Potential for Solar Energy on Rooftops in the Municipality of Uppsala

Total Page:16

File Type:pdf, Size:1020Kb

Potential for Solar Energy on Rooftops in the Municipality of Uppsala Examensarbete 15 hp Juni 2013 Potential for Solar Energy on Rooftops in the Municipality of Uppsala Jasmine Hammam Sara Johansson Hanna Persson Abstract Potential for Solar Energy on Rooftops in the Municipality of Uppsala Jasmine Hammam, Sara Johansson, Hanna Persson Teknisk- naturvetenskaplig fakultet UTH-enheten Uppsala City Council has set up milestones for each decade from year 2020 to 2050 to steadily reduce the greenhouse gas emissions per capita in the municipality of Besöksadress: Uppsala. The Climate Protocol is working on a roadmap with guidelines on how to Ångströmlaboratoriet Lägerhyddsvägen 1 achieve the current climate goals. The roadmap is expected to be finished in year Hus 4, Plan 0 2014, and it is currently being investigated to what extent solar energy could contribute to achieving the climate goals. The purpose of this study is to estimate the Postadress: solar energy potential in the municipality of Uppsala for the years 2020 and 2050 Box 536 751 21 Uppsala based on an assessment of what a prospective utilization of solar energy systems on rooftops could potentially generate. The addressed solar techniques are photovoltaics Telefon: based systems and solar thermal collectors. 018 – 471 30 03 The results indicate that an optimal rooftop area of 5.9 km² is estimated in Uppsala Telefax: municipality by 2020, and 8.8 km² by 2050. The total solar energy potential in the 018 – 471 30 00 municipality is estimated to 1.5 TWh in 2020 and 1.9 TWh in 2050. Thus, approximately half of all the buildings energy consumption in the municipality could Hemsida: potentially be covered by solar energy. http://www.teknat.uu.se/student A sensitivity analysis is carried out to test the results by altering input parameters and components. The sensitivity analysis indicates that the solar energy potential would increase by optimizing roof deployment areas when constructing new buildings and improving the solar efficiency for photovoltaics. The results indicate that solar energy could cover 49 percent of the municipality’s expected energy demand in 2020 and 64 percent in 2050. Handledare: Björn Sigurdson Ämnesgranskare: David Lingfors Examinator: Joakim Widén ISSN: 1650-8319, TVE 13 006 maj Table of contents 1.! Introduction .......................................................................................................................... 9! 1.1! Purpose ........................................................................................................................ 10! 1.2! Terminological clarification ........................................................................................... 10! 1.3! Limitations ..................................................................................................................... 10! 1.4! Report outline ............................................................................................................... 11! 2.! Background ........................................................................................................................ 12! 2.1! Climate goals of Uppsala Municipality .......................................................................... 12! 2.2! Active solar energy systems ......................................................................................... 13! 3.! System view ....................................................................................................................... 14! 3.1! Grid parity ..................................................................................................................... 15! 4.! Methodology ...................................................................................................................... 16! 4.1! Building types and estimated roof surfaces .................................................................. 17! 4.2! Roof angles ................................................................................................................... 18! 4.3! Azimuth angle ............................................................................................................... 19! 4.4! Shading and obstacles on roof areas ........................................................................... 20! 4.5! Solar calculations .......................................................................................................... 21! 4.5.1! Calculating the solar efficiency ............................................................................. 21! 4.5.2! Solar power output from a tilted surface ............................................................... 22! 4.6! Future scenarios ........................................................................................................... 23! 5.! Data ..................................................................................................................................... 24! 5.1! Future constructions in the municipality ........................................................................ 24! 5.2! Cultural and historical values ........................................................................................ 25! 5.3! Estimated number of buildings and ground area .......................................................... 25! 5.3.1! Buildings suitable for solar energy systems ......................................................... 26! 5.4! The energy consumption in the municipality ................................................................. 28! 6.! Sensitivity analysis for 2020 and 2050 ............................................................................ 29! 6.1! Roof angle .................................................................................................................... 