Physical Oceanography in Coral Reef Environments: Wave and Mean Flow Dynamics at Small and Large Scales, and Resulting Ecological Implications

Total Page:16

File Type:pdf, Size:1020Kb

Physical Oceanography in Coral Reef Environments: Wave and Mean Flow Dynamics at Small and Large Scales, and Resulting Ecological Implications PHYSICAL OCEANOGRAPHY IN CORAL REEF ENVIRONMENTS: WAVE AND MEAN FLOW DYNAMICS AT SMALL AND LARGE SCALES, AND RESULTING ECOLOGICAL IMPLICATIONS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Justin Scott Rogers December 2015 © 2015 by Justin S Rogers. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/fj342cd7577 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Stephen Monismith, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Rob Dunbar I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Oliver Fringer I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Curt Storlazzi Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost for Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract This dissertation investigates the physical oceanography of coral reef environments, specifically focusing on waves and mean flows at small and large scales. At small scales of order ten to a hundred meters, the role of spur and groove formations and their interaction with surface waves and mean flow is examined. Spur-and-groove formations are found on the fore reefs of many coral reefs worldwide. Although these formations are primarily present in wave-dominated environments, their effect on wave-driven hydrodynamics is not well understood. A two-dimensional, depth- averaged, phase-resolving non-linear Boussinesq model (funwaveC) was used to model hydrodynamics on a simplified spur-and-groove system. The modeling results show that the spur-and-groove formations together with shoaling waves induce a nearshore Lagrangian circulation pattern of counter-rotating circulation cells. We present results from two separate field studies of SAG formations on Palmyra Atoll which show their effect on waves to be small, but reveal a persistent order 1 cm/s depth-averaged Lagrangian offshore flow over the spur and onshore flow over the grooves. This circulation was stronger for larger, directly-incident waves and low alongshore flow conditions, consistent with predictions from modeling. Vertical flow was downward over the spur and upward over the groove, likely driven by alongshore differences in bottom stress and not by vortex forcing. We suggest that the conditions for coral recruitment and growth appear to be more favorable on the spur than the groove due to (1) higher “food” supply from higher mean alongshore velocity, downward vertical velocity, and higher turbulence, and (2) lower sediment accumulation due to higher and more variable bottom shear stress. At large scales of order hundreds of meters to kilometers, the wave and mean flow dynamics of a pacific atoll are investigated. We report field measurements of waves and currents made from Sept-2011 to Jul-2014 on Palmyra Atoll in the Central Pacific that were used in conjunction with a coupled wave and three-dimensional iv hydrodynamic model (COAWST) to characterize the waves and hydrodynamics operant on the atoll. Bottom friction, modeled with a modified bottom roughness formulation, is the significant source of wave energy dissipation on the atoll, a result that is consistent with available observations of wave damping on Palmyra. Indeed observed and modeled dissipation rates are an order of magnitude larger than what has been observed on other, less geometrically complex reefs. At the scale of the atoll itself, strong regional flows create flow separation and a well-defined wake, similar to the classic fluid mechanics problem of flow past a cylinder. Circulation within the atoll is primarily governed by tides and waves, and secondarily by wind and regional currents. Tidally driven flow is important at all field sites, and the tidal phasing experiences significant delay with travel into the interior lagoons. Wave driven flow is significant at most of the field sites, and is a strong function of the dominant wave direction. Wind driven flow is generally weak, except on the shallow terraces. The near bed squared wave velocity, a proxy for bottom stress, shows strong spatial variability across the atoll and exerts control over geomorphic structure and high coral cover. Based on Lagrangian float tracks, the mean age was the best predictor of geomorphic structure and appears to clearly differentiate the geomorphic structures. While high mean flow appears