Assessing Long-Term Changes in the Beach Width of Reef Islands Based on Temporally Fragmented Remote Sensing Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
This Keyword List Contains Indian Ocean Place Names of Coral Reefs, Islands, Bays and Other Geographic Features in a Hierarchical Structure
CoRIS Place Keyword Thesaurus by Ocean - 8/9/2016 Indian Ocean This keyword list contains Indian Ocean place names of coral reefs, islands, bays and other geographic features in a hierarchical structure. For example, the first name on the list - Bird Islet - is part of the Addu Atoll, which is in the Indian Ocean. The leading label - OCEAN BASIN - indicates this list is organized according to ocean, sea, and geographic names rather than country place names. The list is sorted alphabetically. The same names are available from “Place Keywords by Country/Territory - Indian Ocean” but sorted by country and territory name. Each place name is followed by a unique identifier enclosed in parentheses. The identifier is made up of the latitude and longitude in whole degrees of the place location, followed by a four digit number. The number is used to uniquely identify multiple places that are located at the same latitude and longitude. For example, the first place name “Bird Islet” has a unique identifier of “00S073E0013”. From that we see that Bird Islet is located at 00 degrees south (S) and 073 degrees east (E). It is place number 0013 at that latitude and longitude. (Note: some long lines wrapped, placing the unique identifier on the following line.) This is a reformatted version of a list that was obtained from ReefBase. OCEAN BASIN > Indian Ocean OCEAN BASIN > Indian Ocean > Addu Atoll > Bird Islet (00S073E0013) OCEAN BASIN > Indian Ocean > Addu Atoll > Bushy Islet (00S073E0014) OCEAN BASIN > Indian Ocean > Addu Atoll > Fedu Island (00S073E0008) -
Nature Parks Snorkeling Surfing Fishing
Things to do in Florida Nature Parks Snorkeling Surfing Fishing Nature Parks Green Cay This nature center is the county’s newest nature canter that over- looks 100 acres of constructed wetland. Wakodahatchee Wetlands Is a park in Delray Beach with a three-quarter mile boardwalk that crosses between open water ponds and marches. Patch Reef Park & DeHoernle Park Parks in Boca Raton that have an abundant of sports and recreation facilities. Morikami Museum & Japanese Gardens The gardens at this Japanese cultural center in Delray Beach in- clude paradise garden, various styles of rock and Zen gardens, and a museum. Gumbo Limbo This Nature Center and Environmental Complex includes an indoor museum with fish tanks with fish, turtles, and other sea life. It is also known for rehabilitating and protecting sea turtles. *More information and website links are located on the last page. Snorkeling Blowing Rocks This is an environmental preserve on Jupiter Island in Hobe Sound. This peaceful, barrier island sanctuary is known for large-scale, native coastal habitat restoration. Lantana Beach Lantana is a coastal community in Palm Beach and 10 feet off shore there is a pretty good areas to snorkel. Red Reef Park A 67-acre oceanfront park in Boca Raton for swimming, snorkeling, and surf fishing that includes a nature center. Lauderdale-by-the-Sea Is known as “The Shore Diving Capital of South Florida”. There are two coral reef lines that are just a short swim from the beach. John Pennekamp Coral Reef State Park The first undersea park that encompasses about 70 natural square miles. -
The Economic, Social and Icon Value of the Great Barrier Reef Acknowledgement
At what price? The economic, social and icon value of the Great Barrier Reef Acknowledgement Deloitte Access Economics acknowledges and thanks the Great Barrier Reef Foundation for commissioning the report with support from the National Australia Bank and the Great Barrier Reef Marine Park Authority. In particular, we would like to thank the report’s Steering Committee for their guidance: Andrew Fyffe Prof. Ove Hoegh-Guldberg Finance Officer Director of the Global Change Institute Great Barrier Reef Foundation and Professor of Marine Science The University of Queensland Anna Marsden Managing Director Prof. Robert Costanza Great Barrier Reef Foundation Professor and Chair in Public Policy Australian National University James Bentley Manager Natural Value, Corporate Responsibility Dr Russell Reichelt