Depletion of the P43 Mitochondrial T3 Receptor Increases Sertoli Cell

Total Page:16

File Type:pdf, Size:1020Kb

Depletion of the P43 Mitochondrial T3 Receptor Increases Sertoli Cell Depletion of the p43 mitochondrial T3 receptor increases Sertoli cell proliferation in mice Betty Fumel, Stéphanie Roy, Sophie Fouchécourt, Gabriel Livera, Anne-Simone Parent, Francois Casas, Florian Jean Louis Guillou To cite this version: Betty Fumel, Stéphanie Roy, Sophie Fouchécourt, Gabriel Livera, Anne-Simone Parent, et al.. De- pletion of the p43 mitochondrial T3 receptor increases Sertoli cell proliferation in mice. PLoS ONE, Public Library of Science, 2013, 8 (9), pp.1-15. 10.1371/journal.pone.0074015. hal-01129770 HAL Id: hal-01129770 https://hal.archives-ouvertes.fr/hal-01129770 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Depletion of the p43 Mitochondrial T3 Receptor Increases Sertoli Cell Proliferation in Mice Betty Fumel1,2,3,4, Ste´phanie Roy1, Sophie Fouche´court1, Gabriel Livera5, Anne-Simone Parent6, Franc¸ois Casas7,8, Florian Guillou1* 1 INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France, 2 CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France, 3 Universite´ Franc¸ois Rabelais de Tours, Tours, France, 4 IFCE, Nouzilly, France, 5 Universite´ Paris Diderot, Sorbonne Paris Cite´, INSERM U967, CEA/DSV/ iRCM/SCSR Laboratoire de De´veloppement des Gonades, Fontenay-Aux-Roses, France, 6 Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Lie`ge, CHU Sart Tilman, Lie`ge, Belgium, 7 INRA, UMR 866 Dynamique Musculaire et me´tabolisme, Montpellier, France, 8 Universite´ de Montpellier 1 et 2, Montpellier, France Abstract Among T3 receptors, TRa1 is ubiquitous and its deletion or a specific expression of a dominant-negative TRa1 isoform in Sertoli cell leads to an increase in testis weight and sperm production. The identification of a 43-kDa truncated form of the nuclear receptor TRa1 (p43) in the mitochondrial matrix led us to test the hypothesis that this mitochondrial transcription factor could regulate Sertoli cell proliferation. Here we report that p43 depletion in mice increases testis weight and sperm reserve. In addition, we found that p43 deletion increases Sertoli cell proliferation in postnatal testis at 3 days of development. Electron microscopy studies evidence an alteration of mitochondrial morphology observed specifically in Sertoli cells of p432/2 mice. Moreover, gene expression studies indicate that the lack of p43 in testis induced an alteration of the mitochondrial-nuclear cross-talk. In particular, the up-regulation of Cdk4 and c-myc pathway in p432/2 probably explain the extended proliferation recorded in Sertoli cells of these mice. Our finding suggests that T3 limits post-natal Sertoli cell proliferation mainly through its mitochondrial T3 receptor p43. Citation: Fumel B, Roy S, Fouche´court S, Livera G, Parent A-S, et al. (2013) Depletion of the p43 Mitochondrial T3 Receptor Increases Sertoli Cell Proliferation in Mice. PLoS ONE 8(9): e74015. doi:10.1371/journal.pone.0074015 Editor: Joe¨l R. Drevet, Clermont-Ferrand Univ., France Received April 30, 2013; Accepted July 26, 2013; Published September 9, 2013 Copyright: ß 2013 Fumel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: Funding was received from the Agence Nationale pour la Recherche; grant ‘‘Biodiversite´,e´volution des e´cosystemes, e´cosystemes productifs, agronomie’’ (SF, FG), Institut national de la recherche agronomique (FG, SF, FC) and a fellowship Re´gion Centre (BF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] Introduction TRa1 transcript. The p43 is a mitochondrial T3 receptor ubiquitously expressed that stimulates mitochondrial transcription Sertoli cells (SC) are essential in spermatogenesis. It is well and protein synthesis in the presence of T3 [13]. The physiological established that the number of SC conditions the efficiency of importance of p43 was recently revealed by the use of mice spermatogenesis as one SC can only support a limited number of overexpressing or lacking this mitochondrial receptor. In partic- germ cells [1]. SC number is defined during the foetal and pre- ular, these works establish that p43 receptor strongly affects muscle pubertal periods. The SC proliferation arrest mainly depends on mass and the metabolic and contractile features of myofibers [14– thyroid hormone T3. In rodents, during the post natal period, the 16]. In addition, p43 was found to regulate insulin secretion and arrest of SC proliferation and entry into differentiation is glucose homeostasis [17]. correlated with a peak of T3 blood level [2]. Neonatal In this work, we focused our study on testis