to differentiate very productive coral regions, low water age and low temperature appear to be the most important variables for distinguishing between biological cover types at this site. The sites with high coral cover can have high diurnal temperature variability, but their average weekly temperature variability is similar to offshore waters. The mechanism for maintaining this low mean temperature is high mean advection, which occurs at timescales of a week, and is primarily governed by wave driven flows. The resulting connectivity within the atoll system shows that the general trends follow the mean flow paths; however, some connectivity exists between all regions of the atoll system. v Acknowledgments It is impossible to eloquently and succinctly summarize a journey that has taken the last five years, and to adequately acknowledge all the people who have supported and guided me through this process. Nevertheless, here is an attempt. First I would like to acknowledge my advisor, Stephen, for his work in training me to think like an oceanographer and giving me the opportunities and tools to succeed in academia. I sincerely appreciate not only his scientific brilliance when discussing perplexing questions, but also his loyalty and care for me as a person. I am very grateful for his dedication to connecting me with other influential people in the field, and for supporting me through this process. Secondly, I would like to thank my committee members. Rob Dunbar has been very influential in my time here at Stanford, and I sincerely appreciate the opportunities he has given me to collaborate with others outside of EFML. Oliver Fringer has been my favorite teacher at Stanford, as well as an incredible mentor in modeling and life. Curt Storlazzi has been influential in training me in physical oceanography, and helping me get my first paper published. I sincerely appreciate the collaboration and friendship of Dave Koweek, I could not have done this without him. Spending many long days working on a remote tropical atoll together either makes you sincere friends or bitter enemies, and I am happy to say we are the former! I would also like to acknowledge the following colleagues: Jeff Koseff, Falk Feddersen, Derek Fong, Dave Mucciarone, Brock Woodson, Fiorenza Micheli, Steve Litvin, Nirnimesh Kumar, Alex Sheremet, Amatzia Genin, and everyone from the Reefs Tomorrow Initiative. I am indebted to my master’s advisor, Ken Potter, as well as Chin Wu and John Hoopes at UW - Madison for starting this whole thing by imparting their love of research to me. vi I am very grateful to be a part of the wonderful community of Stanford EFML; I certainly could not have completed this journey without all of them. A few people who have had special influence on this dissertation include Ivy Huang, Maha AlNajjar, Bobby Arthur, Kara Scheu, Mallory Barkdull, Simon Wong, Matt Rayson, Phil Wolfram, Sean Vitousek, Ryan Walter, Franco Zarama, Walter Torres, Mike Squibb, Jamie Dunckley and Sarah Giddings. I also acknowledge the administrative support of Jill Filice, Yusong Rogers, and Marguerite Skogstrom. I am grateful to the US Department of Defense NDSEG fellowship for funding me for the first three years. I was also funded by a grant from the Gordon and Betty Moore Foundation, “Understanding coral reef resilience to advance science and conservation,” and teaching support from the Stanford Department of Civil and Environmental Engineering. On a personal level, this journey has been the most difficult five years of my life. There were many times I did not know if I would be able to complete my degree. I am grateful to have been surrounded by many colleagues mentioned above, but also a community of friends and family who encouraged me to keep pushing forward and pursue my passion even in the face of difficulty and at times outright despair. Coming through difficult times has made me appreciate even more that which is good, true, and beautiful in life, a few of which are love, passion, friendship, and faith. A few people who have been especially influential to me include my parents, my brother Grant, sister Heather, my aunt Nellie and uncle Chuck, my grandmother Lorraine, Minna, Tim and Helga, Fatima, my Christian church community at PBC, especially Matt and Laurice Vitalone, Nii and Jana Dodoo, Brad Powley and Lisa Cram. Finally, my daughter Maya continues to provide such joy, inspiration and fun to life; she makes all of this worthwhile. I would like to dedicate this dissertation to my beloved grandmother, Carol, who always believed the best in me.