National Australia Bank Limited Chairman and Chief Executive Great Barrier Reef Marine Park Authority Keith Tuffley Director Stephen Fitzgerald Great Barrier Reef Foundation Director Great Barrier Reef Foundation Dr Margaret Gooch Manager, Social and Economic Sciences Stephen Roberts Great Barrier Reef Marine Park Authority Director Great Barrier Reef Foundation Thank you to Associate Professor Henrietta Marrie from the Office of Indigenous Engagement at CQUniversity Cairns for her significant contribution and assistance in articulating the Aboriginal and Torres Strait Islander value of the Great Barrier Reef. Thank you to Ipsos Public Affairs Australia for their assistance in conducting the primary research for this study. We would also like -
Artificial Reef Observations from a Manned Submersible Off Southeast Florida
BULLETIN OF MARINE SCIENCE, 44(2): 1041-1050, 1989 ARTIFICIAL REEF OBSERVATIONS FROM A MANNED SUBMERSIBLE OFF SOUTHEAST FLORIDA Eugene A, Shinn and Robert I. Wicklund ABSTRACT Examination of 16artificial reef structures with a two-person submersible in depths ranging from 30 to 120 m (100-400 ft) indicated that the highest numbers offish are found around reefs in water shallower .than 46 m (150 ft). Fewer fish, especially those with tropical coral reef affinities, below 46 m was probably caused by a thermocline, observed on all dives deeper than 43 m (140 ft). During 4 days in September 1987, temperatures from the surface down to approximately 43 m were 30° to 31°C (86°-88°F), whereas below 43 m the temperature dropped as low as 1O.6°C(51°F) at 120 m (390 ft). Algae and reef community encrusters (gorgonians, bryozoans, branching sponges, and corals), abundant on shallower structures, were absent below 46 m. Structures that penetrated above the thermocline, such as two upright oil "rigs" and a hopper barge, were also effective reefs. The open structure and high profile of the rigs enhance their use as artificial reefs by providing a range of well-aerated habitats. Any effect of substrate or post-deployment age on fish abundance could not be documented. Wood appeared to be a more effective fish-concentrating material but has a shorter useful life than does steeL The greatest diversity and numbers of fish were observed at the Miami sewer outfalL Numerous derelict ships and other material have been placed off southeast Florida for the purpose of enhancing fish stocks and sportsfishing. -
The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes
1 Surveys in Geophysics Archimer November 2011, Volume 40, Issue 6, Pages 1563-1601 https://doi.org/10.1007/s10712-019-09557-5 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00509/62046/ The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes Dodet Guillaume 1, *, Melet Angélique 2, Ardhuin Fabrice 6, Bertin Xavier 3, Idier Déborah 4, Almar Rafael 5 1 UMR 6253 LOPSCNRS-Ifremer-IRD-Univiversity of Brest BrestPlouzané, France 2 Mercator OceanRamonville Saint Agne, France 3 UMR 7266 LIENSs, CNRS - La Rochelle UniversityLa Rochelle, France 4 BRGMOrléans Cédex, France 5 UMR 5566 LEGOSToulouse Cédex 9, France *Corresponding author : Guillaume Dodet, email address : [email protected] Abstract : Surface gravity waves generated by winds are ubiquitous on our oceans and play a primordial role in the dynamics of the ocean–land–atmosphere interfaces. In particular, wind-generated waves cause fluctuations of the sea level at the coast over timescales from a few seconds (individual wave runup) to a few hours (wave-induced setup). These wave-induced processes are of major importance for coastal management as they add up to tides and atmospheric surges during storm events and enhance coastal flooding and erosion. Changes in the atmospheric circulation associated with natural climate cycles or caused by increasing greenhouse gas emissions affect the wave conditions worldwide, which may drive significant changes in the wave-induced coastal hydrodynamics. Since sea-level rise represents a major challenge for sustainable coastal management, particularly in low-lying coastal areas and/or along densely urbanized coastlines, understanding the contribution of wind-generated waves to the long-term budget of coastal sea-level changes is therefore of major importance. -
Upwelling As a Source of Nutrients for the Great Barrier Reef Ecosystems: a Solution to Darwin's Question?
