Tidal and Wind-Driven Currents from Oscr

Total Page:16

File Type:pdf, Size:1020Kb

Tidal and Wind-Driven Currents from Oscr FEATURE TIDAL AND WIND-DRIVEN CURRENTS FROM OSCR By David Prandle TWO IMPORTANTASPECTS of tidal currents are (1) be seen by comparing calculations of M, tidal vor- their temporal coherence and (2) their constancy ticity distributions <OV/OX- c?U/OY> from OSCR (over centuries). The first rigorous evaluation of an measurements with corresponding model calcula- Ocean Surface Current Radar (OSCR) system ex- tions (Prandle 1987). ploited these characteristics using sequential de- Tidal Residuals ployments of the one available unit with subse- The propagation of tidal energy from the quent combination of radial components to ocean into shelf seas produces an attendant net construct tidal ellipses (Prandle and Ryder 1985). residual current Uo of 0.5(OUD)cos 0 (0, oscil- Specifications for Tidal Mapping lating current amplitude; c, elevation amplitude: The Rayleigh criterion for separation of closely D, water depth: O, phase difference between lJ spaced constituents in tidal analysis suggests ob- and {). In U.K. waters Uo is typically 0-3 cm s ' servational periods exceeding the related beat fre- compared with 0 of 40-100 cm s ', thus conven- • . enhanced reso- quency, this dictates 15 d of observations to sepa- tional current meters often fail to resolve U~,. lution of the instru- rate the two largest constituents M~ and St. For Moreover, numerical models that accurately sim- tidal elevations this criterion is often relaxed: ulate M z may not resolve U,, with the same accu- mentation reveals however, while elevations show a noise:tidal sig- racy. Year-long deployments of OSCR, in the finer scale dynamical nal ratio of 0(0.1-0.2), the same ratio for currents Dover Straits (Prandle et al., 1993) and the North is 0(0.5). Moreover, wind and wave current com- Channel of the Irish Sea (Howarth et al., 1995), processes. ponents are generally largest at the surface, and enabled, for the first time, these net tidal residual hence for OSCR observations the ratio may be currents to be accurately resolved by direct mea- even higher. Consequently 30-d observational pe- surement. But, as so often occurs in science, en- riods are recommended. Prandle et al. (1993) hanced resolution of the instrumentation reveals show that, from analyses of a sequence of data finer scale dynamical processes. Figure 2 shows a sets of this length, 7 constituents could be deter- residual surface current gyre differentiated from mined with standard deviations of -0.1 of ampli- these long-term measurements in the Dover tude for M e, S 2, and N, and 0.2 for O1, K> M 4, Strait. Such gyres are not exceptional but rather a and MS 4. An associated problem arises with se- characteristic of most coastlines, although rarely lecting specified relationships for closely spaced identified with conventional instrument or air- constituents not explicitly determined; using adja- borne sensors. cent elevation data may be suspect. A further dif- Wind-Driven Currents ficulty arises in shallow water in comparing OSCR results with values from either moored in- Nontidal Currents struments or models based on different vertical Removal of the tidal component from High reference frames. Lane et ell., (in press) indicate Frequency (HF) Radar current observations some possible solutions to this problem. leaves residuals that may include contributions Figure 1 (Prandle 1991) shows typically close from: direct (localized) wind forcing, indirect agreement between tidal ellipse distributions de- (larger scale) wind forcing, surface waves, and rived by combining OSCR measurements from a horizontal and vertical density gradients• Interac- total of 10 sites with values from a fine grid nu- tion of any of these components with the tidal merical model. The extent of this agreement can component can generate significant modulation of the latter contributing an additional nontidal residual. Selective filtering of the nontidal cur- David Prandle, Proudman Oceanographic Laboratory, Bid- rents into frequency bands can be used to sepa- ston Observatory. Birkenhead L43 7RA. UK. rate many of these components. OCEANOGRAPHY'Vo].10, No. 2.1997 57 ~" O0'N- t (m) Fig. 2: Residual (30 d mean) gyre from OSCR Mk II. variability. In shallower water, wind forcing may be partially balanced by surface slopes. In straits these slopes can subsequently generate currents orders of magnitude greater than indicated by lo- calized forcing (Prandle 1993). However, statis- tically significant relationships between wind and residual surface currents have been derived from all OSCR deployments. Both the steady- state Ekman spiral response and rotating inertial currents have been identified (Fig. 3). The steady-state response is typically 1 or 2% of Fig. 1: M 2 tidal ellipses, OSCR (black) versus wind speed, increasing in magnitude in deep model. water and veering increasingly toward the theo- retical deep water values of 45 ° to the right of Persistent residual surface currents of