The Future of Hydrogen in Region Uppsala a Case Study of an Electrolyser As a Node in the District Heating Network

Total Page:16

File Type:pdf, Size:1020Kb

The Future of Hydrogen in Region Uppsala a Case Study of an Electrolyser As a Node in the District Heating Network Uppsala University logotype SAMINT-STS; 21002 Degree project 15 credits June 2021 The future of hydrogen in Region Uppsala A case study of an electrolyser as a node in the district heating network Vilma Grehn, Fredrik Munters & Lovisa Stenhammar Master of Science Programme in Sociotechnical Systems Engineering (STS) Master of Science Programme in Sociotechnical Systems Engineering (STS) Uppsala University logotype The future of hydrogen in Uppsala Vilma Grehn, Fredrik Munters & Lovisa Stenhammar Abstract This report aims to analyse how an electrolyser would benefit Region Uppsala in the transition to a more sustainable society and where it would be most beneficial to place it. The studied locations for placement were in Uppsala, Storvreta and Knivsta. The possibilities of how the residual products oxygen and residual heat could be utilized from the electrolysis process is investigated. The economic calculation includes incomes and expenses of all components in the electrolysis process on a yearly basis and on a 15-years period. The climate calculation includes the reduction of CO2-equivalent emissions when using the waste heat from the electrolyser into the district heating network. Since Uppsala got the bus storage in Kungsängen which makes it possible to utilize the hydrogen, the solar park which makes the electricity cheaper and a district heating network that can utilize the residual heat, it seems like Uppsala is the most beneficial place to build a hydrogen fuel station. Faculty of Science and Technology, Uppsala University. Uppsala. Supervisor: Marcus Nystrand, SuBject reader: Fel! Hittar inte referenskälla., Examiner: Joakim Widén Faculty of Science and Technology Uppsala University, Uppsala Supervisor: Marcus Nystrand Subject reader: Lukas Dahlström Examiner: Joakim Widén Preface This study is a bachelor thesis from the Master of Science Programme in Sociotechnical Systems Engineering profiling on Energy systems at Uppsala University written in year 2021. The project is an order from Region Uppsala in a close collaboration with Uppsala University and STUNS Energy Stories. We would like to thank our supervisor Lukas Dahlström at Uppsala University who has been supportive and helpful through the project, it has been invaluable. Also, we want to thank Marcus Nystrand and Mikael Åhlman at Region Uppsala for sharing your great knowledge with us. Many thanks to the people who have lined up for interviews and helped us do this project in the best possible way. Table of contents 1. Introduction ................................................................................................................................. 3 1.1 Purpose .................................................................................................................................. 4 1.2 Research questions ............................................................................................................... 4 1.3 Delimitations and limitations ................................................................................................... 4 2. Background ................................................................................................................................. 4 2.1 About electrolysers ................................................................................................................. 4 2.1.1 Polymer electrolyte membrane electrolysis ................................................................... 5 2.1.2 Alkaline electrolyser ....................................................................................................... 6 2.1.3 Solid oxide electrolyser .................................................................................................. 6 2.2 About hydrogen ...................................................................................................................... 6 2.2.1 Hydrogen as fuel in transportation ................................................................................. 7 2.2.2 Other uses of hydrogen ................................................................................................. 7 2.2.3 Hydrogen politics ........................................................................................................... 8 2.3 About district heating .............................................................................................................. 9 3. Methodology .............................................................................................................................. 10 3.1 Model description ................................................................................................................. 10 3.2 Case study ........................................................................................................................... 11 3.2.1 Uppsala ....................................................................................................................... 11 3.2.2 Storvreta and Knivsta .................................................................................................. 13 3.3 Data ...................................................................................................................................... 14 3.3.1 Economic Data ............................................................................................................ 14 3.3.2 District heating Data .................................................................................................... 16 3.3.3 Transport sector Data .................................................................................................. 