Vol. 8: 257-269, 1982 MARINE ECOLOGY - PROGRESS SERIES Published May 28 Mar. Ecol. Prog. Ser. / I Upwelling as a Source of Nutrients for the Great Barrier Reef Ecosystems: A Solution to Darwin's Question? John C. Andrews and Patrick Gentien Australian Institute of Marine Science, Townsville 4810, Queensland, Australia ABSTRACT: The Great Barrier Reef shelf ecosystem is examined for nutrient enrichment from within the seasonal thermocline of the adjacent Coral Sea using moored current and temperature recorders and chemical data from a year of hydrology cruises at 3 to 5 wk intervals. The East Australian Current is found to pulsate in strength over the continental slope with a period near 90 d and to pump cold, saline, nutrient rich water up the slope to the shelf break. The nutrients are then pumped inshore in a bottom Ekman layer forced by periodic reversals in the longshore wind component. The period of this cycle is 12 to 25 d in summer (30 d year round average) and the bottom surges have an alternating onshore- offshore speed up to 10 cm S-'. Upwelling intrusions tend to be confined near the bottom and phytoplankton development quickly takes place inshore of the shelf break. There are return surface flows which preserve the mass budget and carry silicate rich Lagoon water offshore while nitrogen rich shelf break water is carried onshore. Upwelling intrusions penetrate across the entire zone of reefs, but rarely into the Lagoon. Nutrition is del~veredout of the shelf thermocline to the living coral of reefs by localised upwelling induced by the reefs. -
Pacific Remote Islands Marine National Monument
U.S. Fish & Wildlife Service Pacific Remote Islands Marine National Monument The Pacific Remote Islands Marine National Monument falls within the Central Pacific Ocean, ranging from Wake Atoll in the northwest to Jarvis Island in the southeast. The seven atolls and islands included within the monument are farther from human population centers than any other U.S. area. They represent one of the last frontiers and havens for wildlife in the world, and comprise the most widespread collection of coral reef, seabird, and shorebird protected areas on the planet under a single nation’s jurisdiction. At Howland Island, Baker Island, Jarvis Island, Palmyra Atoll, and Kingman Reef, the terrestrial areas, reefs, and waters out to 12 nautical miles (nmi) are part of the National Wildlife Refuge System. The land areas at Wake Atoll and Johnston Atoll remain under the jurisdiction of The giant clam, Tridacna gigas, is a clam that is the largest living bivalve mollusk. the U.S. Air Force, but the waters from Photo: © Kydd Pollock 0 to 12 nmi are protected as units of the National Wildlife Refuge System. For all of the areas, fishery-related Marine National Monument, and orders long time periods throughout their entire activities seaward from the 12-nmi refuge of magnitude greater than the reefs near cultural and geological history. These boundaries out to the 50-nmi monument heavily populated islands. Expansive refuges are unique in that they were and boundary are managed by the National shallow coral reefs and deep coral forests, are still largely pristine, though many Oceanic and Atmospheric Administration. -
Coral Populations on Reef Slopes and Their Major Controls
Vol. 7: 83-115. l982 MARINE ECOLOGY - PROGRESS SERIES Published January 1 Mar. Ecol. Prog. Ser. l l REVIE W Coral Populations on Reef Slopes and Their Major Controls C. R. C. Sheppard Australian Institute of Marine Science, P.M.B. No. 3, Townsville M.S.O.. Q. 4810, Australia ABSTRACT: Ecological studies of corals on reef slopes published in the last 10-15 y are reviewed. Emphasis is placed on controls of coral distributions. Reef slope structures are defined with particular reference to the role of corals in providing constructional framework. General coral distributions are synthesized from widespread reefs and are described in the order: shallowest, most exposed reef slopes; main region of hermatypic growth; deepest studies