typi- the wind. cally 10-20 cm s -t are regularly observed with Determining Current Profiles From Surface Persistent residual deployments of the OSCR system around the Currents U.K. coast. These can often be dynamically re- surface currents of Construction of tidal current profiles from sur- lated to horizontal density gradients (Prandle face values can be completed, qualitatively, using typically 10-20 cm and Matthews 1990). Likewise jet-like currents simple theory that requires the specification of a of up to 14 cm s -~ have been observed linked s -1 are regularly ob- vertical eddy viscosity coefficient, E, and a bottom with frontal dynamics (Matthews et al., 1993). friction coefficient k (Prandle 1982). Estimates of served with . the Souza and Simpson (1996) show how vertical both E and k may be made from the variation in density gradients modulate surface tidal cur- OSCR system wind-forced response in water of varying depths. rents. Vertical profiles of the wind-forced component in around the U.K. In deep water the oscillatory orbital velocities open seas can similarly be calculated from Ekman of surface waves do not show any obvious aliasing spiral theory. coast. on the Bragg peaks, but in shallow water any asso- By substitution of observed surface currents ciated net drift component may influence "current" into the horizontal momentum equation, local- measurements. ized surface gradients can be constructed. By in- Wind-Forced Currents tegrating these gradients over the region of radar Relating observed wind-driven currents to coverage, both an M 2 co-tidal chart (using a ref- wind forcing is notoriously difficult. Both the erence value) and a mean sea level distribution wind itself and the associated currents exhibit were calculated for the Dover Strait (Prandle et appreciable fine-scale (temporal and spatial) al., 1993). 58 OCEANOGRAPHY'VoL10, No. 2-1997 into major ports, management of coastal dis- charges/withdrawal, tracking of accidental spill- ages, assimilation (updating) of storm surge pre- diction models, etc. In principle, horizontal dispersion coefficients ~. ~ ~ ~ -....~.,,"-~ ~ . can be determined from the spatial variability in velocities observed by HF Radar. In practice, such estimates depend on the spatial resolution, sam- pling period, and instrumental errors of the sys- tem. Experiments to explore such sensitivities in- volving concurrent dye dispersion and drogue ~0.002 m s-' ~-~/bbey tracking would be useful. An exciting prospect is to link such extended ap- Perhaps the great- plications to related development in the radar tech- 15% nology. Thus, for example, a "Grand Challenge" est potential of such for coastal researchers is to predict coastal bathy- synergy is in real- 10% metric evolution, involving long-term continuous measurement of currents, waves, winds, and ba- time operational de- thymetry. An HF Radar system operating at vari- ployments. ........ ,,2,.5 .... able frequency (simultaneous or consecutively) -180 -120 -60 60 120 180 A 0/hour might be optimally tuned for determining each of / i " anticlockwise clockwise these parameters. Fig. 3: Wind-forced currents (shown for 1 m s -j References W; top panel). Histogram of rotation rate of Howarth, M.J., A.J. Harrison, P.J. Knight and R.J. Player, 1995: Measurement of net flow through a Channel. In: residual currents (bottom panel). Proceedings of the IEEE Fifth Working Conference on Current Measurement. IEEE. St. Petersburg, Florida, February 7-9, 121-126. Future Applications Lane, A.. D. Prandle, A.J. Harrison, P.D. Jones and C.J. Jarvis. The OSCR results described here have been Measuring fluxes in tidal estuaries: sensitivity to instru- restricted to the 26-MHz system, the potential of mentation and associated data analyses. Estuarine, Coastal Shelf Sci. In press. the finer scale resolution afforded by operation Matthews, J.P., A.D. Fox and D. Prandle, 1993: Radar obser- at 50 MHz is demonstrated elsewhere. The po- vation of an along-front jet and transverse flow conver- tential for longer range HF Radar current mea- gence associated with a North Sea front. Cont. Shelf surements has yet to be fully exploited. Use of Res., 13, 109-130. HF Radar for permanent monitoring of strategic Prandle, D., 1982: The vertical structure of tidal currents and other oscillatory flows. Cont. ShelfRes., 1, 191-207. straits, such as for the North Channel and Dover __, 1987: The fine-structure of nearshore tidal and resid- Strait described here, could form part of the ual circulations revealed by HF radar surface current Global Ocean Observing System to detect net measurements. J. Phys. Oceanogr., 17, 231-245. trends in oceanic circulation. With the perfor- __~ 1991: A new view of near-shore dynamics based on ob- mance of HF Radar now widely established, the servations from I-IF radar. Progr. Oceanogr., 27, 403-438. __., 1993: Year long measurements of flow through the greatest obstacle to wider use is capital cost: Dover Strait by H.F. Radar and Acoustic Doppler Cur- however, HF Radar systems are not vulnerable rent Profilers (ADCP).
