A Laboratory Model of Thermocline Depth and Exchange Fluxes Across Circumpolar Fronts*

Total Page:16

File Type:pdf, Size:1020Kb

A Laboratory Model of Thermocline Depth and Exchange Fluxes Across Circumpolar Fronts* 656 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 34 A Laboratory Model of Thermocline Depth and Exchange Fluxes across Circumpolar Fronts* CLAUDIA CENEDESE Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts JOHN MARSHALL Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts J. A. WHITEHEAD Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts (Manuscript received 6 January 2003, in ®nal form 7 July 2003) ABSTRACT A laboratory experiment has been constructed to investigate the possibility that the equilibrium depth of a circumpolar front is set by a balance between the rate at which potential energy is created by mechanical and buoyancy forcing and the rate at which it is released by eddies. In a rotating cylindrical tank, the combined action of mechanical and buoyancy forcing builds a strati®cation, creating a large-scale front. At equilibrium, the depth of penetration and strength of the current are then determined by the balance between eddy transport and sources and sinks associated with imposed patterns of Ekman pumping and buoyancy ¯uxes. It is found 2 that the depth of penetration and transport of the front scale like Ï[( fwe)/g9]L and weL , respectively, where we is the Ekman pumping, g9 is the reduced gravity across the front, f is the Coriolis parameter, and L is the width scale of the front. Last, the implications of this study for understanding those processes that set the strati®cation and transport of the Antarctic Circumpolar Current (ACC) are discussed. If the laboratory results scale up to the ACC, they suggest a maximum thermocline depth of approximately h 5 2 km, a zonal current velocity of 4.6 cm s21, and a transport T 5 150 Sv (1 Sv [ 106 m3 s 21), not dissimilar to what is observed. 1. Introduction of a streamwise average view of the ACC. The ACC is imagined to ¯ow along the frontal outcrop. Equatorward In the Southern Ocean, meridional gradients in air± of the front, light ¯uid is pumped down from the surface sea buoyancy ¯ux act to create a strong polar front along through the action of the prevailing winds; polewards which the Antarctic Circumpolar Current (ACC) ¯ows of the front heavy ¯uid is sucked up to the surface. in thermal wind balance. Westerly winds also drive the Equatorward ¯ow in the surface Ekman layer carries ACC eastward and, through associated Ekman currents, ¯uid meridionally at the surface balancing regions of induce an Eulerian meridional circulation (the Deacon upwelling and downwelling. However, what happens cell), which acts to overturn isopycnals enhancing the below the surface Ekman layer? How is the ¯uid re- strong frontal region. The potential energy stored in the turned poleward? front is released through baroclinic instability, and the Here we set up and study an idealized laboratory ensuing eddies are thought to play a fundamental role model designed to address the possibility that eddy in the dynamical and thermodynamical balance of the transfer may play an important role in this problem. The ACC. idea is sketched in Fig. 1b. Rather than suck and pump Figure 1a shows a highly idealized schematic diagram from the surface, we represent the action of the wind by pumping ¯uid in to and out of a rotating tank through * Woods Hole Oceanographic Institution Contribution Number many small holes drilled in its base. The ¯uid pumped 10887. in at the periphery of the tank from below is dense; (ambient) ¯uid pumped out in the center of the tank is less dense. The dense ¯uid pumped in from below rep- Corresponding author address: Dr. Claudia Cenedese, Physical Oceanography Department, Woods Hole Oceanographic Institution, resents, we imagine, the light ¯uid pumped down from MS #21, Woods Hole, MA 02543. the surface in the subtropics, as sketched in Fig. 1a. E-mail: [email protected] As we shall see, in our laboratory experiment, the q 2004 American Meteorological Society MARCH 2004 CENEDESE ET AL. 657 height of the dense ¯uid pumped in from the periphery torÐwhen this parameter is less than ; unity, baroclinic increases, but the dense ¯uid is prevented from moving waves with subsequent eddy formation appear at the radially inward in an axisymmetric manner because of density front. Again, these models capture some aspects the Coriolis force due to the rotation of the tank. Instead of the ACC, but only recently have laboratory models it forms a circumpolar front that becomes baroclinically that combine both buoyancy and wind-driven compo- unstable and the radial transfer of ¯uid in to the central nents been developedÐsee Marshall et al. (2002) who sucking region is achieved by unsteady, eddying mo- studied a warmed, pumped lens on an `` f'' plane. Fur- tions (the horizontal wiggly arrows in Fig. 1b). Ulti- thermore, Ivey et al. (1995) and Rosman et al. (1999) mately an equilibrium is set up in which (i) the radial preconditioned a convective region with cyclonic or an- volume transport by eddies balances the input of dense ticyclonic circulation using both buoyancy and me- ¯uid and (ii) the height to which the dense ¯uid reaches chanical forcing. They then investigated the effects of is controlled by the ef®ciency at which eddies carry preconditioning on the lateral spreading of deep water ¯uid radially. formed during open ocean convection. Here we present Elsewhere (e.g., Marshall et al. 2002; Karsten et al. a laboratory experiment designed to address the com- 2002; Marshall and Radko 2003) it has been argued that bined mechanical and buoyancy forcing of an initially meridional eddy transfer, as described above, is the cen- unstrati®ed rotating ¯ow in a geometry relevant to cir- tral mechanism that sets the depth and strati®cation of cumpolar ¯ow. the ACC. Here we study this mechanism in a controlled Our paper is set out as follows. In section 2 we de- laboratory setting. The external parameters of our sys- scribe the apparatus used in the experiment and the mea- tem are the scale of the forcing region L, the volume surements taken. In section 3 we describe the phenom- ¯ux pumped in to the tank Q, the buoyancy anomaly ena and evolution of typical circumpolar ¯ows obtained. of the pumped ¯uid g9, and the rotation rate of the tank We formulate a theory in section 4 and apply it to in- V. Our goal is to understand how the height of the dense terpret our results. The possible implications of this circumpolar front h and its velocity scale u depend on study to our understanding of oceanic circumpolar ¯ows these external parameters. are described in section 5. Of particular interest is the manner in which this sim- ple experiment combines both mechanical and buoyancy 2. Experimental setup forcing of the ¯uid. Previous laboratory studies have concentrated on either mechanical or buoyancy forcing As discussed in the introduction, instead of pumping but seldom in combination. Laboratory studies of the light ¯uid down from above as in Fig. 1a, in our labo- wind-driven circulation started with the ``sliced cylin- ratory abstraction we ¯ip things in the vertical and gently der'' model introduced by Pedlosky and Greenspan pump (i.e., small ¯ow rate) dense ¯uid r1 up from below (1967) and Beardsley (1969). These studies have been around the periphery of a rotating tank (representing light followed up by further experimental, analytical, and nu- water being pumped down in the subtropics) and gently merical studies (Beardsley 1973, 1975; Beardsley and withdraw lighter ¯uid of density r2 at the center (rep- Robbins 1975; Becker and Page 1990; Grif®ths and Ve- resenting the pole) as shown on Fig. 1b. ronis 1997, 1998). Although these models apply to gyre The experiments were conducted in a glass tank of circulation, they are not directly relevant to circumpolar radius R 5 50 cm, ®lled with ¯uid of density r 2 to a ¯ow because here Sverdrup dynamics do not apply. Na- depth H 5 30 cm, and mounted on a direct-drive turn- rimousa and Maxworthy (1985, 1987) studied a two- table rotating counterclockwise. A sketch of the appa- layer strati®ed model of coastal upwelling. Some aspects ratus is shown in Fig. 2. We simulate the action of of that modelÐthe horizontal density gradient and the Ekman layers on the interior ¯uid by introducing and wind stress forcingÐhave processes in common with withdrawing ¯uid through a perforated base at a con- the ACC front. However, the presence of a coastline and trolled rate. By adjusting the rate of pumping and the a prescribed strati®cation prohibit its direct application density of the pumped ¯uid, we can independently con- to the problem at hand. Some laboratory studies of baro- trol both the rate of the simulated Ekman pumping and clinic zonal currents are reviewed by Rhines (1994) in- the magnitude of the buoyancy ¯ux. Underneath the cluding the dynamics and transport of Rossby waves perforated false bottom, there is a reservoir divided into and currents explored by, for example, Sommeria et al. an inner region of radius R1, an intermediate annular (1989, 1991). region of width (R 2 2 R1), and an outer annular region The instability of a buoyancy-driven current in the of width (R 2 R 2) (see Fig. 2b). Dense water, created absence of wind stress has been comprehensively dis- by salt solution of density r1, is fed into the outer an- cussed by Eady (1949), Phillips (1954), Hide (1971), nular region by means of a pump positioned in a dense Hart (1972, 1980), Douglas et al. (1972), Saunders water (r1) source. This mechanical source simulates the (1973), Grif®ths and Linden (1981a,b, 1982), Chia et vertical Ekman pumping, we, due to winds at the free al.