29! 6.2! Azimuth angle ............................................................................................................... 29! 6.3! Shading and obstacles ................................................................................................. 29! 6.4! Improved efficiency ....................................................................................................... 30! 6.5! Estimated roof area of new buildings 2020 to 2050 ...................................................... 31! 7.! Results ................................................................................................................................ 32! 7.1! Roof area calculations .................................................................................................. 32! 7.2! Solar energy potential ................................................................................................... 34! 7.3! Sensitivity analysis ........................................................................................................ 35! 7.4! Comparison of the two scenarios ................................................................................. 36! 8.! Discussion .......................................................................................................................... 37! 3 ! 8.1! Results .......................................................................................................................... 37! 8.2! Sensitivity analysis ........................................................................................................ 37! 8.3! Critical analysis ............................................................................................................. 37! 8.4! A future outlook ............................................................................................................. 38! 8.5! Further work .................................................................................................................. 40! 9.! Conclusions ....................................................................................................................... 41! 10.! References ....................................................................................................................... 42! 10.1! Literature ..................................................................................................................... 42! 10.2! Publications ................................................................................................................ 42! 10.3! Web sites .................................................................................................................... 44! 10.4! Other references ......................................................................................................... 46! Appendix: Solar Energy Potentials ......................................................................................... 47! ! ! 4 ! Occurring Terms and Abbreviations Apartment buildings Buildings with several households (apartments) under the same roof, estimated to 14.55 apartments per building. Azimuth The facilities orientation relative to the south. Directly to the south gives 0 degrees, west 90 degrees and east -90 degrees. Diffuse radiation Particles and clouds scatter the solar radiation to be distributed over the entire hemisphere. Direct radiation See definition for Solar Radiation. GI Global Irradiance, solar radiation on module plane. η Solar cells efficiency rate, measured in percent. NOCT Nominal Operating Cell Temperature, used to determine cell efficiency Module Collection of photovoltaic arrays, also called panels PV Photovoltaic, direct conversion of solar radiation to electricity. Small houses Refers to individual, detached and semi-detached homes such as villas, cottages
Recommended publications
  • Perfluorerade Alkylsyror (PFAA) I Uppsalas Dricksvatten
    LIVSMEDELSVERKET RISKVÄRDERING 1 (9) Risk - och nyttovärderingsavdelningen A Glynn 2012-08-22 dnr 1192/2012 Perfluorerade alkylsyror (PFAA) i Uppsalas dricksvatten Sammanfattning Med anledning av en snabbt ökande exponering av konsumenterna i Uppsala kommun för en viss typ av PFAA, genomfördes en pilotundersökning av PFAA-halter i kranvatten från olika delar av Uppsala kommun. Resultaten pekar mot förhöjda halter av sulfonaterna perfluorohexansulfonat (PFHxS) och perfluorooktansulfonat (PFOS) i de två proverna som togs i Sunnersta (PFOS>20 ng/L; PFHxS>40 ng/L). I ett av de två proverna som togs i centrala staden var halten av PFHxS förhöjd (>15 ng/L). Ett prov från norra stan (Gränby) och ett prov från västra delen av Uppsala (Stabby) innehöll låga halter, liksom proverna från Björklinge och Storvreta. En preliminär intagsberäkning visar att dricksvattnet med de högsta uppmätta halterna av PFHxS ger ett intag som vida överstiger det intag som konsumenterna i medeltal får från livsmedel. Det finns idag inga gränsvärden för PFAA i dricksvatten. En preliminär riskvärdering antyder att de nu uppmätta halterna sannolikt inte innebär någon signifikant hälsorisk för Uppsalas dricksvattenkonsumenter. Ytterligare kartläggningar av dricksvattnet i Uppsala krävs dock för att mer säkra slutsatser ska kunna dras om eventuella hälsorisker förknippade med PFAA i dricksvattnet. Om dricksvattenhalterna av PFHxS långsiktigt är på väg upp i den takt som antyds i studien av konsumenter från Uppsala, så kan halterna i dricksvattnet i framtiden nå nivåer som innebär ökade hälsorisker för konsumenterna. Inledning PFAA är en grupp organiska syror som är mycket svårnedbrytbara och som är starkt ytaktiva. Ämnesgruppen delas in i sulfonsyror och karboxylsyror och de organiska syrorna har en kolkedja där alla väteatomer, som är bundna till kolatomerna, är utbytta mot fluoratomer (Figur 1, Tabell 1).