Recommended publications
  • This Keyword List Contains Indian Ocean Place Names of Coral Reefs, Islands, Bays and Other Geographic Features in a Hierarchical Structure
    CoRIS Place Keyword Thesaurus by Ocean - 8/9/2016 Indian Ocean This keyword list contains Indian Ocean place names of coral reefs, islands, bays and other geographic features in a hierarchical structure. For example, the first name on the list - Bird Islet - is part of the Addu Atoll, which is in the Indian Ocean. The leading label - OCEAN BASIN - indicates this list is organized according to ocean, sea, and geographic names rather than country place names. The list is sorted alphabetically. The same names are available from “Place Keywords by Country/Territory - Indian Ocean” but sorted by country and territory name. Each place name is followed by a unique identifier enclosed in parentheses. The identifier is made up of the latitude and longitude in whole degrees of the place location, followed by a four digit number. The number is used to uniquely identify multiple places that are located at the same latitude and longitude. For example, the first place name “Bird Islet” has a unique identifier of “00S073E0013”. From that we see that Bird Islet is located at 00 degrees south (S) and 073 degrees east (E). It is place number 0013 at that latitude and longitude. (Note: some long lines wrapped, placing the unique identifier on the following line.) This is a reformatted version of a list that was obtained from ReefBase. OCEAN BASIN > Indian Ocean OCEAN BASIN > Indian Ocean > Addu Atoll > Bird Islet (00S073E0013) OCEAN BASIN > Indian Ocean > Addu Atoll > Bushy Islet (00S073E0014) OCEAN BASIN > Indian Ocean > Addu Atoll > Fedu Island (00S073E0008)
    [Show full text]
  • Basic Concepts in Oceanography
    Chapter 1 XA0101461 BASIC CONCEPTS IN OCEANOGRAPHY L.F. SMALL College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America Abstract Basic concepts in oceanography include major wind patterns that drive ocean currents, and the effects that the earth's rotation, positions of land masses, and temperature and salinity have on oceanic circulation and hence global distribution of radioactivity. Special attention is given to coastal and near-coastal processes such as upwelling, tidal effects, and small-scale processes, as radionuclide distributions are currently most associated with coastal regions. 1.1. INTRODUCTION Introductory information on ocean currents, on ocean and coastal processes, and on major systems that drive the ocean currents are important to an understanding of the temporal and spatial distributions of radionuclides in the world ocean. 1.2. GLOBAL PROCESSES 1.2.1 Global Wind Patterns and Ocean Currents The wind systems that drive aerosols and atmospheric radioactivity around the globe eventually deposit a lot of those materials in the oceans or in rivers. The winds also are largely responsible for driving the surface circulation of the world ocean, and thus help redistribute materials over the ocean's surface. The major wind systems are the Trade Winds in equatorial latitudes, and the Westerly Wind Systems that drive circulation in the north and south temperate and sub-polar regions (Fig. 1). It is no surprise that major circulations of surface currents have basically the same patterns as the winds that drive them (Fig. 2). Note that the Trade Wind System drives an Equatorial Current-Countercurrent system, for example.
    [Show full text]
  • Observations of Nearshore Infragravity Waves: Seaward and Shoreward Propagating Components A
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. C8, 3095, 10.1029/2001JC000970, 2002 Observations of nearshore infragravity waves: Seaward and shoreward propagating components A. Sheremet,1 R. T. Guza,2 S. Elgar,3 and T. H. C. Herbers4 Received 14 May 2001; revised 5 December 2001; accepted 20 December 2001; published 6 August 2002. [1] The variation of seaward and shoreward infragravity energy fluxes across the shoaling and surf zones of a gently sloping sandy beach is estimated from field observations and related to forcing by groups of sea and swell, dissipation, and shoreline reflection. Data from collocated pressure and velocity sensors deployed between 1 and 6 m water depth are combined, using the assumption of cross-shore propagation, to decompose the infragravity wave field into shoreward and seaward propagating components. Seaward of the surf zone, shoreward propagating infragravity waves are amplified by nonlinear interactions with groups of sea and swell, and the shoreward infragravity energy flux increases in the onshore direction. In the surf zone, nonlinear phase coupling between infragravity waves and groups of sea and swell decreases, as does the shoreward infragravity energy flux, consistent with the cessation of nonlinear forcing and the increased importance of infragravity wave dissipation. Seaward propagating infragravity waves are not phase coupled to incident wave groups, and their energy levels suggest strong infragravity wave reflection near the shoreline. The cross-shore variation of the seaward energy flux is weaker than that of the shoreward flux, resulting in cross-shore variation of the squared infragravity reflection coefficient (ratio of seaward to shoreward energy flux) between about 0.4 and 1.5.