because the presence hypothyroidism in mice and rats leads to an increase in the of high-affinity binding sites for T3 has been reported in rat Sertoli weight of adult testis and epididymis due to an increase in the daily cell mitochondria [18]. Here we report that p43 specific depletion sperm production [3–8]. in mice increases testis weight and sperm reserve. In addition, we For a while, it was assumed that thyroid hormone acts found that p43 deletion increases Sertoli cell proliferation in exclusively through nuclear receptors: TRa1, TRa2, TRb1, postnatal testis at 3 days of development. Moreover, gene TRb2 encoded by the THRA and THRB genes [9]. Among T3 expression studies provided some molecular mechanisms under- receptors, TRa1 is ubiquitous and it was previously described that lying the ability of T3 to arrest Sertoli cell proliferation. In its total deletion in mice leads to an increase in testis weight and particular, c-myc and Cdk4 could be the central targets of the sperm production [10]. Moreover, a specific expression of mitochondrial-nuclear crosstalk, controlling the proliferation of dominant-negative TRa1 isoform in SC exhibited similar pheno- Sertoli cells. In summary, we demonstrate that the T3 limits post- typic features to the TRa1 knock-out mice: heavier testicular weight and higher sperm reserve [11]. In 1995, a 43-kDa natal Sertoli cell proliferation in part through its mitochondrial T3 truncated form of the nuclear receptor TRa1 was identified in receptor p43. the mitochondrial matrix (p43) [12]. This protein is synthesized by the use of internal initiation site of translation occuring in the PLOS ONE | www.plosone.org 1 September 2013 | Volume 8 | Issue 9 | e74015 p43 Receptor Controls Sertoli Cell Proliferation Materials and Methods Serum FSH Levels Serum FSH levels were determined in a volume of 100 ml using Animals a double Ab method and a RIA kit (rFSH RIA), kindly supplied by All animal experiments were performed according to European the National Institutes of Health (Dr. A. F. Parlow, National directives (86/609/CEE) and approved by the Comite´ d’Ethique Hormone and Peptide Program, Torrance, CA). Rat FSH antigen en matie`re d’Expe´rimentation Animale : Re´gion Languedoc- (NIDDK-rFSH-I) was labeled with 125I by the chloramine-T Rousillon. Our animal studies were conducted in accordance with method and the hormone concentration was expressed using the guidelines for the care and use of laboratory animals issued by the rat FSH reference preparation (NIDDK-rFSH-RP-2) as standard. french Ministry of Agriculture. Intraassay and interassay coefficients were less than 7 and 10%, Mice were fed a standard laboratory diet and tap water ad respectively. The sensitivity of the assay was 0.125 ng/100 ml. libitum. The p432/2 mice lacking specifically the mitochondrial T3 receptor were generated by Franc¸ois Casas as described Testis Histology previously [17]. To only inhibit p43 translation from TR1 mRNA, Testis histology (seminiferous tubule organization) was analyzed we deleted the internal translation start in exon 3 using site after fixing in Bouin’s fluid and embedding in paraffin. Sections directed PCR mutagenesis to change the methionine codon at (4 mm) were stained with haematoxylin for microscopic observa- position 109 to a leucine codon. Targeting construct was tion. electroporated into 129SV embryonic stem (ES) cells. We generated chimeras by blastocyst injection of ES cells and Determination of SC Proliferation Index in Vivo obtained germline transmissionof the mutated allele. We mated p432/2 and WT mice at post-natal day 3 (P3) and 10 (P10) them with C57BL/6 females. Offspring inheriting the p43- were injected with 50 mg/g (of body weight) of 5-bromo-2- mutated allele were intercrossed to generate the p432/2 line. deoxyuridine (BrdU) (Sigma) 3 hours before sacrifice and BrdU Homozygote p432/2 mice born from the 3 independent ES cell was incorporated in proliferating cells. Testis were fixed in Bouin’s clones were viable, fertile, and appeared normal. All the mice used fluid, embedded in paraffin and sectioned (4 mm). After antigen in these studies were back-crossed at least 10 times into the retrieval in a boiling sodium citrate buffer (pH 6.0), endogenous C57BL/6 background. peroxidase activity was quenched with H2O2. BrdU immunode- The colony was generated by crossing p432/2 mice with wild- tection was performed using a mouse IgG monoclonal antibody type (WT) C57BL/6 breeders and generated future generation of (Roche; 1/200), and revealed using a peroxidase labelled polymer WT controls. conjugated to goat anti-mouse IgG (Dako) and 3 39diaminoben- zidine chromogen (DAB) (Dako).