16 3.4 Calculations .......................................................................................................................... 18 3.4.1 Electrolyser calculations .............................................................................................. 19 3.4.2 Economic calculations ................................................................................................. 20 3.4.3 Climate calculations ..................................................................................................... 21 3.4.4 Transport sector calculations ....................................................................................... 21 3.5 Sensitivity analysis ............................................................................................................... 22 4. Results ....................................................................................................................................... 23 4.1 Electrolyser as a node in the district heating network .......................................................... 23 4.1.1 Storvreta ...................................................................................................................... 24 4.1.2 Knivsta ......................................................................................................................... 25 4.1.3 Uppsala ....................................................................................................................... 27 4.2 Economic calculations .......................................................................................................... 28 4.3 Vehicles ................................................................................................................................ 29 1 4.4 Oxygen ................................................................................................................................. 30 4.5 Safety ................................................................................................................................... 32 5. Sensitivity analysis ................................................................................................................... 32 5.1 Different price of hydrogen ................................................................................................... 32 5.2 Residual heat ....................................................................................................................... 34 5.3 Oxygen ................................................................................................................................. 36 5.4 Solar plant ............................................................................................................................ 37 5.5 Investment support ............................................................................................................... 38 5.6 Bus economy ....................................................................................................................... 40 6. Discussion ................................................................................................................................. 41 6.1 Locations .............................................................................................................................. 41 6.2 Hydrogen usage in the transport sector ............................................................................... 43 6.2.1 The market .................................................................................................................. 43 6.2.2 Buses ........................................................................................................................... 44 6.2.3 Other vehicles .............................................................................................................. 45 6.3 Oxygen ................................................................................................................................
Recommended publications
  • Perfluorerade Alkylsyror (PFAA) I Uppsalas Dricksvatten
    LIVSMEDELSVERKET RISKVÄRDERING 1 (9) Risk - och nyttovärderingsavdelningen A Glynn 2012-08-22 dnr 1192/2012 Perfluorerade alkylsyror (PFAA) i Uppsalas dricksvatten Sammanfattning Med anledning av en snabbt ökande exponering av konsumenterna i Uppsala kommun för en viss typ av PFAA, genomfördes en pilotundersökning av PFAA-halter i kranvatten från olika delar av Uppsala kommun. Resultaten pekar mot förhöjda halter av sulfonaterna perfluorohexansulfonat (PFHxS) och perfluorooktansulfonat (PFOS) i de två proverna som togs i Sunnersta (PFOS>20 ng/L; PFHxS>40 ng/L). I ett av de två proverna som togs i centrala staden var halten av PFHxS förhöjd (>15 ng/L). Ett prov från norra stan (Gränby) och ett prov från västra delen av Uppsala (Stabby) innehöll låga halter, liksom proverna från Björklinge och Storvreta. En preliminär intagsberäkning visar att dricksvattnet med de högsta uppmätta halterna av PFHxS ger ett intag som vida överstiger det intag som konsumenterna i medeltal får från livsmedel. Det finns idag inga gränsvärden för PFAA i dricksvatten. En preliminär riskvärdering antyder att de nu uppmätta halterna sannolikt inte innebär någon signifikant hälsorisk för Uppsalas dricksvattenkonsumenter. Ytterligare kartläggningar av dricksvattnet i Uppsala krävs dock för att mer säkra slutsatser ska kunna dras om eventuella hälsorisker förknippade med PFAA i dricksvattnet. Om dricksvattenhalterna av PFHxS långsiktigt är på väg upp i den takt som antyds i studien av konsumenter från Uppsala, så kan halterna i dricksvattnet i framtiden nå nivåer som innebär ökade hälsorisker för konsumenterna. Inledning PFAA är en grupp organiska syror som är mycket svårnedbrytbara och som är starkt ytaktiva. Ämnesgruppen delas in i sulfonsyror och karboxylsyror och de organiska syrorna har en kolkedja där alla väteatomer, som är bundna till kolatomerna, är utbytta mot fluoratomer (Figur 1, Tabell 1).