    [Show full text]
  • World Ocean Thermocline Weakening and Isothermal Layer Warming
    applied sciences Article World Ocean Thermocline Weakening and Isothermal Layer Warming Peter C. Chu * and Chenwu Fan Naval Ocean Analysis and Prediction Laboratory, Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-831-656-3688 Received: 30 September 2020; Accepted: 13 November 2020; Published: 19 November 2020 Abstract: This paper identifies world thermocline weakening and provides an improved estimate of upper ocean warming through replacement of the upper layer with the fixed depth range by the isothermal layer, because the upper ocean isothermal layer (as a whole) exchanges heat with the atmosphere and the deep layer. Thermocline gradient, heat flux across the air–ocean interface, and horizontal heat advection determine the heat stored in the isothermal layer. Among the three processes, the effect of the thermocline gradient clearly shows up when we use the isothermal layer heat content, but it is otherwise when we use the heat content with the fixed depth ranges such as 0–300 m, 0–400 m, 0–700 m, 0–750 m, and 0–2000 m. A strong thermocline gradient exhibits the downward heat transfer from the isothermal layer (non-polar regions), makes the isothermal layer thin, and causes less heat to be stored in it. On the other hand, a weak thermocline gradient makes the isothermal layer thick, and causes more heat to be stored in it. In addition, the uncertainty in estimating upper ocean heat content and warming trends using uncertain fixed depth ranges (0–300 m, 0–400 m, 0–700 m, 0–750 m, or 0–2000 m) will be eliminated by using the isothermal layer.
    [Show full text]
  • Mapping Turbidity Currents Using Seismic Oceanography Title Page Abstract Introduction 1 2 E
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Ocean Sci. Discuss., 8, 1803–1818, 2011 www.ocean-sci-discuss.net/8/1803/2011/ Ocean Science doi:10.5194/osd-8-1803-2011 Discussions OSD © Author(s) 2011. CC Attribution 3.0 License. 8, 1803–1818, 2011 This discussion paper is/has been under review for the journal Ocean Science (OS). Mapping turbidity Please refer to the corresponding final paper in OS if available. currents using seismic E. A. Vsemirnova and R. W. Hobbs Mapping turbidity currents using seismic oceanography Title Page Abstract Introduction 1 2 E. A. Vsemirnova and R. W. Hobbs Conclusions References 1Geospatial Research Ltd, Department of Earth Sciences, Tables Figures Durham University, Durham DH1 3LE, UK 2Department of Earth Sciences, Durham University, Durham DH1 3LE, UK J I Received: 25 May 2011 – Accepted: 12 August 2011 – Published: 18 August 2011 J I Correspondence to: R. W. Hobbs ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 1803 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract OSD Using a combination of seismic oceanographic and physical oceanographic data ac- quired across the Faroe-Shetland Channel we present evidence of a turbidity current 8, 1803–1818, 2011 that transports suspended sediment along the western boundary of the Channel. We 5 focus on reflections observed on seismic data close to the sea-bed on the Faroese Mapping turbidity side of the Channel below 900m. Forward modelling based on independent physi- currents using cal oceanographic data show that thermohaline structure does not explain these near seismic sea-bed reflections but they are consistent with optical backscatter data, dry matter concentrations from water samples and from seabed sediment traps.