Recommended publications
  • Basic Concepts in Oceanography
    Chapter 1 XA0101461 BASIC CONCEPTS IN OCEANOGRAPHY L.F. SMALL College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America Abstract Basic concepts in oceanography include major wind patterns that drive ocean currents, and the effects that the earth's rotation, positions of land masses, and temperature and salinity have on oceanic circulation and hence global distribution of radioactivity. Special attention is given to coastal and near-coastal processes such as upwelling, tidal effects, and small-scale processes, as radionuclide distributions are currently most associated with coastal regions. 1.1. INTRODUCTION Introductory information on ocean currents, on ocean and coastal processes, and on major systems that drive the ocean currents are important to an understanding of the temporal and spatial distributions of radionuclides in the world ocean. 1.2. GLOBAL PROCESSES 1.2.1 Global Wind Patterns and Ocean Currents The wind systems that drive aerosols and atmospheric radioactivity around the globe eventually deposit a lot of those materials in the oceans or in rivers. The winds also are largely responsible for driving the surface circulation of the world ocean, and thus help redistribute materials over the ocean's surface. The major wind systems are the Trade Winds in equatorial latitudes, and the Westerly Wind Systems that drive circulation in the north and south temperate and sub-polar regions (Fig. 1). It is no surprise that major circulations of surface currents have basically the same patterns as the winds that drive them (Fig. 2). Note that the Trade Wind System drives an Equatorial Current-Countercurrent system, for example.
    [Show full text]
  • World Ocean Thermocline Weakening and Isothermal Layer Warming
    applied sciences Article World Ocean Thermocline Weakening and Isothermal Layer Warming Peter C. Chu * and Chenwu Fan Naval Ocean Analysis and Prediction Laboratory, Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-831-656-3688 Received: 30 September 2020; Accepted: 13 November 2020; Published: 19 November 2020 Abstract: This paper identifies world thermocline weakening and provides an improved estimate of upper ocean warming through replacement of the upper layer with the fixed depth range by the isothermal layer, because the upper ocean isothermal layer (as a whole) exchanges heat with the atmosphere and the deep layer. Thermocline gradient, heat flux across the air–ocean interface, and horizontal heat advection determine the heat stored in the isothermal layer. Among the three processes, the effect of the thermocline gradient clearly shows up when we use the isothermal layer heat content, but it is otherwise when we use the heat content with the fixed depth ranges such as 0–300 m, 0–400 m, 0–700 m, 0–750 m, and 0–2000 m. A strong thermocline gradient exhibits the downward heat transfer from the isothermal layer (non-polar regions), makes the isothermal layer thin, and causes less heat to be stored in it. On the other hand, a weak thermocline gradient makes the isothermal layer thick, and causes more heat to be stored in it. In addition, the uncertainty in estimating upper ocean heat content and warming trends using uncertain fixed depth ranges (0–300 m, 0–400 m, 0–700 m, 0–750 m, or 0–2000 m) will be eliminated by using the isothermal layer.