conducted by SCUBA or submersible, and cryptic habitats. Most research has concerned the area between the shallow and deep extremes. Favoured methods of study have involved cover, zonation and diversity, although inadequacies of these simple measurements have led to a few multivariate treatments of data. The importance of early life history strategies and their influence on succession and final community structure is emphasised. Control of coral distribution exerted by their dual nutrition requirements - particulate food and light - are the least understood despite being extensively studied Well studied controls include water movement, sedimentation and predation. All influence coral populations directly and by acting on competitors. Finally, controls on coral population structure by competitive processes between species, and between corals and other taxa are illustrated. Their importance to general reef ecology so far as currently is known, is described. INTRODUCTION ecological studies of reef corals beyond 50 m to as deep as 100 m. -
Bienvenido a Uno De Los Parques Acuáticos Más Grandes Y Más
THE REEF ATLANTIS 22 PLAYA PARADISE THE COVE Acceso sólo para DOLPHIN ATLANTIS CAY huéspedes de Cove y Reef ENTRADAS AL RAPIDS RIVER 25 Bienvenido a uno de los parques acuáticos más 35 grandes y más espectaculares del mundo. 2 31 1 23 Sáquele el máximo a su visita usando este mapa de ROYAL doble cara y la guía informativa. Encontrará todos TOWERS 9 3 PLAYA los toboganes, piscinas, atracciones de río y COVE opciones para comer en el parque acuático, además 8 20 4 de sugerencias e información general que le 34 vendrán muy bien. ¡Diviértase! 7 32 14 15 5 POWER TOWER 17 19 (TORRE DEL PODER) 16 ATRACCIÓN RAPIDS RIVER 10 12 1 & 2 Entradas a Rapids River 7 Salida de los toboganes 11 3-8 Salidas de Rapids River de Power Tower 9 Final de Rapids River 13 TOBOGANES ACUÁTICOS 26 MAYAN TEMPLE MAYAN TEMPLE POWER TOWER (TEMPLO MAYA) (TEMPLO MAYA) (LA TORRE DEL PODER) 10 Leap of Faith (Salto de Fe) 14 The Abyss (El Abismo) 11 Serpent Slide (La Serpiente) 15 The Surge (El Oleaje) 12 Challenger Slide 16 The Drop (La Caída) 24 (Los Toboganes Retadores) 17 The Falls 18 29 13 Jungle Slide (La Caída Montaña Rusa) 21 (Los Toboganes Selváticos) 28 33 PISCINAS 18 Piscina Royal Baths 23 Piscina Baths Colonnade 21 Piscina Mayan Temple 24 Piscina Grotto 30 (Templo Maya) (Sólo Asientos 22 Piscina Cascades Preferenciales) (Acceso sólo para huéspedes 25 Piscina Cain en The Cove de Cove y Reef) (Acceso sólo para 6 huéspedes de The Cove) PLAYA LAGUNA PISCINAS PARA NIÑOS PLAYAS PARADISE SUR 19 Piscina Ripples Playa Cove 20 Piscina Splashers Playa Paradise Playas Laguna -
Patterns of Coral Reef Development on Tarawa Atoll (Kiribati)
BULLETIN OF MARINE SCIENCE, 69(3): 1191–1207, 2001 CORAL REEF PAPER PATTERNS OF CORAL REEF DEVELOPMENT ON TARAWA ATOLL (KIRIBATI) Gustav Paulay and Alexander Kerr ABSTRACT Tarawa Atoll lies in the equatorial upwelling region, has the largest human population of any Pacific atoll, and has an unusual, asymmetrical form: the triangular lagoon is largely enclosed along the east and south, but communicates with the ocean through a submerged barrier reef along its entire western border. How do these unusual character- istics affect reefs? After characterizing lagoonal reefs, the interactions and influence of various physical and biotic factors are examined. Coral cover and diversity increase from northwest to southeast as a consequence of polarized exchange with the surrounding ocean. Macroalgae are abundant in the central lagoon, probably as a result of high pro- ductivity and low levels of herbivory, the latter a likely consequence of overfishing. Coral communities of these central reefs are dominated by clonal, fragmenting species of en- crusting Montipora and branching Acropora. A substantial loss of coral cover and diver- sity occurred in the southeastern lagoon apparently a few hundred years ago. As a conse- quence of this mortality, much of the reef habitat and associated communities of the southeastern