Recommended publications
  • Basic Concepts in Oceanography
    Chapter 1 XA0101461 BASIC CONCEPTS IN OCEANOGRAPHY L.F. SMALL College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America Abstract Basic concepts in oceanography include major wind patterns that drive ocean currents, and the effects that the earth's rotation, positions of land masses, and temperature and salinity have on oceanic circulation and hence global distribution of radioactivity. Special attention is given to coastal and near-coastal processes such as upwelling, tidal effects, and small-scale processes, as radionuclide distributions are currently most associated with coastal regions. 1.1. INTRODUCTION Introductory information on ocean currents, on ocean and coastal processes, and on major systems that drive the ocean currents are important to an understanding of the temporal and spatial distributions of radionuclides in the world ocean. 1.2. GLOBAL PROCESSES 1.2.1 Global Wind Patterns and Ocean Currents The wind systems that drive aerosols and atmospheric radioactivity around the globe eventually deposit a lot of those materials in the oceans or in rivers. The winds also are largely responsible for driving the surface circulation of the world ocean, and thus help redistribute materials over the ocean's surface. The major wind systems are the Trade Winds in equatorial latitudes, and the Westerly Wind Systems that drive circulation in the north and south temperate and sub-polar regions (Fig. 1). It is no surprise that major circulations of surface currents have basically the same patterns as the winds that drive them (Fig. 2). Note that the Trade Wind System drives an Equatorial Current-Countercurrent system, for example.
    [Show full text]
  • A Numerical Study of the Long- and Short-Term Temperature Variability and Thermal Circulation in the North Sea
    JANUARY 2003 LUYTEN ET AL. 37 A Numerical Study of the Long- and Short-Term Temperature Variability and Thermal Circulation in the North Sea PATRICK J. LUYTEN Management Unit of the Mathematical Models, Brussels, Belgium JOHN E. JONES AND ROGER PROCTOR Proudman Oceanographic Laboratory, Bidston, United Kingdom (Manuscript received 3 January 2001, in ®nal form 4 April 2002) ABSTRACT A three-dimensional numerical study is presented of the seasonal, semimonthly, and tidal-inertial cycles of temperature and density-driven circulation within the North Sea. The simulations are conducted using realistic forcing data and are compared with the 1989 data of the North Sea Project. Sensitivity experiments are performed to test the physical and numerical impact of the heat ¯ux parameterizations, turbulence scheme, and advective transport. Parameterizations of the surface ¯uxes with the Monin±Obukhov similarity theory provide a relaxation mechanism and can partially explain the previously obtained overestimate of the depth mean temperatures in summer. Temperature strati®cation and thermocline depth are reasonably predicted using a variant of the Mellor±Yamada turbulence closure with limiting conditions for turbulence variables. The results question the common view to adopt a tuned background scheme for internal wave mixing. Two mechanisms are discussed that describe the feedback of the turbulence scheme on the surface forcing and the baroclinic circulation, generated at the tidal mixing fronts. First, an increased vertical mixing increases the depth mean temperature in summer through the surface heat ¯ux, with a restoring mechanism acting during autumn. Second, the magnitude and horizontal shear of the density ¯ow are reduced in response to a higher mixing rate.