    [Show full text]
  • Introduction to Oceanography
    Introduction to Oceanography Introduction to Oceanography Lecture 14: Tides, Biological Productivity Memorial Day holiday Monday no lab meetings Go to any other lab section this week (and let the TA know!) Bay of Fundy -- low tide, Photo by Dylan Kereluk, . Creative Commons A 2.0 Generic, Mudskipper (Periophthalmus modestus) at low tide, photo by OpenCage, Wikimedia Commons, Creative http://commons.wikimedia.org/wiki/File:Bay_of_Fundy_-_Tide_Out.jpg Commons A S-A 2.5, http://commons.wikimedia.org/wiki/File:Periophthalmus_modestus.jpg Tides Earth-Moon-Sun System Planet-length waves Cyclic, repeating rise & fall of sea level • Earth-Sun Distance – Most regular phenomenon in the oceans 150,000,000 km Daily tidal variation has great effects on life in & around the ocean (Lab 8) • Earth-Moon Distance 385,000 km Caused by gravity and Much closer to Earth, but between Earth, Moon & much less massive Sun, their orbits around • Earth Obliquity = 23.5 each other, and the degrees Earth’s daily spin – Seasons Photos by Samuel Wantman, Creative Commons A S-A 3.0, http://en.wikipedia.org/ wiki/File:Bay_of_Fundy_Low_Tide.jpg and Figure by Homonculus 2/Geologician, Wikimedia Commons, http://en.wikipedia.org/wiki/ Creative Commons A 3.0, http://en.wikipedia.org/wiki/ File:Bay_of_Fundy_High_Tide.jpg File:Lunar_perturbation.jpg Tides are caused by the gravity of the Moon and Sun acting on Scaled image of Earth-Moon distance, Nickshanks, Wikimedia Commons, Creative Commons A 2.5 Earth and its ocean. Pluto-Charon mutual orbit, Zhatt, Wikimedia Commons, Public
    [Show full text]
  • Exploration of the Deep Gulf of Mexico Slope Using DSV Alvin: Site Selection and Geologic Character
    Exploration of the Deep Gulf of Mexico Slope Using DSV Alvin: Site Selection and Geologic Character Harry H. Roberts1, Chuck R. Fisher2, Jim M. Brooks3, Bernie Bernard3, Robert S. Carney4, Erik Cordes5, William Shedd6, Jesse Hunt, Jr.6, Samantha Joye7, Ian R. MacDonald8, 9 and Cheryl Morrison 1Coastal Studies Institute, Louisiana State University, Baton Rouge, Louisiana 70803 2Department of Biology, Penn State University, University Park, Pennsylvania 16802-5301 3TDI Brooks International, Inc., 1902 Pinon Dr., College Station, Texas 77845 4Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 5Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, Massachusetts 02138 6Minerals Management Service, Office of Resource Evaluation, New Orleans, Louisiana 70123-2394 7Department of Geology, University of Georgia, Athens, Georgia 30602 8Department of Physical and Environmental Sciences, Texas A&M – Corpus Christi, Corpus Christi, Texas 78412 9U.S. Geological Survey, 11649 Leetown Rd., Keameysville, West Virginia 25430 ABSTRACT The Gulf of Mexico is well known for its hydrocarbon seeps, associated chemosyn- thetic communities, and gas hydrates. However, most direct observations and samplings of seep sites have been concentrated above water depths of approximately 3000 ft (1000 m) because of the scarcity of deep diving manned submersibles. In the summer of 2006, Minerals Management Service (MMS) and National Oceanic and Atmospheric Admini- stration (NOAA) supported 24 days of DSV Alvin dives on the deep continental slope. Site selection for these dives was accomplished through surface reflectivity analysis of the MMS slope-wide 3D seismic database followed by a photo reconnaissance cruise. From 80 potential sites, 20 were studied by photo reconnaissance from which 10 sites were selected for Alvin dives.
    [Show full text]
  • Intro to Tidal Theory
    Introduction to Tidal Theory Ruth Farre (BSc. Cert. Nat. Sci.) South African Navy Hydrographic Office, Private Bag X1, Tokai, 7966 1. INTRODUCTION Tides: The periodic vertical movement of water on the Earth’s Surface (Admiralty Manual of Navigation) Tides are very often neglected or taken for granted, “they are just the sea advancing and retreating once or twice a day.” The Ancient Greeks and Romans weren’t particularly concerned with the tides at all, since in the Mediterranean they are almost imperceptible. It was this ignorance of tides that led to the loss of Caesar’s war galleys on the English shores, he failed to pull them up high enough to avoid the returning tide. In the beginning tides were explained by all sorts of legends. One ascribed the tides to the breathing cycle of a giant whale. In the late 10 th century, the Arabs had already begun to relate the timing of the tides to the cycles of the moon. However a scientific explanation for the tidal phenomenon had to wait for Sir Isaac Newton and his universal theory of gravitation which was published in 1687. He described in his “ Principia Mathematica ” how the tides arose from the gravitational attraction of the moon and the sun on the earth. He also showed why there are two tides for each lunar transit, the reason why spring and neap tides occurred, why diurnal tides are largest when the moon was furthest from the plane of the equator and why the equinoxial tides are larger in general than those at the solstices.
