Numerical Computation Guide

Total Page:16

File Type:pdf, Size:1020Kb

Numerical Computation Guide Numerical Computation Guide A Sun Microsystems, Inc. Business 2550 Garcia Avenue Mountain View, CA 94043 U.S.A. Part No.: 801-7639-10 Revision A, August 1994 1994 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved. This product and related documentation are protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font software in this product is protected by copyright and licensed from Sun’s font suppliers. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. TRADEMARKS Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, Solaris, are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries; X/Open Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. All other product names mentioned herein are the trademarks of their respective owners. All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCstorage, SPARCware, SPARCcenter, SPARCclassic, SPARCcluster, SPARCdesign, SPARC811, SPARCprinter, UltraSPARC, microSPARC, SPARCworks, and SPARCompiler are licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. The OPEN LOOKand Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements. X Window System is a product of the Massachusetts Institute of Technology. THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME Please Recycle Contents Preface. xv 1. Introduction . 1 Solaris for SPARC. 1 Solaris for x86 . 2 Floating-Point Environment . 2 2. IEEE Arithmetic. 5 IEEE Arithmetic Model . 5 What Is IEEE Arithmetic? . 5 IEEE Formats . 7 Storage Formats . 7 Single Format . 8 Double Format . 10 Double Extended Format (SPARC Architecture) . 14 Double Extended Format (x86 Architecture) . 17 Ranges and Precisions in Decimal Representation . 21 iii Underflow. 25 Underflow Thresholds . 25 How Does IEEE Arithmetic Treat Underflow?. 26 Why Gradual Underflow? . 27 Error Properties of Gradual Underflow . 28 Two Examples of Gradual Underflow Versus Store 0 . 30 Does Underflow Matter?. 32 3. The Math Libraries . 33 Math Library. 33 Value-added Math Library . 35 Single, Double, and Long Double Precision . 37 IEEE Support Functions . 38 ieee_functions(3m) and ieee_sun(3m) . 38 ieee_values(3m) . 40 nonstandard_arithmetic() . 44 ieee_retrospective(). 44 Implementation Features of libm and libsunmath . 45 About the Algorithms . 46 Argument Reduction for Trigonometric Functions. 46 Data Conversion Routines . 47 Random Number Facilities. 48 libC Support Functions . 49 Base Conversion. 49 4. Exceptions and Signal Handling . 51 iv Numerical Computation Guide What Is an Exception? . 52 Notes for Table 4-1. 54 Exceptions and Signals . 56 libsunmath Support For IEEE Modes & Exceptions . 60 ieee_handler (3m) . 60 ieee_flags(3m). 64 5. Compile-Debug-Run . 69 Compile. 69 Code Generation Options. 71 Optimization Options . 72 Redefining libm and libsunmath Functions vs. -xlibmil 76 About Precision . 77 Debug . 78 A Few Useful Debugging Commands . 79 Using the Debuggers to Investigate an IEEE Exception . 83 Run . 89 . fix_libc_ (SPARC on SunOS 4.x only). 90 Exit Status of C Programs . 90 ieee_retrospective Function . 92 Nonstandard Arithmetic and Kernel Emulation (SPARC only) 93 Compiler Versions . 94 Optimizing Large Programs. 94 Contents v A. Examples. 97 IEEE Arithmetic . 97 Examining Stored IEEE hexadecimal Representations . 97 The Math Libraries . 100 Random Number Generator. 100 ieee_values . 107 Exceptions and Signal Handling . 110 ieee_flags - Rounding Direction . 110 ieee_flags - Accrued Exceptions . 112 ieee_handler - Trapping Exceptions . 117 ieee_handler - Abort on Exceptions. 127 Compile-Debug-Run . 128 B. SPARC Behavior and Implementation . 133 Floating-point Hardware . 133 Handling Subnormal Results . 136 Status and Control Registers . 136 Handling Floating-point Exceptions . 137 Handling Gradual Underflow . 138 The fpversion(1) Function — Finding Information about the FPU . 139 Floating-point Hardware—Disable/Enable. 140 C. x86 Behavior and Implementation. 143 D. Standards Compliance . 145 SVID History . 145 vi Numerical Computation Guide IEEE 754 History . 146 SVID Future Directions . 146 SVID Implementation . 147 General Notes on Table D 1 . 149 libm.a Notes . 150 E. References . 151 Chapter 2: “IEEE Arithmetic” . 152 Chapter 3: “The Math Libraries” . 153 Chapter 4: “Exceptions and Signal Handling”. 153 Chapter 5: “Compile-Debug-Run” . 154 Appendix B: “SPARC Behavior and Implementation” . 154 Manufacturer’s Documentation. 154 Standards . ..