    [Show full text]
  • Förteckning Över Namn På Gator, Parker Och Andra Allmänna Platser
    NAMNGIVNINGSNÄMNDEN Datum 2018-04-05 Förteckning över namn på gator, parker och andra allmänna platser Abborrens väg Burvik 2006-05-30 Adilsgatan Svartbäcken 1925-05-15 Adjunktsgatan Polacksbacken 2015-11-27 Adolfsbergsvägen Storvreta 1972-12-18 Agdas park Svartbäcken 2013-12-11 Akademigatan Fjärdingen 1943-02-19 Akademivägen Sävja 1968-06-27 Albert Engströmsgatan Gränby 1965-02-19 Albertsvägen Berthåga 1948-06-15 Alice Tegnérs väg Gottsunda 2012-05-09 Alkällevägen Lindbacken 2012-11-28 Alkärrsvägen Storvreta 1972-12-18 Allmogevägen Bälingeby 1974-11-18 Allmänningsvägen Bälingeby 1974-11-18 Almas allé Ultuna 2011-09-28 Almqvistgatan Gränby 1965-02-19 Almstigen 1-7, 2-4, 50-54 Sunnersta 1987-04-27 Almstigen 6-48 Vårdsätra 1987-04-27 Almungevägen Länna-Almunge 1973-12-17 Alriksgatan Kvarngärdet 1943-02-19 Alrotsvägen Bodarna 1968-06-27 Alrunegatan Årsta 1968-09-16 Alrunegatan Sala backe 2016-12-09 Alsikegatan Boländerna 1936-10-16 Altfiolsvägen Gottsunda 1979-03-26 Allvar Gullstrands gata Polacksbacken 2004-05-25 Alva Myrdals plats Kvarngärdet 2016-05-09 Alvägen Norby 1948-06-15 Amanuensgatan Polacksbacken 2015-09-21 Postadress: Uppsala kommun, namngivningsnämnden, 753 75 Uppsala Besöksadress: Stationsgatan 12 • Telefon: 018-727 00 00 (växel) E-post: [email protected] www.uppsala.se 2 (50) Anders Diös torg Sala backe 2017-09-04 Andvägen Rasbo 2006-05-30 Anemonvägen Lövstalöt 2007-06-11 Anna Fabris gata Fyrislund 2013-11-27 Anna Lindhs plats Fålhagen 2004-05-25 Anna Petrus park Kungsängen 2011-09-14 Annas väg Kvarnbo 2004-05-25
    [Show full text]
  • In the Landscape and Between Worlds
    In the Landscape and Between Worlds ronze age settlements and burials in the Swedish provinces around Lakes Mälaren and Hjälmaren yield few Bbronze objects and fewer of the era’s fine stone battle axes. Instead, these things were found by people working on wetland reclamation and stream dredging for about a century up to the Second World War. Then the finds stopped because of changed agricultural practices. The objects themselves have received much study. Not so with the sites where they were deposited. This book reports on a wide- ranging landscape-archaeological survey of Bronze Age deposition sites, with the aim to seek general rules in the placement of sites. How did a person choose the appropriate site to deposit a socketed axe in 800 bc? The author has investigated known sites on foot and from his desk, using a wide range of archive materials, maps and shoreline displacement data that have only recently come on-line. Over 140 sites are identified closely enough to allow characterisation of their Bronze Age landscape contexts. Numerous recurring traits emerge, forming a basic predictive or heuristic model. Bronze Age deposi- tion sites, the author argues, are a site category that could profitably be placed on contract archaeology’s agenda during infrastructure projects. Archaeology should seek these sites, not wait for others to report on finding them. martin rundkvist is an archaeologist who received his doctorate from Stockholm University in 2003. He has published research into all the major periods of Sweden’s post-glacial past. Rundkvist teaches prehistory at Umeå University, edits the journal Fornvännen and keeps the internationally popular Aardvarchaeology blog.