    [Show full text]
  • Coastal Upwelling Revisited: Ekman, Bakun, and Improved 10.1029/2018JC014187 Upwelling Indices for the U.S
    Journal of Geophysical Research: Oceans RESEARCH ARTICLE Coastal Upwelling Revisited: Ekman, Bakun, and Improved 10.1029/2018JC014187 Upwelling Indices for the U.S. West Coast Key Points: Michael G. Jacox1,2 , Christopher A. Edwards3 , Elliott L. Hazen1 , and Steven J. Bograd1 • New upwelling indices are presented – for the U.S. West Coast (31 47°N) to 1NOAA Southwest Fisheries Science Center, Monterey, CA, USA, 2NOAA Earth System Research Laboratory, Boulder, CO, address shortcomings in historical 3 indices USA, University of California, Santa Cruz, CA, USA • The Coastal Upwelling Transport Index (CUTI) estimates vertical volume transport (i.e., Abstract Coastal upwelling is responsible for thriving marine ecosystems and fisheries that are upwelling/downwelling) disproportionately productive relative to their surface area, particularly in the world’s major eastern • The Biologically Effective Upwelling ’ Transport Index (BEUTI) estimates boundary upwelling systems. Along oceanic eastern boundaries, equatorward wind stress and the Earth s vertical nitrate flux rotation combine to drive a near-surface layer of water offshore, a process called Ekman transport. Similarly, positive wind stress curl drives divergence in the surface Ekman layer and consequently upwelling from Supporting Information: below, a process known as Ekman suction. In both cases, displaced water is replaced by upwelling of relatively • Supporting Information S1 nutrient-rich water from below, which stimulates the growth of microscopic phytoplankton that form the base of the marine food web. Ekman theory is foundational and underlies the calculation of upwelling indices Correspondence to: such as the “Bakun Index” that are ubiquitous in eastern boundary upwelling system studies. While generally M. G. Jacox, fi [email protected] valuable rst-order descriptions, these indices and their underlying theory provide an incomplete picture of coastal upwelling.
    [Show full text]
  • Oceanography 200, Spring 2008 Armbrust/Strickland Study Guide Exam 1
    Oceanography 200, Spring 2008 Armbrust/Strickland Study Guide Exam 1 Geography of Earth & Oceans Latitude & longitude Properties of Water Structure of water molecule: polarity, hydrogen bonds, effects on water as a solvent and on freezing Latent heat of fusion & vaporization & physical explanation Effects of latent heat on heat transport between ocean & atmosphere & within atmosphere Definition of density, density of ice vs. water Physical meaning of temperature & heat Heat capacity of water & why water requires a lot of heat gain or loss to change temperature Effects of heating & cooling on density of water, and physical explanation Difference in albedo of ice/snow vs. water, and effects on Earth temperature Properties of Seawater Definitions of salinity, conservative & non-conservative seawater constituents, density (sigma-t) Average ocean salinity & how it is measured 3 technology systems for monitoring ocean salinity and other properties 6 most abundant constituents of seawater & Principle of Constant Proportions Effects of freezing on seawater Effects of temperature & salinity on density, T-S diagram Processes that increase & decrease salinity & temperature and where they occur Generalized depth profiles of temperature, salinity, density & ocean stratification & stability Generalized depth profiles of O2 & CO2 and processes determining these profiles Forms of dissolved inorganic carbon in seawater and their buffering effect on pH of seawater Water Properties and Climate Change 2 main causes of global sea level rise, 2 main causes of local sea level rise Physical properties of water that affect sea level rise Icebergs & sea ice: Differences in sources, and effects of freezing & melting on sea level How heat content of upper ocean & Arctic sea ice extent have changed since about 1970s Invasion of fossil fuel CO2 in the oceans and effects on pH The Sea Floor & Plate Tectonics General differences in rock type & density of oceanic vs.