    [Show full text]
  • Förteckning Över Namn På Gator, Parker Och Andra Allmänna Platser
    NAMNGIVNINGSNÄMNDEN Datum 2018-04-05 Förteckning över namn på gator, parker och andra allmänna platser Abborrens väg Burvik 2006-05-30 Adilsgatan Svartbäcken 1925-05-15 Adjunktsgatan Polacksbacken 2015-11-27 Adolfsbergsvägen Storvreta 1972-12-18 Agdas park Svartbäcken 2013-12-11 Akademigatan Fjärdingen 1943-02-19 Akademivägen Sävja 1968-06-27 Albert Engströmsgatan Gränby 1965-02-19 Albertsvägen Berthåga 1948-06-15 Alice Tegnérs väg Gottsunda 2012-05-09 Alkällevägen Lindbacken 2012-11-28 Alkärrsvägen Storvreta 1972-12-18 Allmogevägen Bälingeby 1974-11-18 Allmänningsvägen Bälingeby 1974-11-18 Almas allé Ultuna 2011-09-28 Almqvistgatan Gränby 1965-02-19 Almstigen 1-7, 2-4, 50-54 Sunnersta 1987-04-27 Almstigen 6-48 Vårdsätra 1987-04-27 Almungevägen Länna-Almunge 1973-12-17 Alriksgatan Kvarngärdet 1943-02-19 Alrotsvägen Bodarna 1968-06-27 Alrunegatan Årsta 1968-09-16 Alrunegatan Sala backe 2016-12-09 Alsikegatan Boländerna 1936-10-16 Altfiolsvägen Gottsunda 1979-03-26 Allvar Gullstrands gata Polacksbacken 2004-05-25 Alva Myrdals plats Kvarngärdet 2016-05-09 Alvägen Norby 1948-06-15 Amanuensgatan Polacksbacken 2015-09-21 Postadress: Uppsala kommun, namngivningsnämnden, 753 75 Uppsala Besöksadress: Stationsgatan 12 • Telefon: 018-727 00 00 (växel) E-post: [email protected] www.uppsala.se 2 (50) Anders Diös torg Sala backe 2017-09-04 Andvägen Rasbo 2006-05-30 Anemonvägen Lövstalöt 2007-06-11 Anna Fabris gata Fyrislund 2013-11-27 Anna Lindhs plats Fålhagen 2004-05-25 Anna Petrus park Kungsängen 2011-09-14 Annas väg Kvarnbo 2004-05-25
    [Show full text]
  • In the Landscape and Between Worlds
    In the Landscape and Between Worlds ronze age settlements and burials in the Swedish provinces around Lakes Mälaren and Hjälmaren yield few Bbronze objects and fewer of the era’s fine stone battle axes. Instead, these things were found by people working on wetland reclamation and stream dredging for about a century up to the Second World War. Then the finds stopped because of changed agricultural practices. The objects themselves have received much study. Not so with the sites where they were deposited. This book reports on a wide- ranging landscape-archaeological survey of Bronze Age deposition sites, with the aim to seek general rules in the placement of sites. How did a person choose the appropriate site to deposit a socketed axe in 800 bc? The author has investigated known sites on foot and from his desk, using a wide range of archive materials, maps and shoreline displacement data that have only recently come on-line. Over 140 sites are identified closely enough to allow characterisation of their Bronze Age landscape contexts. Numerous recurring traits emerge, forming a basic predictive or heuristic model. Bronze Age deposi- tion sites, the author argues, are a site category that could profitably be placed on contract archaeology’s agenda during infrastructure projects. Archaeology should seek these sites, not wait for others to report on finding them. martin rundkvist is an archaeologist who received his doctorate from Stockholm University in 2003. He has published research into all the major periods of Sweden’s post-glacial past. Rundkvist teaches prehistory at Umeå University, edits the journal Fornvännen and keeps the internationally popular Aardvarchaeology blog.