lagoon were lost, and patch reefs in the area developed into sand-dominated shoals by intense bioerosion and burial. The high productivity of the region has also resulted in high rates of mobile sediment production through bioerosion and the accumu- lation of skeletal remains of a rich suspension and deposit feeding lagoonal biota. The productivity and sediment production in turn had major geomorphological consequences, creating an atoll with an unusually wide, sand-dominated rim and shallow, sediment- choked lagoon, and may have been partly responsible for the submergent nature of the western barrier reef through the impact of inimical lagoonal backwaters. -
A Coupled Wave-Hydrodynamic Model of an Atoll with High Friction: Mechanisms for flow, Connectivity, and Ecological Implications
Ocean Modelling 110 (2017) 66–82 Contents lists available at ScienceDirect Ocean Modelling journal homepage: www.elsevier.com/locate/ocemod Virtual Special Issue Coastal ocean modelling A coupled wave-hydrodynamic model of an atoll with high friction: Mechanisms for flow, connectivity, and ecological implications ∗ Justin S. Rogers a, , Stephen G. Monismith a, Oliver B. Fringer a, David A. Koweek b, Robert B. Dunbar b a Environmental Fluid Mechanics Laboratory, Stanford University, 473 Via Ortega, Y2E2 Rm 126, Stanford, CA, 94305, USA b Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA a r t i c l e i n f o a b s t r a c t Article history: We present a hydrodynamic analysis of an atoll system from modeling simulations using a coupled wave Received 18 April 2016 and three-dimensional hydrodynamic model (COAWST) applied to Palmyra Atoll in the Central Pacific. Revised 11 October 2016 This is the first time the vortex force formalism has been applied in a highly frictional reef environ- Accepted 28 December 2016 ment. The model results agree well with field observations considering the model complexity in terms Available online 29 December 2016 of bathymetry, bottom roughness, and forcing (waves, wind, metrological, tides, regional boundary condi- Keywords: tions), and open boundary conditions. At the atoll scale, strong regional flows create flow separation and Coral reefs a well-defined wake, similar to 2D flow past a cylinder. Circulation within the atoll is typically forced by Hydrodynamics waves and tides, with strong waves from the north driving flow from north to south across the atoll, and Surface water waves from east to west through the lagoon system. -
Waves and Wind Shape Land
KEY CONCEPT Waves and wind shape land. BEFORE, you learned NOW, you will learn • Stream systems shape Earth’s • How waves and currents surface shape shorelines •Groundwater creates caverns •How wind shapes land and sinkholes VOCABULARY THINK ABOUT longshore drift p. 587 How did these longshore current p. 587 sandbar p. 588 pillars of rock form? barrier island p. 588 The rock formations in this dune p. 589 photograph stand along the loess p. 590 shoreline near the small town of Port Campbell, Australia. What natural force created these isolated stone pillars? What evidence of this force can you see in the photograph? Waves and currents shape shorelines. NOTE-TAKING STRATEGY The stone pillars, or sea stacks, in the photograph above are a major Remember to organize tourist attraction in Port Campbell National Park. They were formed your notes in a chart or web as you read. by the movement of water. The constant action of waves breaking against the cliffs slowly wore them away, leaving behind pillarlike formations. Waves continue to wear down the pillars and cliffs at the rate of about two centimeters (one inch) a year. In the years to come, the waves will likely wear away the stone pillars completely. The force of waves, powered by wind, can wear away rock and move thousands of tons of sand on beaches. The force of wind itself can change the look of the land. Moving air can pick up sand particles and move them around to build up dunes. Wind can also carry huge amounts of fine sediment thousands of kilometers.