Diseases in Coral Reef Organisms: Current Status and Information Gaps
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Basic Concepts in Oceanography
Chapter 1 XA0101461 BASIC CONCEPTS IN OCEANOGRAPHY L.F. SMALL College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America Abstract Basic concepts in oceanography include major wind patterns that drive ocean currents, and the effects that the earth's rotation, positions of land masses, and temperature and salinity have on oceanic circulation and hence global distribution of radioactivity. Special attention is given to coastal and near-coastal processes such as upwelling, tidal effects, and small-scale processes, as radionuclide distributions are currently most associated with coastal regions. 1.1. INTRODUCTION Introductory information on ocean currents, on ocean and coastal processes, and on major systems that drive the ocean currents are important to an understanding of the temporal and spatial distributions of radionuclides in the world ocean. 1.2. GLOBAL PROCESSES 1.2.1 Global Wind Patterns and Ocean Currents The wind systems that drive aerosols and atmospheric radioactivity around the globe eventually deposit a lot of those materials in the oceans or in rivers. The winds also are largely responsible for driving the surface circulation of the world ocean, and thus help redistribute materials over the ocean's surface. The major wind systems are the Trade Winds in equatorial latitudes, and the Westerly Wind Systems that drive circulation in the north and south temperate and sub-polar regions (Fig. 1). It is no surprise that major circulations of surface currents have basically the same patterns as the winds that drive them (Fig. 2). Note that the Trade Wind System drives an Equatorial Current-Countercurrent system, for example. -
Coral Bleaching Early Warning Network Current Conditions Report #20090910
Mote Marine Laboratory / Florida Keys National Marine Sanctuary Coral Bleaching Early Warning Network Current Conditions Report #20090910 Updated September 10, 2009 Summary: Based on climate predictions, current conditions, and field observations, the threat for mass coral bleaching within the FKNMS remains MODERATE. Figure 2. NOAA’s Coral Bleaching HotSpot Map for September 10, 2009. Figure 1. NOAA’s Coral Bleaching Thermal Stress Outlook for Sept. – Dec., 2009. www.osdpd.noaa.gov/PSB/EPS/SST/climohot.html http://coralreefwatch.noaa.gov/satellite/index.html Weather and Sea Temperatures According to the latest NOAA Coral Reef Watch Coral Bleaching Thermal Stress Outlook (updated Sept. 10, 2009) there continues to be significant potential for coral bleaching throughout the Caribbean in 2009, especially in the Lesser Antilles; however, it now appears that the likelihood of significant bleaching in the Florida Keys has been reduced compared to the rest of the greater Caribbean (Fig. 1). Current remote sensing analysis by NOAA’s Coral Reef Watch program Figure 3. NOAA’s Degree Heating Weeks Map for September 10, 2009. indicates that the Florida Keys region continues to experience elevated levels www.osdpd.noaa.gov/PSB/EPS/SST/dhw_retro.html of thermal stress and moderate potential for coral bleaching. NOAA’s recent Water Temperatures (August 27 - September 10, 2009) Coral Bleaching HotSpot Map (Fig. 2), which provides current sea surface 35 temperature (SST) compared to the historically expected SST’s for the region, shows that temperature anomalies for the Florida Keys National Marine 30 Sanctuary and surrounding waters continue to remain above-average and have increased slightly since the end of August. -
Microbiomes of Gall-Inducing Copepod Crustaceans from the Corals Stylophora Pistillata (Scleractinia) and Gorgonia Ventalina