    [Show full text]
  • Mapping Current and Future Priorities
    Mapping Current and Future Priorities for Coral Restoration and Adaptation Programs International Coral Reef Initiative (ICRI) Ad Hoc Committee on Reef Restoration 2019 Interim Report This report was prepared by James Cook University, funded by the Australian Institute for Marine Science on behalf of the ICRI Secretariat nations Australia, Indonesia and Monaco. Suggested Citation: McLeod IM, Newlands M, Hein M, Boström-Einarsson L, Banaszak A, Grimsditch G, Mohammed A, Mead D, Pioch S, Thornton H, Shaver E, Souter D, Staub F. (2019). Mapping Current and Future Priorities for Coral Restoration and Adaptation Programs: International Coral Reef Initiative Ad Hoc Committee on Reef Restoration 2019 Interim Report. 44 pages. Available at icriforum.org Acknowledgements The ICRI ad hoc committee on reef restoration are thanked and acknowledged for their support and collaboration throughout the process as are The International Coral Reef Initiative (ICRI) Secretariat, Australian Institute of Marine Science (AIMS) and TropWATER, James Cook University. The committee held monthly meetings in the second half of 2019 to review the draft methodology for the analysis and subsequently to review the drafts of the report summarising the results. Professor Karen Hussey and several members of the ad hoc committee provided expert peer review. Research support was provided by Melusine Martin and Alysha Wincen. Advisory Committee (ICRI Ad hoc committee on reef restoration) Ahmed Mohamed (UN Environment), Anastazia Banaszak (International Coral Reef Society),
    [Show full text]
  • World Ocean Thermocline Weakening and Isothermal Layer Warming
    applied sciences Article World Ocean Thermocline Weakening and Isothermal Layer Warming Peter C. Chu * and Chenwu Fan Naval Ocean Analysis and Prediction Laboratory, Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-831-656-3688 Received: 30 September 2020; Accepted: 13 November 2020; Published: 19 November 2020 Abstract: This paper identifies world thermocline weakening and provides an improved estimate of upper ocean warming through replacement of the upper layer with the fixed depth range by the isothermal layer, because the upper ocean isothermal layer (as a whole) exchanges heat with the atmosphere and the deep layer. Thermocline gradient, heat flux across the air–ocean interface, and horizontal heat advection determine the heat stored in the isothermal layer. Among the three processes, the effect of the thermocline gradient clearly shows up when we use the isothermal layer heat content, but it is otherwise when we use the heat content with the fixed depth ranges such as 0–300 m, 0–400 m, 0–700 m, 0–750 m, and 0–2000 m. A strong thermocline gradient exhibits the downward heat transfer from the isothermal layer (non-polar regions), makes the isothermal layer thin, and causes less heat to be stored in it. On the other hand, a weak thermocline gradient makes the isothermal layer thick, and causes more heat to be stored in it. In addition, the uncertainty in estimating upper ocean heat content and warming trends using uncertain fixed depth ranges (0–300 m, 0–400 m, 0–700 m, 0–750 m, or 0–2000 m) will be eliminated by using the isothermal layer.
    [Show full text]
  • Shear Dispersion in the Thermocline and the Saline Intrusion$
    Continental Shelf Research ] (]]]]) ]]]–]]] Contents lists available at SciVerse ScienceDirect Continental Shelf Research journal homepage: www.elsevier.com/locate/csr Research papers Shear dispersion in the thermocline and the saline intrusion$ Hsien-Wang Ou a,n, Xiaorui Guan b, Dake Chen c,d a Division of Ocean and Climate Physics, Lamont-Doherty Earth Observatory, Columbia University, 61 Rt. 9W, Palisades, NY 10964, United States b Consultancy Division, Fugro GEOS, 6100 Hillcroft, Houston, TX 77081, United States c Lamont-Doherty Earth Observatory, Columbia University, United States d State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, China article info abstract Article history: Over the mid-Atlantic shelf of the North America, there is a pronounced shoreward intrusion of the Received 11 March 2011 saltier slope water along the seasonal thermocline, whose genesis remains unexplained. Taking note of Received in revised form the observed broad-band baroclinic motion, we postulate that it may propel the saline intrusion via the 15 March 2012 shear dispersion. Through an analytical model, we first examine the shear-induced isopycnal diffusivity Accepted 19 March 2012 (‘‘shear diffusivity’’ for short) associated with the monochromatic forcing, which underscores its varied even anti-diffusive short-term behavior and the ineffectiveness of the internal tides in driving the shear Keywords: dispersion. We then derive the spectral representation of the long-term ‘‘canonical’’ shear diffusivity, Saline intrusion which is found to be the baroclinic power band-passed by a diffusivity window in the log-frequency Shear dispersion space. Since the baroclinic power spectrum typically plateaus in the low-frequency band spanned by Lateral diffusion the diffusivity window, canonical shear diffusivity is simply 1/8 of this low-frequency plateau — Isopycnal diffusivity Tracer dispersion independent of the uncertain diapycnal diffusivity.