Recommended publications
  • Fujitsu SPARC64™ X+/X Software on Chip Overview for Developers]
    White paper [Fujitsu SPARC64™ X+/X Software on Chip Overview for Developers] White paper Fujitsu SPARC64™ X+/X Software on Chip Overview for Developers Page 1 of 13 www.fujitsu.com/sparc White paper [Fujitsu SPARC64™ X+/X Software on Chip Overview for Developers] Table of Contents Table of Contents 1 Software on Chip Innovative Technology 3 2 SPARC64™ X+/X SIMD Vector Processing 4 2.1 How Oracle Databases take advantage of SPARC64™ X+/X SIMD vector processing 4 2.2 How to use of SPARC64™ X+/X SIMD instructions in user applications 5 2.3 How to check if the system and operating system is capable of SIMD execution? 6 2.4 How to check if SPARC64™ X+/X SIMD instructions indeed have been generated upon compilation of a user source code? 6 2.5 Is SPARC64™ X+/X SIMD implementation compatible with Oracle’s SPARC SIMD? 6 3 SPARC64™ X+/X Decimal Floating Point Processing 8 3.1 How Oracle Databases take advantage of SPARC64™ X+/X Decimal Floating-Point 8 3.2 Decimal Floating-Point processing in user applications 8 4 SPARC64™ X+/X Extended Floating-Point Registers 9 4.1 How Oracle Databases take advantage of SPARC64™ X+/X Decimal Floating-Point 9 5 SPARC64™ X+/X On-Chip Cryptographic Processing Capabilities 10 5.1 How to use the On-Chip Cryptographic Processing Capabilities 10 5.2 How to use the On-Chip Cryptographic Processing Capabilities in user applications 10 6 Conclusions 12 Page 2 of 13 www.fujitsu.com/sparc White paper [Fujitsu SPARC64™ X+/X Software on Chip Overview for Developers] Software on Chip Innovative Technology 1 Software on Chip Innovative Technology Fujitsu brings together innovations in supercomputing, business computing, and mainframe computing in the Fujitsu M10 enterprise server family to help organizations meet their business challenges.
    [Show full text]
  • Nios II Custom Instruction User Guide
    Nios II Custom Instruction User Guide Subscribe UG-20286 | 2020.04.27 Send Feedback Latest document on the web: PDF | HTML Contents Contents 1. Nios II Custom Instruction Overview..............................................................................4 1.1. Custom Instruction Implementation......................................................................... 4 1.1.1. Custom Instruction Hardware Implementation............................................... 5 1.1.2. Custom Instruction Software Implementation................................................ 6 2. Custom Instruction Hardware Interface......................................................................... 7 2.1. Custom Instruction Types....................................................................................... 7 2.1.1. Combinational Custom Instructions.............................................................. 8 2.1.2. Multicycle Custom Instructions...................................................................10 2.1.3. Extended Custom Instructions................................................................... 11 2.1.4. Internal Register File Custom Instructions................................................... 13 2.1.5. External Interface Custom Instructions....................................................... 15 3. Custom Instruction Software Interface.........................................................................16 3.1. Custom Instruction Software Examples................................................................... 16
    [Show full text]
  • Chapter 2 DIRECT METHODS—PART II
    Chapter 2 DIRECT METHODS—PART II If we use finite precision arithmetic, the results obtained by the use of direct methods are contaminated with roundoff error, which is not always negligible. 2.1 Finite Precision Computation 2.2 Residual vs. Error 2.3 Pivoting 2.4 Scaling 2.5 Iterative Improvement 2.1 Finite Precision Computation 2.1.1 Floating-point numbers decimal floating-point numbers The essence of floating-point numbers is best illustrated by an example, such as that of a 3-digit floating-point calculator which accepts numbers like the following: 123. 50.4 −0.62 −0.02 7.00 Any such number can be expressed as e ±d1.d2d3 × 10 where e ∈{0, 1, 2}. (2.1) Here 40 t := precision = 3, [L : U] := exponent range = [0 : 2]. The exponent range is rather limited. If the calculator display accommodates scientific notation, e g., 3.46 3 −1.56 −3 then we might use [L : U]=[−9 : 9]. Some numbers have multiple representations in form (2.1), e.g., 2.00 × 101 =0.20 × 102. Hence, there is a normalization: • choose smallest possible exponent, • choose + sign for zero, e.g., 0.52 × 102 → 5.20 × 101, 0.08 × 10−8 → 0.80 × 10−9, −0.00 × 100 → 0.00 × 10−9. −9 Nonzero numbers of form ±0.d2d3 × 10 are denormalized. But for large-scale scientific computation base 2 is preferred. binary floating-point numbers This is an important matter because numbers like 0.2 do not have finite representations in base 2: 0.2=(0.001100110011 ···)2.