Recommended publications
  • Primate Specific Retrotransposons, Svas, in the Evolution of Networks That Alter Brain Function
    Title: Primate specific retrotransposons, SVAs, in the evolution of networks that alter brain function. Olga Vasieva1*, Sultan Cetiner1, Abigail Savage2, Gerald G. Schumann3, Vivien J Bubb2, John P Quinn2*, 1 Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK 3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, D-63225 Germany *. Corresponding author Olga Vasieva: Institute of Integrative Biology, Department of Comparative genomics, University of Liverpool, Liverpool, L69 7ZB, [email protected] ; Tel: (+44) 151 795 4456; FAX:(+44) 151 795 4406 John Quinn: Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK, [email protected]; Tel: (+44) 151 794 5498. Key words: SVA, trans-mobilisation, behaviour, brain, evolution, psychiatric disorders 1 Abstract The hominid-specific non-LTR retrotransposon termed SINE–VNTR–Alu (SVA) is the youngest of the transposable elements in the human genome. The propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence. Functional enrichment analysis of genes associated with SVA insertions demonstrated their strong link to multiple ontological categories attributed to brain function and the disorders. SVA types that expanded their presence in the human genome at different stages of hominoid life history were also associated with progressively evolving behavioural features that indicated a potential impact of SVA propagation on a cognitive ability of a modern human.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Discovery of Genes by Phylocsf Supplemental
    Supplemental Materials for Discovery of high-confidence human protein-coding genes and exons by whole-genome PhyloCSF helps elucidate 118 GWAS loci Supplemental Methods ....................................................................................................................... 2 Supplemental annotation methods ........................................................................................................... 2 Manual annotation overview ...................................................................................................................................... 2 Summary diagram for the workflow used in this study ................................................................................. 3 Transcriptomics analysis ............................................................................................................................................. 3 Comparative annotation ............................................................................................................................................... 4 Overlap of novel annotations with transposon sequences ........................................................................... 6 Assessing the novelty of annotations ...................................................................................................................... 7 Additional considerations for the annotation of PCCRs in other species ............................................... 7 PhyloCSF and browser tracks ....................................................................................................................
    [Show full text]
  • Role and Mechanisms of Mitophagy in Liver Diseases
    cells Review Role and Mechanisms of Mitophagy in Liver Diseases Xiaowen Ma 1, Tara McKeen 1, Jianhua Zhang 2 and Wen-Xing Ding 1,* 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; [email protected] (X.M.); [email protected] (T.M.) 2 Department of Pathology, Division of Molecular Cellular Pathology, University of Alabama at Birmingham, 901 19th street South, Birmingham, AL 35294, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-913-588-9813 Received: 13 February 2020; Accepted: 28 March 2020; Published: 31 March 2020 Abstract: The mitochondrion is an organelle that plays a vital role in the regulation of hepatic cellular redox, lipid metabolism, and cell death. Mitochondrial dysfunction is associated with both acute and chronic liver diseases with emerging evidence indicating that mitophagy, a selective form of autophagy for damaged/excessive mitochondria, plays a key role in the liver’s physiology and pathophysiology. This review will focus on mitochondrial dynamics, mitophagy regulation, and their roles in various liver diseases (alcoholic liver disease, non-alcoholic fatty liver disease, drug-induced liver injury, hepatic ischemia-reperfusion injury, viral hepatitis, and cancer) with the hope that a better understanding of the molecular events and signaling pathways in mitophagy regulation will help identify promising targets for the future treatment of liver diseases. Keywords: alcohol; autophagy; mitochondria; NAFLD; Parkin; Pink1 1. Introduction Autophagy (or macroautophagy) involves the formation of a double membrane structure called an autophagosome. Autophagosomes bring the enveloped cargoes to the lysosomes to form autolysosomes where the lysosomal enzymes consequently degrade the cargos [1,2].