www.nature.com/scientificreports OPEN Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata Received: 26 February 2018 Accepted: 18 July 2018 (Scleractinia) and Gorgonia Published: xx xx xxxx ventalina (Alcyonacea) Pavel V. Shelyakin1,2, Sofya K. Garushyants1,3, Mikhail A. Nikitin4, Sofya V. Mudrova5, Michael Berumen 5, Arjen G. C. L. Speksnijder6, Bert W. Hoeksema6, Diego Fontaneto7, Mikhail S. Gelfand1,3,4,8 & Viatcheslav N. Ivanenko 6,9 Corals harbor complex and diverse microbial communities that strongly impact host ftness and resistance to diseases, but these microbes themselves can be infuenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly infuencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially diferent with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassifed bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had signifcantly diferent prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was diferent. -
Mapping Current and Future Priorities
Mapping Current and Future Priorities for Coral Restoration and Adaptation Programs International Coral Reef Initiative (ICRI) Ad Hoc Committee on Reef Restoration 2019 Interim Report This report was prepared by James Cook University, funded by the Australian Institute for Marine Science on behalf of the ICRI Secretariat nations Australia, Indonesia and Monaco. Suggested Citation: McLeod IM, Newlands M, Hein M, Boström-Einarsson L, Banaszak A, Grimsditch G, Mohammed A, Mead D, Pioch S, Thornton H, Shaver E, Souter D, Staub F. (2019). Mapping Current and Future Priorities for Coral Restoration and Adaptation Programs: International Coral Reef Initiative Ad Hoc Committee on Reef Restoration 2019 Interim Report. 44 pages. Available at icriforum.org Acknowledgements The ICRI ad hoc committee on reef restoration are thanked and acknowledged for their support and collaboration throughout the process as are The International Coral Reef Initiative (ICRI) Secretariat, Australian Institute of Marine Science (AIMS) and TropWATER, James Cook University. The committee held monthly meetings in the second half of 2019 to review the draft methodology for the analysis and subsequently to review the drafts of the report summarising the results. Professor Karen Hussey and several members of the ad hoc committee provided expert peer review. Research support was provided by Melusine Martin and Alysha Wincen. Advisory Committee (ICRI Ad hoc committee on reef restoration) Ahmed Mohamed (UN Environment), Anastazia Banaszak (International Coral Reef Society), -
Coral Disease Fact Sheet
Florida Department of Environmental Protection Coral Reef Conservation Program SEAFAN BleachWatch Program Coral Disease Fact Sheet About Coral Disease Like all other animals, corals can be affected by disease. Coral disease was first recognized in the Florida Keys and the Caribbean in the 1970s, and since that time disease reports have emerged from reefs worldwide. Naturally, there are background levels of coral disease but reports of elevated disease levels – often called disease outbreaks – have been increasing in both frequency and severity over the past few decades. Today, coral disease is recognized as a major driver of coral mortality and reef degradation. Coral disease can result from infection by microscopic organisms (such as bacteria or fungi) or can be caused by abnormal growth (akin to tumors). The origins or causes of most coral diseases are not known and difficult to determine. There is increasing evidence that environmental stressors, including increasing water temperatures, elevated nutrient levels, sewage input, sedimentation, overfishing, plastic pollution, and even recreational diving, are increasing the prevalence and Disease affecting Great Star Coral (Montastraea severity of coral diseases. There is also strong evidence cavernosa). Photo credit: Nikole Ordway-Heath (Broward County; 2016). that a combination of coral bleaching and disease can be particularly devastating to coral populations. This is likely due to corals losing a major source of energy during a bleaching event, reducing their ability to fight off or control disease agents. Coral disease is often identifiable by a change in tissue color or skeletal structure as well as progressive tissue loss. Tissue loss may originate from a single discrete spot, multiple discrete areas, or appear scattered throughout the colony. -
High Density of Diploria Strigosa Increases