    [Show full text]
  • Introduction to Oceanography
    Introduction to Oceanography Introduction to Oceanography Lecture 14: Tides, Biological Productivity Memorial Day holiday Monday no lab meetings Go to any other lab section this week (and let the TA know!) Bay of Fundy -- low tide, Photo by Dylan Kereluk, . Creative Commons A 2.0 Generic, Mudskipper (Periophthalmus modestus) at low tide, photo by OpenCage, Wikimedia Commons, Creative http://commons.wikimedia.org/wiki/File:Bay_of_Fundy_-_Tide_Out.jpg Commons A S-A 2.5, http://commons.wikimedia.org/wiki/File:Periophthalmus_modestus.jpg Tides Earth-Moon-Sun System Planet-length waves Cyclic, repeating rise & fall of sea level • Earth-Sun Distance – Most regular phenomenon in the oceans 150,000,000 km Daily tidal variation has great effects on life in & around the ocean (Lab 8) • Earth-Moon Distance 385,000 km Caused by gravity and Much closer to Earth, but between Earth, Moon & much less massive Sun, their orbits around • Earth Obliquity = 23.5 each other, and the degrees Earth’s daily spin – Seasons Photos by Samuel Wantman, Creative Commons A S-A 3.0, http://en.wikipedia.org/ wiki/File:Bay_of_Fundy_Low_Tide.jpg and Figure by Homonculus 2/Geologician, Wikimedia Commons, http://en.wikipedia.org/wiki/ Creative Commons A 3.0, http://en.wikipedia.org/wiki/ File:Bay_of_Fundy_High_Tide.jpg File:Lunar_perturbation.jpg Tides are caused by the gravity of the Moon and Sun acting on Scaled image of Earth-Moon distance, Nickshanks, Wikimedia Commons, Creative Commons A 2.5 Earth and its ocean. Pluto-Charon mutual orbit, Zhatt, Wikimedia Commons, Public
    [Show full text]
  • Exploration of the Deep Gulf of Mexico Slope Using DSV Alvin: Site Selection and Geologic Character
    Exploration of the Deep Gulf of Mexico Slope Using DSV Alvin: Site Selection and Geologic Character Harry H. Roberts1, Chuck R. Fisher2, Jim M. Brooks3, Bernie Bernard3, Robert S. Carney4, Erik Cordes5, William Shedd6, Jesse Hunt, Jr.6, Samantha Joye7, Ian R. MacDonald8, 9 and Cheryl Morrison 1Coastal Studies Institute, Louisiana State University, Baton Rouge, Louisiana 70803 2Department of Biology, Penn State University, University Park, Pennsylvania 16802-5301 3TDI Brooks International, Inc., 1902 Pinon Dr., College Station, Texas 77845 4Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 5Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, Massachusetts 02138 6Minerals Management Service, Office of Resource Evaluation, New Orleans, Louisiana 70123-2394 7Department of Geology, University of Georgia, Athens, Georgia 30602 8Department of Physical and Environmental Sciences, Texas A&M – Corpus Christi, Corpus Christi, Texas 78412 9U.S. Geological Survey, 11649 Leetown Rd., Keameysville, West Virginia 25430 ABSTRACT The Gulf of Mexico is well known for its hydrocarbon seeps, associated chemosyn- thetic communities, and gas hydrates. However, most direct observations and samplings of seep sites have been concentrated above water depths of approximately 3000 ft (1000 m) because of the scarcity of deep diving manned submersibles. In the summer of 2006, Minerals Management Service (MMS) and National Oceanic and Atmospheric Admini- stration (NOAA) supported 24 days of DSV Alvin dives on the deep continental slope. Site selection for these dives was accomplished through surface reflectivity analysis of the MMS slope-wide 3D seismic database followed by a photo reconnaissance cruise. From 80 potential sites, 20 were studied by photo reconnaissance from which 10 sites were selected for Alvin dives.