    [Show full text]
  • Decimal Floating Point for Future Processors Hossam A
    1 Decimal Floating Point for future processors Hossam A. H. Fahmy Electronics and Communications Department, Cairo University, Egypt Email: [email protected] Tarek ElDeeb, Mahmoud Yousef Hassan, Yasmin Farouk, Ramy Raafat Eissa SilMinds, LLC Email: [email protected] F Abstract—Many new designs for Decimal Floating Point (DFP) hard- Simple decimal fractions such as 1=10 which might ware units have been proposed in the last few years. To date, only represent a tax amount or a sales discount yield an the IBM POWER6 and POWER7 processors include internal units for infinitely recurring number if converted to a binary decimal floating point processing. We have designed and tested several representation. Hence, a binary number system with a DFP units including an adder, multiplier, divider, square root, and fused- multiply-add compliant with the IEEE 754-2008 standard. This paper finite number of bits cannot accurately represent such presents the results of using our units as part of a vector co-processor fractions. When an approximated representation is used and the anticipated gains once the units are moved on chip with the in a series of computations, the final result may devi- main processor. ate from the correct result expected by a human and required by the law [3], [4]. One study [5] shows that in a large billing application such an error may be up to 1 WHY DECIMAL HARDWARE? $5 million per year. Ten is the natural number base or radix for humans Banking, billing, and other financial applications use resulting in a decimal number system while a binary decimal extensively.
    [Show full text]
  • The MPFR Team [email protected] This Manual Documents How to Install and Use the Multiple Precision Floating-Point Reliable Library, Version 2.2.0
    MPFR The Multiple Precision Floating-Point Reliable Library Edition 2.2.0 September 2005 The MPFR team [email protected] This manual documents how to install and use the Multiple Precision Floating-Point Reliable Library, version 2.2.0. Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, with the Front-Cover Texts being “A GNU Manual”, and with the Back-Cover Texts being “You have freedom to copy and modify this GNU Manual, like GNU software”. A copy of the license is included in Appendix A [GNU Free Documentation License], page 30. i Table of Contents MPFR Copying Conditions ................................ 1 1 Introduction to MPFR ................................. 2 1.1 How to use this Manual ........................................................ 2 2 Installing MPFR ....................................... 3 2.1 How to install ................................................................. 3 2.2 Other make targets ............................................................ 3 2.3 Known Build Problems ........................................................ 3 2.4 Getting the Latest Version of MPFR ............................................ 4 3 Reporting Bugs ........................................ 5 4 MPFR Basics .........................................
    [Show full text]
  • IEEE Std 754-1985 Revision of Reaffirmed1990 IEEE Standard for Binary Floating-Point Arithmetic
    Recognized as an American National Standard (ANSI) IEEE Std 754-1985 An American National Standard IEEE Standard for Binary Floating-Point Arithmetic Sponsor Standards Committee of the IEEE Computer Society Approved March 21, 1985 Reaffirmed December 6, 1990 IEEE Standards Board Approved July 26, 1985 Reaffirmed May 21, 1991 American National Standards Institute © Copyright 1985 by The Institute of Electrical and Electronics Engineers, Inc 345 East 47th Street, New York, NY 10017, USA No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. IEEE Standards documents are developed within the Technical Committees of the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Board. Members of the committees serve voluntarily and without compensation. They are not necessarily members of the Institute. The standards developed within IEEE represent a consensus of the broad expertise on the subject within the Institute as well as those activities outside of IEEE which have expressed an interest in participating in the development of the standard. Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least once every five years for revision or reaffirmation.