HIGH DENSITY OF DIPLORIA STRIGOSA INCREASES PREVALENCE OF BLACK BAND DISEASE IN CORAL REEFS OF NORTHERN BERMUDA Sarah Carpenter Department of Biology, Clark University, Worcester, MA 01610 ([email protected]) Abstract Black Band Disease (BBD) is one of the most widespread and destructive coral infectious diseases. The disease moves down the infected coral leaving complete coral tissue degradation in its wake. This coral disease is caused by a group of coexisting bacteria; however, the main causative agent is Phormidium corallyticum. The objective of this study was to determine how BBD prominence is affected by the density of D. strigosa, a common reef building coral found along Bermuda coasts. Quadrats were randomly placed on the reefs at Whalebone Bay and Tobacco Bay and then density and percent infection were recorded and calculated. The results from the observations showed a significant, positive correlation between coral density and percent infection by BBD. This provides evidence that BBD is a water borne infection and that transmission can occur at distances up to 1m. Information about BBD is still scant, but in order to prevent future damage, details pertaining to transmission methods and patterns will be necessary. Key Words: Black Band Disease, Diploria strigosa, density Introduction Coral pathogens are a relatively new area of study, with the first reports and descriptions made in the 1970’s. Today, more than thirty coral diseases have been reported, each threatening the resilience of coral communities (Green and Bruckner 2000). The earliest identified infection was characterized by a dark band, which separated the healthy coral from the dead coral. -
Marine Forecasting at TAFB [email protected]
Marine Forecasting at TAFB [email protected] 1 Waves 101 Concepts and basic equations 2 Have an overall understanding of the wave forecasting challenge • Wave growth • Wave spectra • Swell propagation • Swell decay • Deep water waves • Shallow water waves 3 Wave Concepts • Waves form by the stress induced on the ocean surface by physical wind contact with water • Begin with capillary waves with gradual growth dependent on conditions • Wave decay process begins immediately as waves exit wind generation area…a.k.a. “fetch” area 4 5 Wave Growth There are three basic components to wave growth: • Wind speed • Fetch length • Duration Wave growth is limited by either fetch length or duration 6 Fully Developed Sea • When wave growth has reached a maximum height for a given wind speed, fetch and duration of wind. • A sea for which the input of energy to the waves from the local wind is in balance with the transfer of energy among the different wave components, and with the dissipation of energy by wave breaking - AMS. 7 Fetches 8 Dynamic Fetch 9 Wave Growth Nomogram 10 Calculate Wave H and T • What can we determine for wave characteristics from the following scenario? • 40 kt wind blows for 24 hours across a 150 nm fetch area? • Using the wave nomogram – start on left vertical axis at 40 kt • Move forward in time to the right until you reach either 24 hours or 150 nm of fetch • What is limiting factor? Fetch length or time? • Nomogram yields 18.7 ft @ 9.6 sec 11 Wave Growth Nomogram 12 Wave Dimensions • C=Wave Celerity • L=Wave Length • -
Atoll Research Bulletin No. 481 First Protozoan Coral
ATOLL RESEARCH BULLETIN NO. 481 FIRST PROTOZOAN CORAL-KILLER IDENTIFIED IN THE INDO-PACIFIC BY ARNFRIED A. ANTONIUS AND DIANA LIPSCOMB ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. JUNE 2000 Great Barrier Reef 0 M Mauritius 6 0 120 Figure 1. Chart of Indo-Pacific region showing the three SEB observation sites where corals infected with Halofollict~lina corallcuia were investigated: the coral reefs along the coast of Sinai, Red Sea; around the island of Mauritius, Indian Ocean; and in the area of Lizard Island, Great Barrier Reef, Pacific. Motupore Island on the SE coast of Papua New Guinea is not marked on the chart. Sites that were investigated with negative result (no SEB found) are: B: Bali; W: Wakatobi Islands; G: Guam; and M: Moorea. FIRST PROTOZOAN CORAL-KILLER IDENTIFIED IN THE INDO-PACIFIC ARNFRIED ANTONIUS' and DIANA LIPS COMB^ ABSTRACT A unique coral disease has appeared on several Indo-Pacific reefs. Unlike most known coral diseases, this one is caused by an eukaryote, specifically Halofolliculina covallasia, a heterotrich, folliculinid ciliate. This protist is sessile inside of a secreted black test or lorica. It kills the coral and damages the skeleton when it settles on the living coral tissue and secretes the lorica. Thus, the disease was termed Skeleton Eroding Band (SEB). The ciliate population forms an advancing black line on the coral leaving behind it the denuded white coral skeleton, often sprinkled with a multitude of empty black loricae. This disease was first noted in 1988 and since has been observed infecting both branching and massive corals at several locations in the Indo-Pacific. -