    [Show full text]
  • WOODS HOLE OCEANOGRAPHIC INSTITUTION Deep-Diving
    NEWSLETTER WOODS HOLE OCEANOGRAPHIC INSTITUTION AUGUST-SEPTEMBER 1995 Deep-Diving Submersible ALVIN WHOI Names Paul Clemente Sets Another Dive Record Chief Financial Officer The nation's first research submarine, the Deep Submergence Paul CI~mente, Jr., a resident of Hingham Vehicle (DSV) Alvin. passed another milestone in its long career and former Associate Vice President for September 20 when it made its 3,OOOth dive to the ocean floor, a Financial Affairs at Boston University, as· record no other deep-diving sub has achieved. Alvin is one of only sumed his duties as Associate Director for seven deep-diving (10,000 feet or more) manned submersibles in the Finance and Administration at WHOI on world and is considered by far the most active of the group, making October 2. between 150 and 200 dives to depths up to nearly 15,000 feet each In his new position Clemente is respon· year for scientific and engineering research . sible for directing all business and financial The 23-1001, three-person submersible has been operated by operations of the Institution, with specifIC Woods Hole Oceanographic Institution since 1964 for the U.S. ocean resp:>nsibility for accounting and finance, research community. It is owned by the OffICe of Naval Research facilities, human resources, commercial and supported by the Navy. the National Science Foundation and the affairs and procurement operations. WHOI, National Oceanic and Atmospheric Administration (NOAA). Alvin the largest private non· profit marine research and its support vessel, the 21 0-100t Research Vessel Atlantis II, are organization in the U.S., has an annual on an extended voyage in the Pacific which began in January 1995 operating budget of nearly $90 million and a with departure from Woods Hole.
    [Show full text]
  • Deep Ocean Wind Waves Ch
    Deep Ocean Wind Waves Ch. 1 Waves, Tides and Shallow-Water Processes: J. Wright, A. Colling, & D. Park: Butterworth-Heinemann, Oxford UK, 1999, 2nd Edition, 227 pp. AdOc 4060/5060 Spring 2013 Types of Waves Classifiers •Disturbing force •Restoring force •Type of wave •Wavelength •Period •Frequency Waves transmit energy, not mass, across ocean surfaces. Wave behavior depends on a wave’s size and water depth. Wind waves: energy is transferred from wind to water. Waves can change direction by refraction and diffraction, can interfere with one another, & reflect from solid objects. Orbital waves are a type of progressive wave: i.e. waves of moving energy traveling in one direction along a surface, where particles of water move in closed circles as the wave passes. Free waves move independently of the generating force: wind waves. In forced waves the disturbing force is applied continuously: tides Parts of an ocean wave •Crest •Trough •Wave height (H) •Wavelength (L) •Wave speed (c) •Still water level •Orbital motion •Frequency f = 1/T •Period T=L/c Water molecules in the crest of the wave •Depth of wave base = move in the same direction as the wave, ½L, from still water but molecules in the trough move in the •Wave steepness =H/L opposite direction. 1 • If wave steepness > /7, the wave breaks Group Velocity against Phase Velocity = Cg<<Cp Factors Affecting Wind Wave Development •Waves originate in a “sea”area •A fully developed sea is the maximum height of waves produced by conditions of wind speed, duration, and fetch •Swell are waves
    [Show full text]
  • Oceanography Lecture 12
    Because, OF ALL THE ICE!!! Oceanography Lecture 12 How do you know there’s an Ice Age? i. The Ocean/Atmosphere coupling ii.Surface Ocean Circulation Global Circulation Patterns: Atmosphere-Ocean “coupling” 3) Atmosphere-Ocean “coupling” Atmosphere – Transfer of moisture to the Low latitudes: Oceans atmosphere (heat released in higher latitudes High latitudes: Atmosphere as water condenses!) Atmosphere-Ocean “coupling” In summary Latitudinal Differences in Energy Atmosphere – Transfer of moisture to the atmosphere: Hurricanes! www.weather.com Amount of solar radiation received annually at the Earth’s surface Latitudinal Differences in Salinity Latitudinal Differences in Density Structure of the Oceans Heavy Light T has a much greater impact than S on Density! Atmospheric – Wind patterns Atmospheric – Wind patterns January January Westerlies Easterlies Easterlies Westerlies High/Low Pressure systems: Heat capacity! High/Low Pressure systems: Wind generation Wind drag Zonal Wind Flow Wind is moving air Air molecules drag water molecules across sea surface (remember waves generation?): frictional drag Westerlies If winds are prolonged, the frictional drag generates a current Easterlies Only a small fraction of the wind energy is transferred to Easterlies the water surface Westerlies Any wind blowing in a regular pattern? High/Low Pressure systems: Wind generation by flow from High to Low pressure systems (+ Coriolis effect) 1) Ekman Spiral 1) Ekman Spiral Once the surface film of water molecules is set in motion, they exert a Spiraling current in which speed and direction change with frictional drag on the water molecules immediately beneath them, depth: getting these to move as well. Net transport (average of all transport) is 90° to right Motion is transferred downward into the water column (North Hemisphere) or left (Southern Hemisphere) of the ! Speed diminishes with depth (friction) generating wind.