    [Show full text]
  • The Biotech Heart of Sweden Second in a Series Covering the “Hot Spots” of Biotech Research and Business Around the Globe
    The Biotech Heart of Sweden Second in a series covering the “hot spots” of biotech research and business around the globe. BY FELICIA M. WILLIS Läby Harbo Skyttorp Åkerlänna Alunda Björklinge Vattholma Jumkil Lövstalöt Storvreta Bälinge Rasbo ICELAND Norwegian Gamla Uppsala Sea Länna Järlåsa Almunge SWEDEN FINLAND Vänge Gulf UPPSALA Gunsta North NORWAY of Atlantic Bothnia Ocean Sävja • UPPSALA Gottsunda • STOCKHOLM RUSSIA Bergsbrunna ESTONIA North Sunnersta Sea LATVIA DENMARK Baltic HusbyLång IRELAND Sea LITHUANIA Alsike U. K. NETH. BYELARUS Örsundsbro Knivsta Skeppture GERMANY POLAND English Channel BELGIUM Skokloster UKRAINE LUX. CZECH SLOVAKIA MOLDOVA FRANCE AUSTRIA SWITZERLAND HUNGARY Bay of Biscay SLOVENIA ROMANIA CROATIA Black BOSNIA Sea SERBIA BULGARIA weden is the fourth-largest biotech nation ANDORRA MONTENEGRO PORTUGAL ITALY MACEDONIA in Europe and accounts for 1–4% of articles in scientific SPAIN Adriatic Tyrrhenian ALBANIA Sea TURKEY journals. Uppsala, nicknamed “the world’s most biotech- Aegean S GREECE Ionian intense city”, is 50 miles northwest of Stockholm. Uppsala started Mediterranean Sea Sea in biotech in the 1940s with a lone pharmaceutical company, known amounts CYPRUS then as Pharmacia. Since that time, the company has made of money in research many changes, including merging with Upjohn, forming a biotech- and product development. This nology products joint venture with Amersham, and being acquired trend continued during the 1970s, when the pas- later by Pfizer. Although many other companies are in Sweden sion that Swedish companies felt about R&D became known now, Pharmacia laid the groundwork for the upsurge of biotech. internationally. In the early 1980s, the Swedish endeavor began to According to information from Uppsala BIO, 8% of Uppsala’s work- increase rapidly, and it grew at an average annual rate of about 20% force is employed in biotech.
    [Show full text]
  • Axel Erdmann - Språkforskare Och Upplandsvän
    135 Axel Erdmann - språkforskare och upplandsvän Promenader i Uppsalas omgifningar MATSRYDEN Axel Erdmann var Uppsalas och Sveriges förste professor i engelska. Han utnämn• des den 26 februari 1904 till ordinarie professor i engelska språket vid Uppsala universitet. Mellan 1892 och 1904 hade han varit e.o. professor i germanska språk, i praktiken engelska och tyska, vid uni­ versitetet. Erdmann var född i Stockholm 1843. Hans far var en framstående geolog och den förste chefen för Sveriges geologiska undersökning (SGU). Efter studier vid Nya elementarsko­ lan i Stockholm kom Axel 1861 till Upp­ sala universitet - då ett lärosäte med ca 950 studenter och 75 lärare. Han läste där moderna språk ("nyeuropeisk lingvistik och modern litteratur"), latin, grekiska, nordiska språk, teoretisk filosofi och astro­ nomi. Det sistnämnda ämnet förvånar, men vid denna tid var ett naturveten­ skapligt ämne obligatoriskt i en filosofisk grundexamen. 136 AXEL ERDMANN SPRÅKFORSKARE OCH UPPLANDSVÄN Erdmann disputerade 1871 för pro­ samband med folkets litteratur och kul­ fessor Jacob Theodor Hagberg, en yngre tur i det hela". På hans seminarier stu­ bror till Shakespeareöversättaren, på en derades, förutom äldre och nyare litterä• avhandling i fornengelska och blev do­ ra texter, bl.a. engelsk slang och engelska cent i fornengelska språket. sporttermer. Tidningsläsning infördes i Efter disputationen företog Erdmann den akademiska engelskundervisningen. fleråriga forsknings- och bildningsresor på Några månaders vistelse i det främman• kontinenten och i England. Han lärde sig de landet anbefalldes, för att öka den sanskrit så grundligt att han 1877- 91 praktiska språkfärdigheten. undervisade och examinerade i detta ämne Flera av Erdmanns elever blev profes­ vid Uppsala universitet.