Download the Meeting Program, Including Abstracts
PROGRAM: Overview of oral and poster presentations FINAL PROGRAM 37th AMLC SCIENTIFIC MEETING CURACAO (MAY 18-22, 2015) MAY 17 17:00 Registration (optional) and "ice breaker" on the beach at Carmabi END of DAY 0 (MAY 17) MAY 18 8:00 Registration at the Hilton Hotel 9:00 Official opening 37th AMLC Meeting The Eastern Caribbean: A laboratory for studying the resilience and 9:30 PLENARY: DR. B. STENECK management of coral reefs 10:30 Coffee break Time Authors Title Shifting baselines: three decades of nitrogen enrichment on two 11:00 * Lapointe B, Herren L, Tarnowski, M, Dustan P Caribbean coral reefs Finding a new path towards reef conservation: Antigua’s community- 11:15 S Camacho R, Steneck R based no-take reserves Lyons P, Arboleda E, Benkwitt C, Davis B, Gleason M, Howe 11:30 * C, Mathe J, Middleton J, Sikowitz N, Untersteggaber L, The effect of recreational scuba diving on the benthic community Villalobos S assemblage and structural complexity of Caribbean coral reefs Perspective on how fast and efficient sponge engines drive and 11:45 * De Goeij JM modulate the food web of reef ecosystems Lesion recovery of two scleractinian corals under low pH: 12:00 S Dungan A, Hall ER, DeGroot BC, Fine M implications for restoration efforts Session chair: Kristen Marhaver Kristen chair: Session The status of coral reefs and marine fisheries in Jamaica’s Portland 12:15 * Palmer SE, Lang JC Bight Protected Area to inform proposed development decisions 12:30 Lunch (can be obtained at the Hilton, Carmabi (next to Hilton) or nearby restaurants and bars Historical analysis of ciguatera incidence in the Caribbean islands 13:30 * Mancera-Pineda JE, Celis JS, Gavio B during 31 years: 1980-2010 Smith TB, Richlen ML, Robertson A, Liefer JD, Anderson DM, Ciguatera fish poisoning: long-term dynamics of Gambierdiscus spp. -
Assessing the Effectiveness of Two Intervention Methods for Stony Coral
www.nature.com/scientificreports OPEN Assessing the efectiveness of two intervention methods for stony coral tissue loss disease on Montastraea cavernosa Erin N. Shilling 1*, Ian R. Combs 1,2 & Joshua D. Voss 1* Stony coral tissue loss disease (SCTLD) was frst observed in Florida in 2014 and has since spread to multiple coral reefs across the wider Caribbean. The northern section of Florida’s Coral Reef has been heavily impacted by this outbreak, with some reefs experiencing as much as a 60% loss of living coral tissue area. We experimentally assessed the efectiveness of two intervention treatments on SCTLD-afected Montastraea cavernosa colonies in situ. Colonies were tagged and divided into three treatment groups: (1) chlorinated epoxy, (2) amoxicillin combined with CoreRx/Ocean Alchemists Base 2B, and (3) untreated controls. The experimental colonies were monitored periodically over 11 months to assess treatment efectiveness by tracking lesion development and overall disease status. The Base 2B plus amoxicillin treatment had a 95% success rate at healing individual disease lesions but did not necessarily prevent treated colonies from developing new lesions over time. Chlorinated epoxy treatments were not signifcantly diferent from untreated control colonies, suggesting that chlorinated epoxy treatments are an inefective intervention technique for SCTLD. The results of this experiment expand management options during coral disease outbreaks and contribute to overall knowledge regarding coral health and disease. Coral reefs face many threats, including, but not limited to, warming ocean temperatures, overfshing, increased nutrient and plastic pollution, hurricanes, ocean acidifcation, and disease outbreaks 1–6. Coral diseases are com- plex, involving both pathogenic agents and coral immune responses. -