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]
  • Functional Characterization of Novel Rhot1 Variants, Which Are Associated with Parkinson’S Disease
    FUNCTIONAL CHARACTERIZATION OF NOVEL RHOT1 VARIANTS, WHICH ARE ASSOCIATED WITH PARKINSON’S DISEASE DISSERTATION zur Erlangung des Grades eines DOKTORS DER NATURWISSENSCHAFTEN DER MATHEMATISCH-NATURWISSENSCHAFTLICHEN FAKULTÄT und DER MEDIZINISCHEN FAKULTÄT DER EBERHARD-KARLS-UNIVERSITÄT TÜBINGEN vorgelegt von DAJANA GROßMANN aus Wismar, Deutschland Mai 2016 II PhD-FSTC-2016-15 The Faculty of Sciences, Technology and Communication The Faculty of Science and Medicine and The Graduate Training Centre of Neuroscience DISSERTATION Defense held on 13/05/2016 in Luxembourg to obtain the degree of DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN BIOLOGIE AND DOKTOR DER EBERHARD-KARLS-UNIVERISTÄT TÜBINGEN IN NATURWISSENSCHAFTEN by Dajana GROßMANN Born on 14 August 1985 in Wismar (Germany) FUNCTIONAL CHARACTERIZATION OF NOVEL RHOT1 VARIANTS, WHICH ARE ASSOCIATED WITH PARKINSON’S DISEASE. III IV Date of oral exam: 13th of May 2016 President of the University of Tübingen: Prof. Dr. Bernd Engler …………………………………… Chairmen of the Doctorate Board of the University of Tübingen: Prof. Dr. Bernd Wissinger …………………………………… Dekan der Math.-Nat. Fakultät: Prof. Dr. W. Rosenstiel …………………………………… Dekan der Medizinischen Fakultät: Prof. Dr. I. B. Autenrieth .................................................. President of the University of Luxembourg: Prof. Dr. Rainer Klump …………………………………… Supervisor from Luxembourg: Prof. Dr. Rejko Krüger …………………………………… Supervisor from Tübingen: Prof. Dr. Olaf Rieß …………………………………… Dissertation Defence Committee: Committee members: Dr. Alexander
    [Show full text]
  • The Intra-Mitochondrial O-Glcnacylation System Acutely Regulates OXPHOS Capacity and ROS Dynamics in the Heart
    The intra-mitochondrial O-GlcNAcylation system acutely regulates OXPHOS capacity and ROS dynamics in the heart Justine Dontaine Asma Bouali Frederic Daussin Laurent Bultot https://orcid.org/0000-0002-5088-0101 Didier Vertommen Manon Martin Rahulan Rathagirishnan Alexanne Cuillerier University of Ottawa Sandrine Horman Christophe Beauloye Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique Laurent Gatto UCLouvain https://orcid.org/0000-0002-1520-2268 Benjamin Lauzier Luc Bertrand https://orcid.org/0000-0003-0655-7099 Yan Burelle ( [email protected] ) University of Ottawa https://orcid.org/0000-0001-9379-146X Article Keywords: O-GlcNAcylation, OXPHOS capacity, cellular regulatory mechanism Posted Date: July 19th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-690671/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 THE INTRA-MITOCHONDRIAL O-GLCNACYLATION SYSTEM ACUTELY 2 REGULATES OXPHOS CAPACITY AND ROS DYNAMICS IN THE HEART. 3 4 Justine Dontaine1, A. Bouali2, F. Daussin3, L. Bultot1, D. Vertommen4, M. Martin5, R. 5 Rathagirishnan2, A. Cuillerier6, S. Horman1, C. Beauloye1,7, L. Gatto5, B. Lauzier8, L. Bertrand1,9*, 6 Y. Burelle2,6* 7 1Pole of cardiovascular research (CARD), Institute of Experimental and Clinical Research (IREC), UCLouvain, 8 Brussels, Belgium 9 2Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada 10 3Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369
    [Show full text]
  • Original Article Role of RHOT1 on Migration and Proliferation of Pancreatic Cancer
    Am J Cancer Res 2015;5(4):1460-1470 www.ajcr.us /ISSN:2156-6976/ajcr0006366 Original Article Role of RHOT1 on migration and proliferation of pancreatic cancer Qingqing Li1*, Lei Yao2*, Youzhen Wei2, Shasha Geng1, Chengzhi He3, Hua Jiang1 Departments of 1Geriatrics, 2Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; 3Department of Gastroenterology, Institute of Digestive Diseases, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, China. *Equal contributors. Received January 26, 2015; Accepted March 12, 2015; Epub March 15, 2015; Published April 1, 2015 Abstract: Pancreatic cancer (PC) is one of the most malignant tumors. Rho GTPases can affect several types of hu- man cancers, including PC. In this study, we investigated the role of Ras homolog family member T1 (RHOT1), a new member of Rho GTPases in PC. IHC results showed that RHOT1 was expressed significantly higher in PC tissues than paracancerous tissues (P<0.01) and SMAD family member 4 (SMAD4) was expressed lower in PC tissues (P<0.01). RHOT1 was widely expressed in PC cell lines analyzed by reverse transcription PCR (RT-PCR), real-time quantitative PCR (RT-qPCR) and western blotting (WB). SiRNA-RHOT1 significantly suppressed the proliferation and migration of SW1990 cells. Moreover, SMAD4 was identified as an effector of RHOT1. Our findings suggest that RHOT1 can regulate cell migration and proliferation by suppressing the expression of SMAD4 in PC, which may provide a novel sight to explore the mechanism and therapeutic strategy for PC. Keywords: RHOT1, SMAD4, proliferation, migration, pancreatic cancer Introduction and invasion ability of cancer cells [7].