    [Show full text]
  • The Biotech Heart of Sweden Second in a Series Covering the “Hot Spots” of Biotech Research and Business Around the Globe
    The Biotech Heart of Sweden Second in a series covering the “hot spots” of biotech research and business around the globe. BY FELICIA M. WILLIS Läby Harbo Skyttorp Åkerlänna Alunda Björklinge Vattholma Jumkil Lövstalöt Storvreta Bälinge Rasbo ICELAND Norwegian Gamla Uppsala Sea Länna Järlåsa Almunge SWEDEN FINLAND Vänge Gulf UPPSALA Gunsta North NORWAY of Atlantic Bothnia Ocean Sävja • UPPSALA Gottsunda • STOCKHOLM RUSSIA Bergsbrunna ESTONIA North Sunnersta Sea LATVIA DENMARK Baltic HusbyLång IRELAND Sea LITHUANIA Alsike U. K. NETH. BYELARUS Örsundsbro Knivsta Skeppture GERMANY POLAND English Channel BELGIUM Skokloster UKRAINE LUX. CZECH SLOVAKIA MOLDOVA FRANCE AUSTRIA SWITZERLAND HUNGARY Bay of Biscay SLOVENIA ROMANIA CROATIA Black BOSNIA Sea SERBIA BULGARIA weden is the fourth-largest biotech nation ANDORRA MONTENEGRO PORTUGAL ITALY MACEDONIA in Europe and accounts for 1–4% of articles in scientific SPAIN Adriatic Tyrrhenian ALBANIA Sea TURKEY journals. Uppsala, nicknamed “the world’s most biotech- Aegean S GREECE Ionian intense city”, is 50 miles northwest of Stockholm. Uppsala started Mediterranean Sea Sea in biotech in the 1940s with a lone pharmaceutical company, known amounts CYPRUS then as Pharmacia. Since that time, the company has made of money in research many changes, including merging with Upjohn, forming a biotech- and product development. This nology products joint venture with Amersham, and being acquired trend continued during the 1970s, when the pas- later by Pfizer. Although many other companies are in Sweden sion that Swedish companies felt about R&D became known now, Pharmacia laid the groundwork for the upsurge of biotech. internationally. In the early 1980s, the Swedish endeavor began to According to information from Uppsala BIO, 8% of Uppsala’s work- increase rapidly, and it grew at an average annual rate of about 20% force is employed in biotech.
    [Show full text]
  • Axel Erdmann - Språkforskare Och Upplandsvän
    135 Axel Erdmann - språkforskare och upplandsvän Promenader i Uppsalas omgifningar MATSRYDEN Axel Erdmann var Uppsalas och Sveriges förste professor i engelska. Han utnämn• des den 26 februari 1904 till ordinarie professor i engelska språket vid Uppsala universitet. Mellan 1892 och 1904 hade han varit e.o. professor i germanska språk, i praktiken engelska och tyska, vid uni­ versitetet. Erdmann var född i Stockholm 1843. Hans far var en framstående geolog och den förste chefen för Sveriges geologiska undersökning (SGU). Efter studier vid Nya elementarsko­ lan i Stockholm kom Axel 1861 till Upp­ sala universitet - då ett lärosäte med ca 950 studenter och 75 lärare. Han läste där moderna språk ("nyeuropeisk lingvistik och modern litteratur"), latin, grekiska, nordiska språk, teoretisk filosofi och astro­ nomi. Det sistnämnda ämnet förvånar, men vid denna tid var ett naturveten­ skapligt ämne obligatoriskt i en filosofisk grundexamen. 136 AXEL ERDMANN SPRÅKFORSKARE OCH UPPLANDSVÄN Erdmann disputerade 1871 för pro­ samband med folkets litteratur och kul­ fessor Jacob Theodor Hagberg, en yngre tur i det hela". På hans seminarier stu­ bror till Shakespeareöversättaren, på en derades, förutom äldre och nyare litterä• avhandling i fornengelska och blev do­ ra texter, bl.a. engelsk slang och engelska cent i fornengelska språket. sporttermer. Tidningsläsning infördes i Efter disputationen företog Erdmann den akademiska engelskundervisningen. fleråriga forsknings- och bildningsresor på Några månaders vistelse i det främman• kontinenten och i England. Han lärde sig de landet anbefalldes, för att öka den sanskrit så grundligt att han 1877- 91 praktiska språkfärdigheten. undervisade och examinerade i detta ämne Flera av Erdmanns elever blev profes­ vid Uppsala universitet.