NJ Art Reef Publisher
Participating Organizations Alliance for a Living Ocean American Littoral Society Clean Ocean Action www.CleanOceanAction.org Arthur Kill Coalition Asbury Park Fishing Club Bayberry Garden Club Bayshore Saltwater Flyrodders Main Office Institute of Coastal Education Belford Seafood Co-op Belmar Fishing Club 18 Hartshorne Drive 3419 Pacific Avenue Beneath The Sea P.O. Box 505, Sandy Hook P.O. Box 1098 Bergen Save the Watershed Action Network Wildwood, NJ 08260-7098 Berkeley Shores Homeowners Civic Association Highlands, NJ 07732-0505 Cape May Environmental Commission Voice: 732-872-0111 Voice: 609-729-9262 Central Jersey Anglers Ocean Advocacy Fax: 732-872-8041 Fax: 609-729-1091 Citizens Conservation Council of Ocean County Since 1984 Clean Air Campaign [email protected] [email protected] Coalition Against Toxics Coalition for Peace & Justice Coastal Jersey Parrot Head Club Coast Alliance Communication Workers of America, Local 1034 Concerned Businesses of COA Concerned Citizens of Bensonhurst Concerned Citizens of COA Concerned Citizens of Montauk Dosil’s Sea Roamers Eastern Monmouth Chamber of Commerce Environmental Response Network Bill Figley, Reef Coordinator Explorers Dive Club Fisheries Defense Fund NJ Division of Fish and Wildlife Fishermen’s Dock Cooperative Fisher’s Island Conservancy P.O. Box 418 Friends of Island Beach State Park Friends of Liberty State Park Friends of Long Island Sound Port Republic, NJ 08241 Friends of the Boardwalk Garden Club of Englewood Garden Club of Fair Haven December 6, 2004 Garden Club of Long Beach Island Garden Club of Morristown Garden Club of Navesink Garden Club of New Jersey RE: New Jersey Draft Artificial Reef Plan Garden Club of New Vernon Garden Club of Oceanport Garden Club of Princeton Garden Club of Ridgewood VIA FASCIMILE Garden Club of Rumson Garden Club of Short Hills Garden Club of Shrewsbury Garden Club of Spring Lake Dear Mr. -
Zooxanthellae Regulation in Yellow Blotch/Band and Other Coral Diseases Contrasted with Temperature Related Bleaching: in Situ Destruction Vs Expulsion
Symbiosis, 37 (2004) 63–85 63 Balaban, Philadelphia/Rehovot Zooxanthellae Regulation in Yellow Blotch/Band and Other Coral Diseases Contrasted with Temperature Related Bleaching: In Situ Destruction vs Expulsion JAMES M. CERVINO1*, RAYMOND HAYES2, THOMAS J. GOREAU3, and GARRIET W. SMITH4 1University of South Carolina, Marine Sciences Department, Columbia, SC 29208, Email. [email protected]; 2College of Medicine, Howard University, Washington, DC; 3Global Coral Reef Alliance, Cambridge, MA; 4University of South Carolina, Aiken, SC, USA Received November 3, 2003; Accepted March 1, 2004 Abstract Impairment and breakdown in the symbiotic relationship between the coral host and its zooxanthellae has been documented in the major Caribbean reef building coral, Montastraea spp., when it is infected with yellow band/blotch disease (YBD) pathogens and/or exposed to unusually high seawater temperatures. Progressive degradation of zooxanthellar cellular integrity occurs, leading to the deterioration of coral tissue. Cytoplasmic organelles were displaced and chloroplasts are reduced and marginalized which is accompanied by internal swelling, vacuolization, fragmentation, and loss of cell wall structural integrity. Changes in algae that occur in YBD-infected corals differ from changes seen in corals undergoing solely temperature-induced coral bleaching, however. In many disease-infected corals, there is no evidence of zooxanthella in the mucus, unlike in thermal bleaching, where zooxanthellae was evident in the coral surface layer. Isolated zooxanthellae Presented at the 4th International Symbiosis Congress, August 17–23, 2003, Halifax, Canada *The author to whom correspondence should be sent. 0334-5114/2004/$05.50 ©2004 Balaban 64 J.M. CERVINO ET AL. inoculated with YBD pathogens showed a 96% decrease in chlorophyll a pigments compared to controls, and a 90% decrease in mitotic cell division over 96 hours of YBD bacterial inoculation (<p=0.0016).