    [Show full text]
  • Energy Programme 2050 Creating an Energy System That Meets the Power and Material Challenges of a Climate Positive Uppsala
    Energy Programme 2050 Creating an energy system that meets the power and material challenges of a Climate Positive Uppsala. The municipal council reached a final decision on 2018-05-28, section 109, for this activating strategic document. Document name Produced by Date Page Energy Programme 2050 The Municipal Executive 2018-03-14 1 (49) Office Registration number Relevant department Document owner Revised KSN-2017-1868 Municipal-wide Sustainable Development - Manager About Energy Programme 2050 Energy Programme 2050 is a municipal-wide policy document that describes Uppsala municipality's vision for the long-term development of the energy system in Uppsala. The goal is to transform the local energy system in order reach the municipality’s climate positive target. The aim is to create a more environmentally, socially, and financially sustainable energy system which is itself better connect it to other public works and infrastructure. The purpose is to increase the overall resource efficiency, sustainability and the degree of robustness of the system. Uppsala municipality's goals for resource efficiency, health, the environment and climate, rural and urban development, more job opportunities and environmentally-driven business development, civil preparedness, as well as the strengthening of ecosystems, are all foundations of the programme. The programme expands and builds upon the Municipality’s 2016 Master Plan. The Energy Programme is a cornerstone in the efforts to make Uppsala Fossil-Free and Renewable in 2030 and Climate Positive in
    [Show full text]
  • Annual and Sustainability Report 2018
    Annual Report 2018 with Sustainability Report Contents General One of Sweden’s largest private property companies .... 1 The year in brief ...........................................................................2 Page Page Statement by CEO ........................................................................5 Business concept, vision and mission ................................6 Business model ............................................................................7 18Properties across 24Property management that The Rikshuset concept – a strategic property ..................8 all of Sweden makes a difference Rikshem’s five target areas .....................................................10 Global challenges and possibilities .....................................12 Navigating towards sustainability .......................................14 Rikshem holds stable market position ...............................16 Operations Properties across all of Sweden ............................................18 Property valuation .................................................................... 22 Active property management .............................................. 24 Actions for a brighter future .................................................. 30 Zoning plans that support growth ..................................... 34 Property development potential ........................................ 36 Residential areas for everyone ............................................ 38 Page Engagement as a driving force ............................................40
    [Show full text]
  • NR 5 2017 Domsöndagen – 3:E Sönd I Fastan December– Februari
    Kyrkbänken NR 5 2017 Domsöndagen – 3:e sönd i fastan December– februari Kyrkan satsar i Skyttorp …………… sid 2 Temakvällar ”Andlig längtan” ……… sid 7… Människa inte till salu ………………… sid 8… dessa fina kyrkor att börja förfalla. ar och vill vara med och påverka Visserligen ger staten ett litet bidrag vilka det är som ska vara förtroen- till kyrkobyggnaderna men det mesta devalda de kommande fyra år. Men ska vi som är medlemmar i Svenska församlingen är inte bara de förtro- kyrkan stå för. endevalda utan alla som vill vara Nästa år i februari byter vi guds- med på olika sätt. Din röst är viktig tjänsttid i Lena och Tensta. Efter även när det inte är val. Försam- 1 års prövotid byter vi tillbaka till lingen behöver dig och alla andra den gamla tiden: kl 9.30 i Tensta för annars har vi ingen församling. och kl 11.00 i Lena. Ett undantag blir det söndag 11 mars kl 11.00 då vi Vattholma pastorat har under firar gemensam Sondomässa i Ten- hösten haft prostvisitation dvs sta med förra kyrkoherden Chris- fått besök från biskopens utsände tina Engqvist och pastoratets körer. för att se hur vi arbetar och hur vi fungerar. Det är bra att det fi- Det blev rekord i röstdeltagan- ras tre gudstjänster varje helg och det i kyrkovalet. Aldrig förr har så det är bra att här finns en stor barn Kyrkoherden har ordet… många röstat som i år. TAC K för och ungdomsverksamhet, men här att du liksom många andra engage- finns också vissa saker som det Vi går in i Adventstiden och ser fram rade er och röstade.