    [Show full text]
  • On Various Ways to Split a Floating-Point Number
    On various ways to split a floating-point number Claude-Pierre Jeannerod Jean-Michel Muller Paul Zimmermann Inria, CNRS, ENS Lyon, Universit´ede Lyon, Universit´ede Lorraine France ARITH-25 June 2018 -1- Splitting a floating-point number X = ? round(x) frac(x) 0 2 First bit of x = ufp(x) (for scalings) X All products are s computed exactly 2 2 X with one FP p 2 2 k a b multiplication a + b ! 2 k + k X (Dekker product) 2 2 X Dekker product (1971) -2- Splitting a floating-point number absolute splittings (e.g., bxc), vs relative splittings (e.g., most significant bits, splitting of the significands for multiplication); In each "bin", the sum is no bit manipulations of the computed exactly binary representations (would result in less portable Matlab program in a paper by programs) ! onlyFP Zielke and Drygalla (2003), operations. analysed and improved by Rump, Ogita, and Oishi (2008), reproducible summation, by Demmel & Nguyen. -3- Notation and preliminary definitions IEEE-754 compliant FP arithmetic with radix β, precision p, and extremal exponents emin and emax; F = set of FP numbers. x 2 F can be written M x = · βe ; βp−1 p M, e 2 Z, with jMj < β and emin 6 e 6 emax, and jMj maximum under these constraints; significand of x: M · β−p+1; RN = rounding to nearest with some given tie-breaking rule (assumed to be either \to even" or \to away", as in IEEE 754-2008); -4- Notation and preliminary definitions Definition 1 (classical ulp) The unit in the last place of t 2 R is ( βblogβ jt|c−p+1 if jtj βemin , ulp(t) = > βemin−p+1 otherwise.
    [Show full text]
  • A Decimal Floating-Point Speciftcation
    A Decimal Floating-point Specification Michael F. Cowlishaw, Eric M. Schwarz, Ronald M. Smith, Charles F. Webb IBM UK IBM Server Division P.O. Box 31, Birmingham Rd. 2455 South Rd., MS:P310 Warwick CV34 5JL. UK Poughkeepsie, NY 12601 USA [email protected] [email protected] Abstract ing is required. In the fixed point formats, rounding must be explicitly applied in software rather than be- Even though decimal arithmetic is pervasive in fi- ing provided by the hardware. To address these and nancial and commercial transactions, computers are other limitations, we propose implementing a decimal stdl implementing almost all arithmetic calculations floating-point format. But what should this format be? using binary arithmetic. As chip real estate becomes This paper discusses the issues of defining a decimal cheaper it is becoming likely that more computer man- floating-point format. ufacturers will provide processors with decimal arith- First, we consider the goals of the specification. It metic engines. Programming languages and databases must be compliant with standards already in place. are expanding the decimal data types available whale One standard we consider is the ANSI X3.274-1996 there has been little change in the base hardware. As (Programming Language REXX) [l]. This standard a result, each language and application is defining a contains a definition of an integrated floating-point and different arithmetic and few have considered the efi- integer decimal arithmetic which avoids the need for ciency of hardware implementations when setting re- two distinct data types and representations. The other quirements. relevant standard is the ANSI/IEEE 854-1987 (Radix- In this paper, we propose a decimal format which Independent Floating-point Arithmetic) [a].
    [Show full text]
  • Floating Point Numbers
    Floating Point Numbers Yes, this is the moon; our own moon. Not the final frontier but the first out post there to be exploited by our greed of consumable minerals. Soon we the human race will be there blasting the mines and depriving the orb with its riches. Do we know how much is there to steal? Pop Quiz : What is the surface area of moon? 2 Answer : The surface area of a sphere is: 4 * π * R Radius of moon is about 1738.2 KM; plugging the values: 4 * 3.14159265 * 1738.2 * 1738.2 = 37967268 .598162344 KM 2. That would be 37.9 million square kilometers. Two of our biggest states Texas and California are 1.7 and 0.7 million square kilometers respectively. Surface if the Moon would be about 2/3 of the area of North America or about the size of Russia, that is close to the 38 million Sq Km Now you, all mainframe assembly language tool developers i.e. old time MF programmers try doing this calculation in S/390 Assembly. Give yourself few minutes. Address Object Code S/390 Assembly Reg./ Memory after execution 000036 B375 0010 LZDR R1 FPR1 00000000_00000000 00003A ED10 C08C 0024 LDE R1,FOUR FPR1 41400000_00000000 000040 7C10 C090 MDE R1,PIE FPR1 41C90FDC_00000000 000044 7C10 C094 MDE R1,RADIUS FPR1 445552DD_F73CD400 000048 7C10 C094 MDE R1,RADIUS FPR1 47243559_FE390700 00004C B3C9 0011 CGDR R1,0,R1 GR1 0243559F 000050 5010 C098 ST R1,FIXED 000054 4E10 C09C CVD R1,DECIMAL 00000003 7967263C 000088 45B27570 FLOAT DC X'45B27570' 00008C 41400000 FOUR DC E'4' 000090 413243F7 PIE DC E'3.14159265E+0' 000094 436CA333 RADIUS DC E'1.7382E+3' 000098 00000000 FIXED DC F'0' 00009C 0000000000000000 DECIMAL DC 2F'0' This is one way of solving the problem mentioned on previous slide and, of course, we all know that there are several different ways to solve any programming problem and your way is always better than mine.