    [Show full text]
  • Introduction to Oceanography
    Introduction to Oceanography Introduction to Oceanography Lecture 14: Tides, Biological Productivity Memorial Day holiday Monday no lab meetings Go to any other lab section this week (and let the TA know!) Bay of Fundy -- low tide, Photo by Dylan Kereluk, . Creative Commons A 2.0 Generic, Mudskipper (Periophthalmus modestus) at low tide, photo by OpenCage, Wikimedia Commons, Creative http://commons.wikimedia.org/wiki/File:Bay_of_Fundy_-_Tide_Out.jpg Commons A S-A 2.5, http://commons.wikimedia.org/wiki/File:Periophthalmus_modestus.jpg Tides Earth-Moon-Sun System Planet-length waves Cyclic, repeating rise & fall of sea level • Earth-Sun Distance – Most regular phenomenon in the oceans 150,000,000 km Daily tidal variation has great effects on life in & around the ocean (Lab 8) • Earth-Moon Distance 385,000 km Caused by gravity and Much closer to Earth, but between Earth, Moon & much less massive Sun, their orbits around • Earth Obliquity = 23.5 each other, and the degrees Earth’s daily spin – Seasons Photos by Samuel Wantman, Creative Commons A S-A 3.0, http://en.wikipedia.org/ wiki/File:Bay_of_Fundy_Low_Tide.jpg and Figure by Homonculus 2/Geologician, Wikimedia Commons, http://en.wikipedia.org/wiki/ Creative Commons A 3.0, http://en.wikipedia.org/wiki/ File:Bay_of_Fundy_High_Tide.jpg File:Lunar_perturbation.jpg Tides are caused by the gravity of the Moon and Sun acting on Scaled image of Earth-Moon distance, Nickshanks, Wikimedia Commons, Creative Commons A 2.5 Earth and its ocean. Pluto-Charon mutual orbit, Zhatt, Wikimedia Commons, Public
    [Show full text]
  • Exploration of the Deep Gulf of Mexico Slope Using DSV Alvin: Site Selection and Geologic Character
    Exploration of the Deep Gulf of Mexico Slope Using DSV Alvin: Site Selection and Geologic Character Harry H. Roberts1, Chuck R. Fisher2, Jim M. Brooks3, Bernie Bernard3, Robert S. Carney4, Erik Cordes5, William Shedd6, Jesse Hunt, Jr.6, Samantha Joye7, Ian R. MacDonald8, 9 and Cheryl Morrison 1Coastal Studies Institute, Louisiana State University, Baton Rouge, Louisiana 70803 2Department of Biology, Penn State University, University Park, Pennsylvania 16802-5301 3TDI Brooks International, Inc., 1902 Pinon Dr., College Station, Texas 77845 4Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 5Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, Massachusetts 02138 6Minerals Management Service, Office of Resource Evaluation, New Orleans, Louisiana 70123-2394 7Department of Geology, University of Georgia, Athens, Georgia 30602 8Department of Physical and Environmental Sciences, Texas A&M – Corpus Christi, Corpus Christi, Texas 78412 9U.S. Geological Survey, 11649 Leetown Rd., Keameysville, West Virginia 25430 ABSTRACT The Gulf of Mexico is well known for its hydrocarbon seeps, associated chemosyn- thetic communities, and gas hydrates. However, most direct observations and samplings of seep sites have been concentrated above water depths of approximately 3000 ft (1000 m) because of the scarcity of deep diving manned submersibles. In the summer of 2006, Minerals Management Service (MMS) and National Oceanic and Atmospheric Admini- stration (NOAA) supported 24 days of DSV Alvin dives on the deep continental slope. Site selection for these dives was accomplished through surface reflectivity analysis of the MMS slope-wide 3D seismic database followed by a photo reconnaissance cruise. From 80 potential sites, 20 were studied by photo reconnaissance from which 10 sites were selected for Alvin dives.
