2017 IEEE 24th Symposium on Computer Arithmetic ULPs and Relative Error Marius Cornea Intel Corporation Hillsboro, OR, USA
[email protected] The paper establishes several simple, but useful relationships much more convenient. Combining the two methods might between ulp (unit in the last place) errors and the corresponding represent the best solution for such proofs, especially when we relative errors. These can be used when converting between the need to analyze sequences of multiplications, divisions, and in two types of errors, ensuring that the least amount of information some cases also fused multiply-add operations. A good is lost in the process. The properties presented here were already example can be found in [3]. The present paper aims to make useful in IEEE conformance proofs for iterative division and this process easier. square root algorithms, and should be so again to numerical analysts both in ‘hand’ proofs of error bounds for floating-point computations, and in automated tools which carry out, or support The IEEE Standard 754-2008 for Floating-Point Arithmetic deriving such proofs. In most cases, the properties shown herein [4] defines both the format of binary floating-point numbers, establish tighter bounds than found in the literature. They also and the value of an ulp (named quantum in the standard). We provide ‘conversion’ rules of finer granularity, at floating-point will use the same definition of floating-point numbers in this value level instead of binade level, and take into account the special paper, however we will consider the integer exponent as being conditions which occur at binade ends.