    [Show full text]
  • A Laboratory Model of Thermocline Depth and Exchange Fluxes Across Circumpolar Fronts*
    656 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 34 A Laboratory Model of Thermocline Depth and Exchange Fluxes across Circumpolar Fronts* CLAUDIA CENEDESE Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts JOHN MARSHALL Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts J. A. WHITEHEAD Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts (Manuscript received 6 January 2003, in ®nal form 7 July 2003) ABSTRACT A laboratory experiment has been constructed to investigate the possibility that the equilibrium depth of a circumpolar front is set by a balance between the rate at which potential energy is created by mechanical and buoyancy forcing and the rate at which it is released by eddies. In a rotating cylindrical tank, the combined action of mechanical and buoyancy forcing builds a strati®cation, creating a large-scale front. At equilibrium, the depth of penetration and strength of the current are then determined by the balance between eddy transport and sources and sinks associated with imposed patterns of Ekman pumping and buoyancy ¯uxes. It is found 2 that the depth of penetration and transport of the front scale like Ï[( fwe)/g9]L and weL , respectively, where we is the Ekman pumping, g9 is the reduced gravity across the front, f is the Coriolis parameter, and L is the width scale of the front. Last, the implications of this study for understanding those processes that set the strati®cation and transport of the Antarctic Circumpolar Current (ACC) are discussed. If the laboratory results scale up to the ACC, they suggest a maximum thermocline depth of approximately h 5 2 km, a zonal current velocity of 4.6 cm s21, and a transport T 5 150 Sv (1 Sv [ 106 m3 s 21), not dissimilar to what is observed.
    [Show full text]
  • OCEAN SUBDUCTION Show That Hardly Any Commercial Enhancement Finney B, Gregory-Eaves I, Sweetman J, Douglas MSV Program Can Be Regarded As Clearly Successful
    1982 OCEAN SUBDUCTION show that hardly any commercial enhancement Finney B, Gregory-Eaves I, Sweetman J, Douglas MSV program can be regarded as clearly successful. and Smol JP (2000) Impacts of climatic change and Model simulations suggest, however, that stock- Rshing on PaciRc salmon over the past 300 years. enhancement may be possible if releases can be Science 290: 795}799. made that match closely the current ecological Giske J and Salvanes AGV (1999) A model for enhance- and environmental conditions. However, this ment potentials in open ecosystems. In: Howell BR, Moksness E and Svasand T (eds) Stock Enhancement requires improvements of assessment methods of and Sea Ranching. Blackwell Fishing, News Books. these factors beyond present knowledge. Marine Howell BR, Moksness E and Svasand T (1999) Stock systems tend to have strong nonlinear dynamics, Enhancement and Sea Ranching. Blackwell Fishing, and unless one is able to predict these dynamics News Books. over a relevant time horizon, release efforts are Kareiva P, Marvier M and McClure M (2000) Recovery not likely to increase the abundance of the target and management options for spring/summer chinnook population. salmon in the Columbia River basin. Science 290: 977}979. Mills D (1989) Ecology and Management of Atlantic See also Salmon. London: Chapman & Hall. Ricker WE (1981) Changes in the average size and Mariculture, Environmental, Economic and Social average age of PaciRc salmon. Canadian Journal of Impacts of. Salmonid Farming. Salmon Fisheries: Fisheries and Aquatic Science 38: 1636}1656. Atlantic; Paci\c. Salmonids. Salvanes AGV, Aksnes DL, FossaJH and Giske J (1995) Simulated carrying capacities of Rsh in Norwegian Further Reading fjords.
    [Show full text]