    [Show full text]
  • Infragravity Wave Energy Partitioning in the Surf Zone in Response to Wind-Sea and Swell Forcing
    Journal of Marine Science and Engineering Article Infragravity Wave Energy Partitioning in the Surf Zone in Response to Wind-Sea and Swell Forcing Stephanie Contardo 1,*, Graham Symonds 2, Laura E. Segura 3, Ryan J. Lowe 4 and Jeff E. Hansen 2 1 CSIRO Oceans and Atmosphere, Crawley 6009, Australia 2 Faculty of Science, School of Earth Sciences, The University of Western Australia, Crawley 6009, Australia; [email protected] (G.S.); jeff[email protected] (J.E.H.) 3 Departamento de Física, Universidad Nacional, Heredia 3000, Costa Rica; [email protected] 4 Faculty of Engineering and Mathematical Sciences, Oceans Graduate School, The University of Western Australia, Crawley 6009, Australia; [email protected] * Correspondence: [email protected] Received: 18 September 2019; Accepted: 23 October 2019; Published: 28 October 2019 Abstract: An alongshore array of pressure sensors and a cross-shore array of current velocity and pressure sensors were deployed on a barred beach in southwestern Australia to estimate the relative response of edge waves and leaky waves to variable incident wind wave conditions. The strong sea 1 breeze cycle at the study site (wind speeds frequently > 10 m s− ) produced diurnal variations in the peak frequency of the incident waves, with wind sea conditions (periods 2 to 8 s) dominating during the peak of the sea breeze and swell (periods 8 to 20 s) dominating during times of low wind. We observed that edge wave modes and their frequency distribution varied with the frequency of the short-wave forcing (swell or wind-sea) and edge waves were more energetic than leaky waves for the duration of the 10-day experiment.
    [Show full text]
  • Assessing Long-Term Changes in the Beach Width of Reef Islands Based on Temporally Fragmented Remote Sensing Data
    Remote Sens. 2014, 6, 6961-6987; doi:10.3390/rs6086961 OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Assessing Long-Term Changes in the Beach Width of Reef Islands Based on Temporally Fragmented Remote Sensing Data Thomas Mann 1,* and Hildegard Westphal 1,2 1 Leibniz Center for Tropical Marine Ecology, Fahrenheitstrasse 6, D-28359 Bremen, Germany; E-Mail: [email protected] 2 Department of Geosciences, University of Bremen, D-28359 Bremen, Germany * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-421-2380-0132; Fax: +49-421-2380-030. Received: 30 May 2014; in revised form: 7 July 2014 / Accepted: 18 July 2014 / Published: 25 July 2014 Abstract: Atoll islands are subject to a variety of processes that influence their geomorphological development. Analysis of historical shoreline changes using remotely sensed images has become an efficient approach to both quantify past changes and estimate future island response. However, the detection of long-term changes in beach width is challenging mainly for two reasons: first, data availability is limited for many remote Pacific islands. Second, beach environments are highly dynamic and strongly influenced by seasonal or episodic shoreline oscillations. Consequently, remote-sensing studies on beach morphodynamics of atoll islands deal with dynamic features covered by a low sampling frequency. Here we present a study of beach dynamics for nine islands on Takú Atoll, Papua New Guinea, over a seven-decade period. A considerable chronological gap between aerial photographs and satellite images was addressed by applying a new method that reweighted positions of the beach limit by identifying “outlier” shoreline positions.
    [Show full text]
  • Climate Change Report for Gulf of the Farallones and Cordell
    Chapter 6 Responses in Marine Habitats Sea Level Rise: Intertidal organisms will respond to sea level rise by shifting their distributions to keep pace with rising sea level. It has been suggested that all but the slowest growing organisms will be able to keep pace with rising sea level (Harley et al. 2006) but few studies have thoroughly examined this phenomenon. As in soft sediment systems, the ability of intertidal organisms to migrate will depend on available upland habitat. If these communities are adjacent to steep coastal bluffs it is unclear if they will be able to colonize this habitat. Further, increased erosion and sedimentation may impede their ability to move. Waves: Greater wave activity (see 3.3.2 Waves) suggests that intertidal and subtidal organisms may experience greater physical forces. A number of studies indicate that the strength of organisms does not always scale with their size (Denny et al. 1985; Carrington 1990; Gaylord et al. 1994; Denny and Kitzes 2005; Gaylord et al. 2008), which can lead to selective removal of larger organisms, influencing size structure and species interactions that depend on size. However, the relationship between offshore significant wave height and hydrodynamic force is not simple. Although local wave height inside the surf zone is a good predictor of wave velocity and force (Gaylord 1999, 2000), the relationship between offshore Hs and intertidal force cannot be expressed via a simple linear relationship (Helmuth and Denny 2003). In many cases (89% of sites examined), elevated offshore wave activity increased force up to a point (Hs > 2-2.5 m), after which force did not increase with wave height.