    [Show full text]
  • Marine Forecasting at TAFB [email protected]
    Marine Forecasting at TAFB [email protected] 1 Waves 101 Concepts and basic equations 2 Have an overall understanding of the wave forecasting challenge • Wave growth • Wave spectra • Swell propagation • Swell decay • Deep water waves • Shallow water waves 3 Wave Concepts • Waves form by the stress induced on the ocean surface by physical wind contact with water • Begin with capillary waves with gradual growth dependent on conditions • Wave decay process begins immediately as waves exit wind generation area…a.k.a. “fetch” area 4 5 Wave Growth There are three basic components to wave growth: • Wind speed • Fetch length • Duration Wave growth is limited by either fetch length or duration 6 Fully Developed Sea • When wave growth has reached a maximum height for a given wind speed, fetch and duration of wind. • A sea for which the input of energy to the waves from the local wind is in balance with the transfer of energy among the different wave components, and with the dissipation of energy by wave breaking - AMS. 7 Fetches 8 Dynamic Fetch 9 Wave Growth Nomogram 10 Calculate Wave H and T • What can we determine for wave characteristics from the following scenario? • 40 kt wind blows for 24 hours across a 150 nm fetch area? • Using the wave nomogram – start on left vertical axis at 40 kt • Move forward in time to the right until you reach either 24 hours or 150 nm of fetch • What is limiting factor? Fetch length or time? • Nomogram yields 18.7 ft @ 9.6 sec 11 Wave Growth Nomogram 12 Wave Dimensions • C=Wave Celerity • L=Wave Length •
    [Show full text]
  • Chapter 5 Frictional Boundary Layers
    Chapter 5 Frictional boundary layers 5.1 The Ekman layer problem over a solid surface In this chapter we will take up the important question of the role of friction, especially in the case when the friction is relatively small (and we will have to find an objective measure of what we mean by small). As we noted in the last chapter, the no-slip boundary condition has to be satisfied no matter how small friction is but ignoring friction lowers the spatial order of the Navier Stokes equations and makes the satisfaction of the boundary condition impossible. What is the resolution of this fundamental perplexity? At the same time, the examination of this basic fluid mechanical question allows us to investigate a physical phenomenon of great importance to both meteorology and oceanography, the frictional boundary layer in a rotating fluid, called the Ekman Layer. The historical background of this development is very interesting, partly because of the fascinating people involved. Ekman (1874-1954) was a student of the great Norwegian meteorologist, Vilhelm Bjerknes, (himself the father of Jacques Bjerknes who did so much to understand the nature of the Southern Oscillation). Vilhelm Bjerknes, who was the first to seriously attempt to formulate meteorology as a problem in fluid mechanics, was a student of his own father Christian Bjerknes, the physicist who in turn worked with Hertz who was the first to demonstrate the correctness of Maxwell’s formulation of electrodynamics. So, we are part of a joined sequence of scientists going back to the great days of classical physics.
    [Show full text]
  • NJ Art Reef Publisher
    Participating Organizations Alliance for a Living Ocean American Littoral Society Clean Ocean Action www.CleanOceanAction.org Arthur Kill Coalition Asbury Park Fishing Club Bayberry Garden Club Bayshore Saltwater Flyrodders Main Office Institute of Coastal Education Belford Seafood Co-op Belmar Fishing Club 18 Hartshorne Drive 3419 Pacific Avenue Beneath The Sea P.O. Box 505, Sandy Hook P.O. Box 1098 Bergen Save the Watershed Action Network Wildwood, NJ 08260-7098 Berkeley Shores Homeowners Civic Association Highlands, NJ 07732-0505 Cape May Environmental Commission Voice: 732-872-0111 Voice: 609-729-9262 Central Jersey Anglers Ocean Advocacy Fax: 732-872-8041 Fax: 609-729-1091 Citizens Conservation Council of Ocean County Since 1984 Clean Air Campaign [email protected] [email protected] Coalition Against Toxics Coalition for Peace & Justice Coastal Jersey Parrot Head Club Coast Alliance Communication Workers of America, Local 1034 Concerned Businesses of COA Concerned Citizens of Bensonhurst Concerned Citizens of COA Concerned Citizens of Montauk Dosil’s Sea Roamers Eastern Monmouth Chamber of Commerce Environmental Response Network Bill Figley, Reef Coordinator Explorers Dive Club Fisheries Defense Fund NJ Division of Fish and Wildlife Fishermen’s Dock Cooperative Fisher’s Island Conservancy P.O. Box 418 Friends of Island Beach State Park Friends of Liberty State Park Friends of Long Island Sound Port Republic, NJ 08241 Friends of the Boardwalk Garden Club of Englewood Garden Club of Fair Haven December 6, 2004 Garden Club of Long Beach Island Garden Club of Morristown Garden Club of Navesink Garden Club of New Jersey RE: New Jersey Draft Artificial Reef Plan Garden Club of New Vernon Garden Club of Oceanport Garden Club of Princeton Garden Club of Ridgewood VIA FASCIMILE Garden Club of Rumson Garden Club of Short Hills Garden Club of Shrewsbury Garden Club of Spring Lake Dear Mr.