    [Show full text]
  • Floating Point Arithmetic
    Systems Architecture Lecture 14: Floating Point Arithmetic Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan Some or all figures from Computer Organization and Design: The Hardware/Software Approach, Third Edition, by David Patterson and John Hennessy, are copyrighted material (COPYRIGHT 2004 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED). Lec 14 Systems Architecture 1 Introduction • Objective: To provide hardware support for floating point arithmetic. To understand how to represent floating point numbers in the computer and how to perform arithmetic with them. Also to learn how to use floating point arithmetic in MIPS. • Approximate arithmetic – Finite Range – Limited Precision • Topics – IEEE format for single and double precision floating point numbers – Floating point addition and multiplication – Support for floating point computation in MIPS Lec 14 Systems Architecture 2 Distribution of Floating Point Numbers e = -1 e = 0 e = 1 • 3 bit mantissa 1.00 X 2^(-1) = 1/2 1.00 X 2^0 = 1 1.00 X 2^1 = 2 1.01 X 2^(-1) = 5/8 1.01 X 2^0 = 5/4 1.01 X 2^1 = 5/2 • exponent {-1,0,1} 1.10 X 2^(-1) = 3/4 1.10 X 2^0 = 3/2 1.10 X 2^1= 3 1.11 X 2^(-1) = 7/8 1.11 X 2^0 = 7/4 1.11 X 2^1 = 7/2 0 1 2 3 Lec 14 Systems Architecture 3 Floating Point • An IEEE floating point representation consists of – A Sign Bit (no surprise) – An Exponent (“times 2 to the what?”) – Mantissa (“Significand”), which is assumed to be 1.xxxxx (thus, one bit of the mantissa is implied as 1) – This is called a normalized representation • So a mantissa = 0 really is interpreted to be 1.0, and a mantissa of all 1111 is interpreted to be 1.1111 • Special cases are used to represent denormalized mantissas (true mantissa = 0), NaN, etc., as will be discussed.
    [Show full text]
  • FORTRAN 77 Language Reference
    FORTRAN 77 Language Reference FORTRAN 77 Version 5.0 901 San Antonio Road Palo Alto, , CA 94303-4900 USA 650 960-1300 fax 650 969-9131 Part No: 805-4939 Revision A, February 1999 Copyright Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. UNIX is a registered trademark in the United States and in other countries and is exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers. RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a). Sun, Sun Microsystems, the Sun logo, SunDocs, SunExpress, Solaris, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, Sun WorkShop, and Sun WorkShop Professional are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and in other countries.
    [Show full text]
  • Floating Point Square Root Under HUB Format
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Institucional Universidad de Málaga Floating Point Square Root under HUB Format Julio Villalba-Moreno Javier Hormigo Dept. of Computer Architecture Dept. of Computer Architecture University of Malaga University of Malaga Malaga, SPAIN Malaga, SPAIN [email protected] [email protected] Abstract—Unit-Biased (HUB) is an emerging format based on maintaining the same accuracy, the area cost and delay of FIR shifting the representation line of the binary numbers by half filter implementations has been drastically reduced in [3], and unit in the last place. The HUB format is specially relevant similarly for the QR decomposition in [4]. for computers where rounding to nearest is required because it is performed simply by truncation. From a hardware point In [5] the authors carry out an analysis of using HUB format of view, the circuits implementing this representation save both for floating point adders, multipliers and converters from a area and time since rounding does not involve any carry propa- quantitative point of view. Experimental studies demonstrate gation. Designs to perform the four basic operations have been that HUB format keeps the same accuracy as conventional proposed under HUB format recently. Nevertheless, the square format for the aforementioned units, simultaneously improving root operation has not been confronted yet. In this paper we present an architecture to carry out the square root operation area, speed and power consumption (14% speed-up, 38% less under HUB format for floating point numbers. The results of area and 26% less power for single precision floating point this work keep supporting the fact that the HUB representation adder, 17% speed-up, 22% less area and slightly less power for involves simpler hardware than its conventional counterpart for the floating point multiplier).
    [Show full text]