    [Show full text]
  • Potential for Solar Energy on Rooftops in the Municipality of Uppsala
    Examensarbete 15 hp Juni 2013 Potential for Solar Energy on Rooftops in the Municipality of Uppsala Jasmine Hammam Sara Johansson Hanna Persson Abstract Potential for Solar Energy on Rooftops in the Municipality of Uppsala Jasmine Hammam, Sara Johansson, Hanna Persson Teknisk- naturvetenskaplig fakultet UTH-enheten Uppsala City Council has set up milestones for each decade from year 2020 to 2050 to steadily reduce the greenhouse gas emissions per capita in the municipality of Besöksadress: Uppsala. The Climate Protocol is working on a roadmap with guidelines on how to Ångströmlaboratoriet Lägerhyddsvägen 1 achieve the current climate goals. The roadmap is expected to be finished in year Hus 4, Plan 0 2014, and it is currently being investigated to what extent solar energy could contribute to achieving the climate goals. The purpose of this study is to estimate the Postadress: solar energy potential in the municipality of Uppsala for the years 2020 and 2050 Box 536 751 21 Uppsala based on an assessment of what a prospective utilization of solar energy systems on rooftops could potentially generate. The addressed solar techniques are photovoltaics Telefon: based systems and solar thermal collectors. 018 – 471 30 03 The results indicate that an optimal rooftop area of 5.9 km² is estimated in Uppsala Telefax: municipality by 2020, and 8.8 km² by 2050. The total solar energy potential in the 018 – 471 30 00 municipality is estimated to 1.5 TWh in 2020 and 1.9 TWh in 2050. Thus, approximately half of all the buildings energy consumption in the municipality could Hemsida: potentially be covered by solar energy.
    [Show full text]
  • Modellering Av Ett Fossilfritt Energisystem I Uppsala Till År 2050
    Modellering av ett fossilfritt energisystem i Uppsala till år 2050 Modeling of a fossil free energy system in Uppsala by the year 2050 Björn Isaksson Civilingenjörsprogrammet i energisystem Examensarbete 2016:10 ISSN 1654-9392 Uppsala 2016 Modellering av ett fossilfritt energisystem i Uppsala till år 2050 Modeling of a fossil free energy system in Uppsala by the year 2050 Björn Isaksson Handledare: Cay Åsberg, Semcon Sweden AB Biträdande handledare: Björn Sigurdsson, Uppsala kommun Ämnesgranskare: Cecilia Sundberg, institutionen för energi och teknik, SLU Examinator: Åke Nordberg, institutionen för energi och teknik, SLU Omfattning: 30 hp Nivå, fördjupning och ämne: Avancerad nivå, A2E, teknik Kurstitel: Examensarbete i energisystem Kurskod: EX0724 Program/utbildning: Civilingenjörsprogrammet i energisystem 300 hp Utgivningsort: Uppsala Utgivningsår: 2016 Serietitel: Examensarbete (Institutionen för energi och teknik, SLU) Delnummer i serien: 2016:10 ISSN: 1654-9392 Elektronisk publicering: http://stud.epsilon.slu.se Nyckelord: drivmedel, metanol, DME, vätgas, förgasning, förnybar Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Fakulteten för naturresurser och jordbruksvetenskap Institutionen för energi och teknik Abstract Most of the worlds energy demand is met by fossil fuels that will run out eventually. In Sweden however, sectors like heating and power production are more or less fossil free or will be very soon. The transport sector is however largely dominated by oil and its derivatives. Use of electricity in the transport sector is rising but alternative fuels seem to be needed to phase out fossil fuels in the coming 15-40 years. This thesis uses an existing model of Uppsala municipality to show the systemic effects of a transition from fossil fuels to a combination of electricity and biofuels manufactured within the energy system using gasification.