    [Show full text]
  • Mitochondria-Cytoskeleton Associations In
    Cell Division Mitochondria-cytoskeleton associations in mammalian cytokinesis Lawrence et al. Lawrence et al. Cell Div (2016) 11:3 DOI 10.1186/s13008-016-0015-4 Lawrence et al. Cell Div (2016) 11:3 DOI 10.1186/s13008-016-0015-4 Cell Division RESEARCH Open Access Mitochondria‑cytoskeleton associations in mammalian cytokinesis E. J. Lawrence*, E. Boucher and C. A. Mandato Abstract Background: The role of the cytoskeleton in regulating mitochondrial distribution in dividing mammalian cells is poorly understood. We previously demonstrated that mitochondria are transported to the cleavage furrow during cytokinesis in a microtubule-dependent manner. However, the exact subset of spindle microtubules and molecular machinery involved remains unknown. Methods: We employed quantitative imaging techniques and structured illumination microscopy to analyse the spatial and temporal relationship of mitochondria with microtubules and actin of the contractile ring during cytokine- sis in HeLa cells. Results: Superresolution microscopy revealed that mitochondria were associated with astral microtubules of the mitotic spindle in cytokinetic cells. Dominant-negative mutants of KIF5B, the heavy chain of kinesin-1 motor, and of Miro-1 disrupted mitochondrial transport to the furrow. Live imaging revealed that mitochondrial enrichment at the cell equator occurred simultaneously with the appearance of the contractile ring in cytokinesis. Inhibiting RhoA activ- ity and contractile ring assembly with C3 transferase, caused mitochondrial mislocalisation during division. Conclusions: Taken together, the data suggest a model in which mitochondria are transported by a microtubule- mediated mechanism involving equatorial astral microtubules, Miro-1, and KIF5B to the nascent actomyosin contrac- tile ring in cytokinesis. Keywords: Mitochondria, Cytoskeleton, Cytokinesis, Microtubules, Actin, Miro, KIF5B Background and Myosin II at the equatorial cortex.
    [Show full text]
  • ER-Mitochondria Contacts Promote Mtdna Nucleoids Active Transportation Via Mitochondrial Dynamic Tubulation
    ARTICLE https://doi.org/10.1038/s41467-020-18202-4 OPEN ER-mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tubulation Jinshan Qin1, Yuting Guo2,3, Boxin Xue1, Peng Shi 4, Yang Chen4, Qian Peter Su1,5, Huiwen Hao1, ✉ ✉ Shujuan Zhao1, Congying Wu4,LiYu6, Dong Li 2,3 & Yujie Sun 1 1234567890():,; A human cell contains hundreds to thousands of mitochondrial DNA (mtDNA) packaged into nucleoids. Currently, the segregation and allocation of nucleoids are thought to be passively determined by mitochondrial fusion and division. Here we provide evidence, using live-cell super-resolution imaging, that nucleoids can be actively transported via KIF5B-driven mito- chondrial dynamic tubulation (MDT) activities that predominantly occur at the ER- mitochondria contact sites (EMCS). We further demonstrate that a mitochondrial inner membrane protein complex MICOS links nucleoids to Miro1, a KIF5B receptor on mito- chondria, at the EMCS. We show that such active transportation is a mechanism essential for the proper distribution of nucleoids in the peripheral zone of the cell. Together, our work identifies an active transportation mechanism of nucleoids, with EMCS serving as a key platform for the interplay of nucleoids, MICOS, Miro1, and KIF5B to coordinate nucleoids segregation and transportation. 1 State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, 100871 Beijing, China. 2 National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China. 3 College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China. 4 School of Basic Medical Sciences, Peking University, 100191 Beijing, China.