    [Show full text]
  • Coastal Upwelling Revisited: Ekman, Bakun, and Improved 10.1029/2018JC014187 Upwelling Indices for the U.S
    Journal of Geophysical Research: Oceans RESEARCH ARTICLE Coastal Upwelling Revisited: Ekman, Bakun, and Improved 10.1029/2018JC014187 Upwelling Indices for the U.S. West Coast Key Points: Michael G. Jacox1,2 , Christopher A. Edwards3 , Elliott L. Hazen1 , and Steven J. Bograd1 • New upwelling indices are presented – for the U.S. West Coast (31 47°N) to 1NOAA Southwest Fisheries Science Center, Monterey, CA, USA, 2NOAA Earth System Research Laboratory, Boulder, CO, address shortcomings in historical 3 indices USA, University of California, Santa Cruz, CA, USA • The Coastal Upwelling Transport Index (CUTI) estimates vertical volume transport (i.e., Abstract Coastal upwelling is responsible for thriving marine ecosystems and fisheries that are upwelling/downwelling) disproportionately productive relative to their surface area, particularly in the world’s major eastern • The Biologically Effective Upwelling ’ Transport Index (BEUTI) estimates boundary upwelling systems. Along oceanic eastern boundaries, equatorward wind stress and the Earth s vertical nitrate flux rotation combine to drive a near-surface layer of water offshore, a process called Ekman transport. Similarly, positive wind stress curl drives divergence in the surface Ekman layer and consequently upwelling from Supporting Information: below, a process known as Ekman suction. In both cases, displaced water is replaced by upwelling of relatively • Supporting Information S1 nutrient-rich water from below, which stimulates the growth of microscopic phytoplankton that form the base of the marine food web. Ekman theory is foundational and underlies the calculation of upwelling indices Correspondence to: such as the “Bakun Index” that are ubiquitous in eastern boundary upwelling system studies. While generally M. G. Jacox, fi [email protected] valuable rst-order descriptions, these indices and their underlying theory provide an incomplete picture of coastal upwelling.
    [Show full text]
  • Fisheries Research 213 (2019) 219–225
    Fisheries Research 213 (2019) 219–225 Contents lists available at ScienceDirect Fisheries Research journal homepage: www.elsevier.com/locate/fishres Contrasting river migrations of Common Snook between two Florida rivers using acoustic telemetry T ⁎ R.E Bouceka, , A.A. Trotterb, D.A. Blewettc, J.L. Ritchb, R. Santosd, P.W. Stevensb, J.A. Massied, J. Rehaged a Bonefish and Tarpon Trust, Florida Keys Initiative Marathon Florida, 33050, United States b Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, 100 8th Ave. Southeast, St Petersburg, FL, 33701, United States c Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Charlotte Harbor Field Laboratory, 585 Prineville Street, Port Charlotte, FL, 33954, United States d Earth and Environmental Sciences, Florida International University, 11200 SW 8th street, AHC5 389, Miami, Florida, 33199, United States ARTICLE INFO ABSTRACT Handled by George A. Rose The widespread use of electronic tags allows us to ask new questions regarding how and why animal movements Keywords: vary across ecosystems. Common Snook (Centropomus undecimalis) is a tropical estuarine sportfish that have been Spawning migration well studied throughout the state of Florida, including multiple acoustic telemetry studies. Here, we ask; do the Common snook spawning behaviors of Common Snook vary across two Florida coastal rivers that differ considerably along a Everglades national park gradient of anthropogenic change? We tracked Common Snook migrations toward and away from spawning sites Caloosahatchee river using acoustic telemetry in the Shark River (U.S.), and compared those migrations with results from a previously Acoustic telemetry, published Common Snook tracking study in the Caloosahatchee River.
    [Show full text]