    [Show full text]
  • Tätorter 2000 Localities 2000
    MI 38 SM 0101 Tätorter 2000 Localities 2000 I korta drag 1936 tätorter i Sverige år 2000 I Sverige fanns det 1 936 tätorter år 2000. I korthet definieras en tätort som sammanhängande bebyggelse med högst 200 meter mellan husen och minst 200 invånare. Under perioden 1995 till 2000 har 46 nya tätorter tillkommit. Samti- digt har 48 orter upphört som tätorter, beroende på att folkmängden nu minskat till under 200. Kraftigt ökad folkmängd i de största tätorterna Mellan 1995 och 2000 har de fem tätorterna med över 100 000 invånare, dvs. Stockholm, Göteborg, Malmö, Uppsala och Västerås fått kraftigt ökad befolk- ning, totalt nära 100 000 personer, därav över 60 000 i Stockolms tätort. De små tätorterna har till övervägande del minskat i befolkning. År 2000 bodde 7 465 000 personer i tätort vilket motsvarar 84 procent av hela befolkningen. Totalt har tätortsfolkmängden ökat med 47 000 personer eller knappt 1 procent mellan 1995 och 2000. Av den totala tätortsbefolkningen år 2000 bodde 43 procent i de 20 största tätorterna. Av dessa har nästan samtliga ökat sin folkmängd mellan 1995 och 2000. 16 procent av befolkningen bor utanför tätort År 2000 bodde totalt 1 418 000 personer eller 16 procent utanför tätort vilket är en minskning med knappt 2 000 personer jämfört med 1995. De regionala skill- naderna är stora. Befolkningen utanför tätort har ökat i Stockholms län, Uppsala län och Södermanlands län, men har minskat eller är oförändrad i övriga län. Befolkningstäthet Tätorterna upptar 1,3 procent av Sveriges landareal. Befolkningstätheten, mätt som antal invånare per km2 uppgick för tätorter år 2000 i genomsnitt till 1 433 invånare per km2.
    [Show full text]
  • The Sustainability of Swedish Agriculture in a Coevolutionary Perspective
    The Sustainability of Swedish Agriculture in a Coevolutionary Perspective Basim Saifi Department of Rural Development and Agroecology Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2004 Acta Universitatis Agricultuae Sueciae Agraria 469 ISSN 1401-6249 ISBN 91-576-6499-4 C 2004 Basim Saifi, Uppsala Print: SLU Service/Repro, Uppsala 2004 Abstract Basim Saifi, 2004. The Sustainability of Swedish Agriculture in a Coevolutionary Perspective. Doctoral dissertation. ISSN 1401-6249 ISBN 91-576-6499-4 Sustainability is a social construct that must be addressed contextually both in relation to what a society views to be unsustainable, and in respect to how and why a course of non-sustainable development comes to be pursued. This thesis argues that the challenge of agricultural sustainability can be fruitfully addressed within an analytical framework that consciously and explicitly considers agricultural development as consisting of processes of coevolution involving agriculture and the ecological and socioeconomic systems. The model presented indicates that strengthening of local coevolutionary processes is a probable pre- condition for achieving sustainable agriculture. Conditions for following a sustainable path of agricultural development in Sweden are already good and are still improving. On the national level, the costs of improvements in sustainability are decreasing, while the benefits are increasing. On the global level, the historical decline in food prices should not be expected to continue in the coming decades because of both resource limitations and environmental degradation. Ten principles and consequently ten indicators are identified that may help to promote agricultural sustainability in Sweden within the context of strengthened local interaction and interconnectedness. When the model of coevolution and the indicators derived are applied to Swedish agricultural development during the twentieth century, the following conclusions are reached.
    [Show full text]