    [Show full text]
  • Energy Programme 2050 Creating an Energy System That Meets the Power and Material Challenges of a Climate Positive Uppsala
    Energy Programme 2050 Creating an energy system that meets the power and material challenges of a Climate Positive Uppsala. The municipal council reached a final decision on 2018-05-28, section 109, for this activating strategic document. Document name Produced by Date Page Energy Programme 2050 The Municipal Executive 2018-03-14 1 (49) Office Registration number Relevant department Document owner Revised KSN-2017-1868 Municipal-wide Sustainable Development - Manager About Energy Programme 2050 Energy Programme 2050 is a municipal-wide policy document that describes Uppsala municipality's vision for the long-term development of the energy system in Uppsala. The goal is to transform the local energy system in order reach the municipality’s climate positive target. The aim is to create a more environmentally, socially, and financially sustainable energy system which is itself better connect it to other public works and infrastructure. The purpose is to increase the overall resource efficiency, sustainability and the degree of robustness of the system. Uppsala municipality's goals for resource efficiency, health, the environment and climate, rural and urban development, more job opportunities and environmentally-driven business development, civil preparedness, as well as the strengthening of ecosystems, are all foundations of the programme. The programme expands and builds upon the Municipality’s 2016 Master Plan. The Energy Programme is a cornerstone in the efforts to make Uppsala Fossil-Free and Renewable in 2030 and Climate Positive in
    [Show full text]
  • Genova Property Group's Annual Report 2019
    Annual Report / Genova – the personal property company January–December 2019 Rental income amounted to SEK 180.6m (127.7). Net operating income amounted to SEK 129.9m (92.2). Income from property management amounted to SEK 42.9m (21.6), of which income from property manage­ ment attributable to ordinary shareholders was SEK 6.2m (­9.9), corresponding to SEK 0.11 (­0.20) per ordinary share. Net income after tax amounted to SEK 540.4m (263.9), corresponding to SEK 9.05 (4.22) per ordinary share. Long­term net asset value attributable to ordinary shareholders amounted to SEK 1,457.0m (804.4), corresponding to SEK 23.71 (16.09) per ordinary share. The Board proposes that a dividend of SEK 10.50 (10.50) per preference share be distributed quarterly and that no dividend be paid on ordinary shares. Genova 2019 Annual Report 3 GENOVA’S CORPORATE SOCIAL RESPONSIBILITY INITIATIVES ARE PRESENTED IN THE ANNUAL REPORT 4 Genova 2019 Annual Report CEO STATEMENT 12 Genova’s CEO Michael Moschewitz presents the company’s secure business model GENOVA’S VALUE-CREATING REFURBISHMENT PROCESS 18 Target Business model How we create value THE INVESTMENT PROPERTY PORTFOLIO 20 INVESTMENT PROPERTIES 26 Properties for long-term ownership Personal property management Care for the tenant PROJECT DEVELOPMENT 36 Development creates value Urban development from several perspectives A customer and tenant focus SUSTAINABILITY 50 Genova’s sustainable philosophy Genova’s sustainability performance FINANCING AND GOVERNANCE 62 Financial stability enables flexibility Risk and risk management Shares and ownership structure Board of Directors Senior executives Corporate Governance Report FINANCIAL INFORMATION 84 Directors’ Report Financial statements Accounting policies and notes Auditor’s report Handelsmannen 1, Norrtälje Genova 2019 Annual Report 5 6 Genova 2019 Annual Report New Brunna – Between a residential area and an industrial site in the Brunna district a sustainable of Upplands-Bro, Genova has acquired an 11-hectare property that will and modern soon become a vibrant neighbourhood.
    [Show full text]
  • Sweden's Preparedness for Immigration and Its
    Master thesis in Sustainable Development 288 Examensarbete i Hållbar utveckling Sweden’s Preparedness for Immigration and its Coherence with Sustainable Housing - with a case study of the city of Uppsala Beenu Angurala DEPARTMENT OF EARTH SCIENCES INSTITUTIONEN FÖR GEOVETENSKAPER Master thesis in Sustainable Development 288 Examensarbete i Hållbar utveckling Sweden’s Preparedness for Immigration and its Coherence with Sustainable Housing - with a case study of the city of Uppsala Beenu Angurala Supervisor: Lars Rudebeck Evaluator: Gloria Gallardo Copyright © Beenu Angurala and the Department of Earth Sciences, Uppsala University Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2016 Contents List of Tables.......................................................................................................................................ii List of Figures......................................................................................................................................ii Abbreviations.......................................................................................................................................iii Abstract............................................................................................................................................... iv Summary..............................................................................................................................................v 1 Introduction .................................................................................................................................
    [Show full text]
  • Regulatory Framework for Nuclear Fuel Management
    SE0100130 Technical Report TR-01-03 Integrated account of method, site selection and programme prior to the site investigation phase Svensk Karnbranslehantering AB December 2000 Svensk Karnbranslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19 PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK Integrated account of method, site selection and programme prior to the site investigation phase Svensk Karnbranslehantering AB December 2000 Preface The purpose of the ongoing siting process is to find a site on which it is possible to build a deep repository for encapsulated spent nuclear fuel that will be safe in the long term. This report summarizes the material SKB has gathered as a basis for the decisions that need to be made in order for SKB to commence site investigations for a deep repository. SKB's plan is that the investigations, which include test drilling, shall be initiated in 2002. The report contains the supplementary accounts which the Government request- ed in its decision on RD&D-Programme 98 regarding alternative methods, FUD material for site selection, and programme for the site investigations. Research, Development and SKB considers it urgent that the competent authorities and the Government Demonstration clarify in connection with their critical review whether the background material we present here can serve as a basis for: 1. adhering to the KBS-3 method as the most suitable alternative for Sweden and thereby a fundamental premise for the work in the site investigation phase, 2.