    [Show full text]
  • Epigenetic Regulation of Mitochondrial Quality Control Genes in Multiple Myeloma: a Sequenom Massarray Pilot Investigation on Hmcls
    Journal of Clinical Medicine Communication Epigenetic Regulation of Mitochondrial Quality Control Genes in Multiple Myeloma: A Sequenom MassARRAY Pilot Investigation on HMCLs Patrizia D’Aquila 1,†, Domenica Ronchetti 2,3,† , Maria Eugenia Gallo Cantafio 4, Katia Todoerti 2,3, Elisa Taiana 2,3 , Fernanda Fabiani 5, Alberto Montesanto 1, Antonino Neri 2,3, Giuseppe Passarino 1 , Giuseppe Viglietto 4, Dina Bellizzi 1,‡ and Nicola Amodio 4,*,‡ 1 Department of Cell Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; [email protected] (P.D.); [email protected] (A.M.); [email protected] (G.P.); [email protected] (D.B.) 2 Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; [email protected] (D.R.); [email protected] (K.T.); [email protected] (E.T.); [email protected] (A.N.) 3 Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy 4 Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; [email protected] (M.E.G.C.); [email protected] (G.V.) 5 Medical Genetics, University “Magna Graecia”, 88100 Catanzaro, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0961-3694159 † P.D. and D.R. equally contributed to this work. ‡ D.B. and N.A. equally contributed to this work. Citation: D’Aquila, P.; Ronchetti, D.; Gallo Cantafio, M.E.; Todoerti, K.; Abstract: The mitochondrial quality control network includes several epigenetically-regulated genes Taiana, E.; Fabiani, F.; Montesanto, A.; involved in mitochondrial dynamics, mitophagy, and mitochondrial biogenesis under physiologic Neri, A.; Passarino, G.; Viglietto, G.; conditions.
    [Show full text]
  • Transposon Mutagenesis Identifies Genetic Drivers of Brafv600e Melanoma
    ARTICLES Transposon mutagenesis identifies genetic drivers of BrafV600E melanoma Michael B Mann1,2, Michael A Black3, Devin J Jones1, Jerrold M Ward2,12, Christopher Chin Kuan Yew2,12, Justin Y Newberg1, Adam J Dupuy4, Alistair G Rust5,12, Marcus W Bosenberg6,7, Martin McMahon8,9, Cristin G Print10,11, Neal G Copeland1,2,13 & Nancy A Jenkins1,2,13 Although nearly half of human melanomas harbor oncogenic BRAFV600E mutations, the genetic events that cooperate with these mutations to drive melanogenesis are still largely unknown. Here we show that Sleeping Beauty (SB) transposon-mediated mutagenesis drives melanoma progression in BrafV600E mutant mice and identify 1,232 recurrently mutated candidate cancer genes (CCGs) from 70 SB-driven melanomas. CCGs are enriched in Wnt, PI3K, MAPK and netrin signaling pathway components and are more highly connected to one another than predicted by chance, indicating that SB targets cooperative genetic networks in melanoma. Human orthologs of >500 CCGs are enriched for mutations in human melanoma or showed statistically significant clinical associations between RNA abundance and survival of patients with metastatic melanoma. We also functionally validate CEP350 as a new tumor-suppressor gene in human melanoma. SB mutagenesis has thus helped to catalog the cooperative molecular mechanisms driving BRAFV600E melanoma and discover new genes with potential clinical importance in human melanoma. Substantial sun exposure and numerous genetic factors, including including BrafV600E, recapitulate the genetic and histological hallmarks skin type and family history, are the most important melanoma risk of human melanoma. In these models, increased MEK-ERK signaling factors. Familial melanoma, which accounts for <10% of cases, is asso- initiates clonal expansion of melanocytes, which is limited by oncogene- ciated with mutations in CDKN2A1, MITF2 and POT1 (refs.
    [Show full text]