor Design and Development Group, Bhabha Atomic Research Centre (BARC) R Chidambaram is the Principal Human development correlates strongly with per capita energy generation in the world. With an envisaged Scientific Adviser to the Government electricity consumption. That is why the current surge growth of nuclear power in the coming decades, of India and the Chairman of the Scientific Advisory Committee to the in global electricity demands is being led by the mainly in the developing countries with strong Cabinet. He is also DAE Homi continuous growth in energy needs of China, India economic development, there is a growing need to Bhabha Professor at the Bhabha Atomic Research Centre (BARC) and and other emerging economies. Although most of the recognise fuel cycle as an integral component of the Chairman of Technology Information, power sector expansion till now has come from fossil nuclear energy system for any holistic assessment in the Forecasting and Assessment Council. fuel-based thermal plants and the latter will continue areas of sustainability, economics, safety, environment He joined BARC in 1962 and became its Director in 1990. He to play an important role in the near future, there is and waste management. It is with this realisation that was Chairman of the Atomic Energy strain on the limited fuel stock available. Fossil fuels the IAEA’s International Project on Innovative Commission from 1993 to 2000.
    [Show full text]
  • With a Future
    FLASHBACK_Plasma Physics Perhapsatron with a Future Nuclear fusion could safeguard the energy supply of the future. The shining example is our Sun, which obtains its energy from the fusion of light atomic nuclei. Fundamental findings for the development of this new energy source originate from the Max Planck Institute for Plasma Physics (IPP) in Garching, which celebrates its 50th anniversary this year. TEXT ELKE MAIER Everything started with the mythical figure of Prometheus: Zeus, The enthusiasm was father of the gods, had taken fire away from mankind. In order to great at first – espe- return it to them, Prometheus held the stalk of a plant into the cially since the supply sky and ignited it with the sparks flying off of the carriage of the of the components sun god, Helios. The thought of capturing solar fire has fascinat- for the fuel was al- ed mankind ever since. Researchers worldwide, including the staff most limitless. Deu- of the Max Planck Institute for Plasma Physics (IPP) in Garching terium is present in and Greifswald, are now working on igniting the solar fire on the oceans, and tri- Earth itself, and making it available for energy generation. The tium can be produced challenges of this undertaking are much greater than the pioneers from lithium, which of fusion research anticipated a few decades ago. is found in rocks. In In the late 1940s, scientists began investigating how energy 1955, experts thought could be obtained from nuclear fusion. Back in 1929, physicists that mankind’s ener- Fritz G. Houtermans and Robert d’ Escourt Atkinson suggested gy problems would that solar fire originated from the fusion of light atomic nuclei.
    [Show full text]
  • R:\TEMP\Bobbi\RDD-8 3-16-04 Reprint.Wpd
    OFFICIAL USE ONLY RESTRICTED DATA DECLASSIFICATION DECISIONS 1946 TO THE PRESENT (RDD-8) January 1, 2002 U.S. Department of Energy Office of Health, Safety and Security Office of Classification Contains information which may be exempt from public release under the Freedom of Information Act (5 U.S.C. 552), exemption number(s) 2. Approval by the Department of Energy prior to public release is required. Reviewed by: Richard J. Lyons Date: 3/20/2002 NOTICE This document provides historical perspective on the sequence of declassification actions performed by the Department of Energy and its predecessor agencies. It is meant to convey the amount and types of information declassified over the years. Although the language of the original declassification authorities is cited verbatim as much as possible to preserve the historical intent of the declassification, THIS DOCUMENT IS NOT TO BE USED AS THE BASIS FOR DECLASSIFYING DOCUMENTS AND MATERIALS without specific authorization from the Director, Information Classification and Control Policy. Classification guides designed for that specific purpose must be used. OFFICIAL USE ONLY OFFICIAL USE ONLY This page intentionally left blank OFFICIAL USE ONLY OFFICIAL USE ONLY FOREWORD This document supersedes Restricted Data Declassification Decisions - 1946 To The Present (RDD-7), January 1, 2001. This is the eighth edition of a document first published in June 1994. This latest edition includes editorial corrections to RDD-7, all declassification actions that have been made since the January 1, 2001, publication date of RDD-7 and any additional declassification actions which were subsequently discovered or confirmed. Note that the terms “declassification” or “declassification action,” as used in this document, refer to changes in classification policy which result in a specific fact or concept that was classified in the past being now unclassified.