    [Show full text]
  • Annual and Sustainability Report 2018
    Annual Report 2018 with Sustainability Report Contents General One of Sweden’s largest private property companies .... 1 The year in brief ...........................................................................2 Page Page Statement by CEO ........................................................................5 Business concept, vision and mission ................................6 Business model ............................................................................7 18Properties across 24Property management that The Rikshuset concept – a strategic property ..................8 all of Sweden makes a difference Rikshem’s five target areas .....................................................10 Global challenges and possibilities .....................................12 Navigating towards sustainability .......................................14 Rikshem holds stable market position ...............................16 Operations Properties across all of Sweden ............................................18 Property valuation .................................................................... 22 Active property management .............................................. 24 Actions for a brighter future .................................................. 30 Zoning plans that support growth ..................................... 34 Property development potential ........................................ 36 Residential areas for everyone ............................................ 38 Page Engagement as a driving force ............................................40
    [Show full text]
  • 2016 Comprehensive Plan in Brief
    What will Uppsala be like in 2050? 2016 Comprehensive Plan in brief A driving force in the world A city administration for all Uppsala is at the forefront of responsible societal development Planning for up to 140,000 new inhabitants by 2050 A place where life can be enjoyed to the full Create proximity Thriving rural community with many urban centers Thinking long-term 3,000 homes and 2,000 workplaces per year Being site-specific and coordinating investment Land and water use Five-core city A structural picture beyond 2050+ Green areas Public transport route Nodal point for public transport City nodes Technical supply system with with District nodes integrated and renewable solutions Mixing and bringing together Countryside Interconnecting routes The city Rapid public transport Closely connected green structure Allocated for new station A growing city interacting with its surroundings I nner city Green stretch and stormwater stretch Area of activity City surroundings A living countryside with Commuter parking Prioritised suburb several built up areas Cycle paths in rural areas River stretch The 2016 Comprehensive Plan is about making use of the current conditions and creating a desirable development in the long term The 2016 Comprehensive Plan for the City of Uppsala was adopted by the City Council on 12 December 2016 2016 Comprehensive Plan – in brief What will Uppsala be like in 2050? Pointing out a direction – here and now The Comprehensive Plan mainly shows how the municipality 2050 is a long way off and many things will look different by wants land and water areas to be used and provides guidance then.
    [Show full text]
  • The Future of Hydrogen in Region Uppsala a Case Study of an Electrolyser As a Node in the District Heating Network
    Uppsala University logotype SAMINT-STS; 21002 Degree project 15 credits June 2021 The future of hydrogen in Region Uppsala A case study of an electrolyser as a node in the district heating network Vilma Grehn, Fredrik Munters & Lovisa Stenhammar Master of Science Programme in Sociotechnical Systems Engineering (STS) Master of Science Programme in Sociotechnical Systems Engineering (STS) Uppsala University logotype The future of hydrogen in Uppsala Vilma Grehn, Fredrik Munters & Lovisa Stenhammar Abstract This report aims to analyse how an electrolyser would benefit Region Uppsala in the transition to a more sustainable society and where it would be most beneficial to place it. The studied locations for placement were in Uppsala, Storvreta and Knivsta. The possibilities of how the residual products oxygen and residual heat could be utilized from the electrolysis process is investigated. The economic calculation includes incomes and expenses of all components in the electrolysis process on a yearly basis and on a 15-years period. The climate calculation includes the reduction of CO2-equivalent emissions when using the waste heat from the electrolyser into the district heating network. Since Uppsala got the bus storage in Kungsängen which makes it possible to utilize the hydrogen, the solar park which makes the electricity cheaper and a district heating network that can utilize the residual heat, it seems like Uppsala is the most beneficial place to build a hydrogen fuel station. Faculty of Science and Technology, Uppsala University. Uppsala. Supervisor: Marcus Nystrand, SuBject reader: Fel! Hittar inte referenskälla., Examiner: Joakim Widén Faculty of Science and Technology Uppsala University, Uppsala Supervisor: Marcus Nystrand Subject reader: Lukas Dahlström Examiner: Joakim Widén Preface This study is a bachelor thesis from the Master of Science Programme in Sociotechnical Systems Engineering profiling on Energy systems at Uppsala University written in year 2021.
    [Show full text]