    [Show full text]
  • Nature Parks Snorkeling Surfing Fishing
    Things to do in Florida Nature Parks Snorkeling Surfing Fishing Nature Parks Green Cay This nature center is the county’s newest nature canter that over- looks 100 acres of constructed wetland. Wakodahatchee Wetlands Is a park in Delray Beach with a three-quarter mile boardwalk that crosses between open water ponds and marches. Patch Reef Park & DeHoernle Park Parks in Boca Raton that have an abundant of sports and recreation facilities. Morikami Museum & Japanese Gardens The gardens at this Japanese cultural center in Delray Beach in- clude paradise garden, various styles of rock and Zen gardens, and a museum. Gumbo Limbo This Nature Center and Environmental Complex includes an indoor museum with fish tanks with fish, turtles, and other sea life. It is also known for rehabilitating and protecting sea turtles. *More information and website links are located on the last page. Snorkeling Blowing Rocks This is an environmental preserve on Jupiter Island in Hobe Sound. This peaceful, barrier island sanctuary is known for large-scale, native coastal habitat restoration. Lantana Beach Lantana is a coastal community in Palm Beach and 10 feet off shore there is a pretty good areas to snorkel. Red Reef Park A 67-acre oceanfront park in Boca Raton for swimming, snorkeling, and surf fishing that includes a nature center. Lauderdale-by-the-Sea Is known as “The Shore Diving Capital of South Florida”. There are two coral reef lines that are just a short swim from the beach. John Pennekamp Coral Reef State Park The first undersea park that encompasses about 70 natural square miles.
    [Show full text]
  • Coral Reef Algae
    Coral Reef Algae Peggy Fong and Valerie J. Paul Abstract Benthic macroalgae, or “seaweeds,” are key mem- 1 Importance of Coral Reef Algae bers of coral reef communities that provide vital ecological functions such as stabilization of reef structure, production Coral reefs are one of the most diverse and productive eco- of tropical sands, nutrient retention and recycling, primary systems on the planet, forming heterogeneous habitats that production, and trophic support. Macroalgae of an astonish- serve as important sources of primary production within ing range of diversity, abundance, and morphological form provide these equally diverse ecological functions. Marine tropical marine environments (Odum and Odum 1955; macroalgae are a functional rather than phylogenetic group Connell 1978). Coral reefs are located along the coastlines of comprised of members from two Kingdoms and at least over 100 countries and provide a variety of ecosystem goods four major Phyla. Structurally, coral reef macroalgae range and services. Reefs serve as a major food source for many from simple chains of prokaryotic cells to upright vine-like developing nations, provide barriers to high wave action that rockweeds with complex internal structures analogous to buffer coastlines and beaches from erosion, and supply an vascular plants. There is abundant evidence that the his- important revenue base for local economies through fishing torical state of coral reef algal communities was dominance and recreational activities (Odgen 1997). by encrusting and turf-forming macroalgae, yet over the Benthic algae are key members of coral reef communities last few decades upright and more fleshy macroalgae have (Fig. 1) that provide vital ecological functions such as stabili- proliferated across all areas and zones of reefs with increas- zation of reef structure, production of tropical sands, nutrient ing frequency and abundance.
    [Show full text]