    [Show full text]
  • Volume 105 July 2015
    ISSN 0972-5741 Volume 105 July 2015 IGCNewsletter IN THIS ISSUE Interaction with Eminent Personalities • Interaction with Dr. Anil Kakodkar Technical Articles • Establishing Atmospheric Plasma Spray and High-Velocity Oxy Fuel Spray Facilities for the Development of Metallic and Ceramic Coatings for FBR and Fuel Cycle Applications • Stimuli-responsive Microgel Suspensions: Ordering, Dynamics and Rheology Young Officer’s Forum • Experimental Simulation of Hydrodynamics of Mixing of Molten Salt and Cadmium Young Researcher’s Forum • Significance of Thermo-mechanical Constitutive Modeling in Thermal Ratcheting Prediction Conference and Meeting Highlights Visit of Dignitaries Awards & Honours INDIRA GANDHI CENTRE FOR ATOMIC RESEARCH http://www.igcar.gov.in/lis/nl105/igc105.pdf IGC Newsletter From the Editor From the Editor Dear Reader It is my pleasant privilege to forward a copy of the latest issue of IGC Newsletter (Volume 105, July 2015, issue). In the first technical article, Dr. C. Mallika and her colleagues have shared their experience in establishing atmospheric plasma spray and high-velocity oxy fuel spray facilities for the development of metallic and ceramic coating for applications in pyrochemical reprocessing and fast breeder reactors. Shri R. G. Joshi has studied the influence of soft and core-shell structure of poly (N-isopropylacrylamide) microgel particles on structural ordering, dynamics and shear flow behaviour under dense conditions, and the same is given in the second technical article. This issue’s young officer’s forum features an article by Shri Asif Ahmed Bhat on the hydrodynamics of mixing molten salt and cadmium through experimental simulation. Shri Ashuotosh Mishra has studied the significance of thermo-mechanical constitutive modelling in thermal ratcheting prediction and shared his excitement in the Young Researcher’s Forum.
    [Show full text]
  • Nuclear Security Governance in India: Institutions, Instruments, and Culture
    SANDIA REPORT SAND2015-0233 Unlimited Release Printed January 2015 Nuclear Security Governance in India: Institutions, Instruments, and Culture Sitakanta Mishra Happymon Jacob Research Fellow Assistant Professor Centre for Air Power Studies School of International Studies New Delhi, India Jawaharlal Nehru University New Delhi, India Prepared by Cooperative Monitoring Center Sandia National Laboratories Albuquerque, New Mexico - 87185 and Livermore, California - 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE- AC04-94AL85000. 1 Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.
    [Show full text]
  • Spitzer S 100Th: Founding PPPL & Pioneering Work in Fusion Energy
    (1) Spitzer’s 100th: Founding PPPL & Pioneering Work in Fusion Energy Greg Hammett (2) Some Stories From Working with Spitzer In the Early Years Russell Kulsrud Princeton Plasma Physics Laboratory Colloquium Dec. 4, 2013 These are shorter versions of talks we gave at the 100th Birthday Celebration for Lyman Spitzer, October 19-20, 2013, Peyton Hall, Princeton University, http://www.princeton.edu/astro/news-events/public-events/spitzer-100/ https://www.princeton.edu/research/news/features/a/?id=11377 Video of a longer talk by Kulsrud, “My Early Years Spent Working with Lyman Spitzer“: https://mediacentral.princeton.edu/id/1_1kil7s0p Thanks for slides: Dale Meade, Rob Goldston, Eleanor Starkman and PPPL photo archives, ... PPPL Historical Photos: https://www.dropbox.com/sh/tjv8lbx2844fxoa/FtubOdFWU2 June 19, 2014: added historical info. Jul 9, 2015: pointer to updated figure Lyman Spitzer Jr.’s 100th: Founding PPPL & Pioneering Work in Fusion Energy Outline: • Pictorial tour: from Spitzer’s early days, the Model-C stellarator (1960’s), to TFTR’s 10 megawatts of fusion & the Hubble Space Telescope (Dec. 9-10, 1993) • Russell Kulsrud: A few personal reflections on early days working with Lyman Spitzer. • The road ahead for fusion: – Interesting ideas being pursued in fusion, to improve confinement & reduce the cost of power plants I never officially met Prof. Spitzer, though I saw him at a few seminars. Heard many stories from Tom Stix, Russell Kulsrud, & others, learned from the insights in his book and his ideas in other books. 2 2 Lyman Spitzer, Jr. 1914-1997 Photo by Orren Jack Turner, from Biographical Memoirs V.
    [Show full text]