Gill Ectoparasites of Goldfish (Carassius Auratus, Pearl Scale
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. -
Goldfish Morphology As a Model for Evolutionary Developmental Biology
Overview Goldfish morphology as a model for evolutionary developmental biology Kinya G. Ota* and Gembu Abe Morphological variation of the goldfish is known to have been established by artificial selection for ornamental purposes during the domestication process. Chinese texts that date to the Song dynasty contain descriptions of goldfish breeding for ornamental purposes, indicating that the practice originated over one thousand years ago. Such a well-documented goldfish breeding process, combined with the phylogenetic and embryological proximities of this species with zebrafish, would appear to make the morphologically diverse goldfish strains suitable models for evolutionary developmental (evodevo) studies. How- ever, few modern evodevo studies of goldfish have been conducted. In this review, we provide an overview of the historical background of goldfish breed- ing, and the differences between this teleost and zebrafish from an evolutionary perspective. We also summarize recent progress in the field of molecular devel- opmental genetics, with a particular focus on the twin-tail goldfish morphology. Furthermore, we discuss unanswered questions relating to the evolution of the genome, developmental robustness, and morphologies in the goldfish lineage, with the goal of blazing a path toward an evodevo study paradigm using this tel- eost species as a new model species. © 2016 The Authors. WIREs Developmental Biology pub- lished by Wiley Periodicals, Inc. How to cite this article: WIREs Dev Biol 2016, 5:272–295. doi: 10.1002/wdev.224 INTRODUCTION processes of goldfish strains have been documented by authors in many different countries using different fi – he gold sh (Carassius auratus) is a well-known, languages.1 9 Of these reports, the descriptions by Tornamental, domesticated teleost species, which Smartt2 are the most up-to-date and cover the widest consists of a number of morphologically divergent range of the literature. -
FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. -
Caring for Your Goldfish
Adding a Goldfish to a Cleaning Your Fish Bowl Dirty fish bowls not only look bad, they Bowl or Aquarium Caring for Now it’s time to put your new Goldfish in are also unhealthy for fish. By following a their new home! Whenever fish are netted few simple maintenance steps your fish Your and handled, their protective slime coat is bowl will always look beautiful. The following steps are an ideal regiment for rubbed off. When adding fish to any keeping your fish bowl looking great. Goldfish aquarium, be sure to add additional water conditioner to help relieve stress. The best To keep your fish healthy, you should method to add new fish is to float the unopened bag of fish in their new home change at least half of the water in your for 10 minutes to allow the fish to adjust Goldfish bowl or aquarium every 3 days. Follow these easy steps: to the water temperature. Then, open the bag and gently release the fish into their 1. Fill a separate container with tap water. Mix hot and cold tap water new home. The bag water may contain fish waste (ammonia), so try to avoid until it is the same temperature as adding the bag water to the aquarium. the water your Goldfish is swimming in. 2. Add a water conditioner to the tap water to remove the disinfectants Feeding Your Fish that are toxic to your fish. It is best to feed your Goldfish only 3. Add the aquarium salts and test the enough food that it can eat in five pH level, adjusting the pH level as minutes. -
TOP-VIEW GOLDFISH: the OTHER PERSPECTIVE Steve Hopkins
TOP-VIEW GOLDFISH: THE OTHER PERSPECTIVE Steve Hopkins By some accounts, there are over three hundred varieties of goldfish. These can be grouped in various ways such as by tail type, presence or absence of head growth, presence or absence of dorsal fin, eye shape, etc. They can also be grouped based on a whether they were bred and selected to be viewed from the top or viewed from the side. Originally, all goldfish were kept in shallow ponds, ceramic bowls or other containers and viewed from the top. Considering the thousand-year history of goldfish keeping, the glass aquarium is a relatively new innovation which did not come into use until about 150 years ago. However, being able to easily view goldfish from the side through glass has undoubtedly influenced what characteristics are selected for and impacted the development of new varieties. Today, the goldfish hobbyists are a diverse group. While most goldfish are destined for the home aquarium and represent an indoor diversion, goldfish ponds, tubs and goldfish in the water garden continue to increase in popularity. When choosing a goldfish, it is important to consider how it will be viewed and select a variety which is appropriate for the setting in which it will be displayed. In selecting a top-view goldfish, remember that they are typically seen against a dark background. It does not matter what color your tub or pond was when it was new, over time the surfaces will become covered with algae and other growth and appear dark green to black. Without doubt, red and white metallic-scale goldfish provide the contrast to display best against a dark background. -
Parasites and Their Freshwater Fish Host
Bio-Research, 6(1): 328 – 338 328 Parasites and their Freshwater Fish Host Iyaji, F. O. and Eyo, J. E. Department of Zoology, University of Nigeria, Nsukka, Enugu State, Nigeria Corresponding author: Eyo, J. E. Department of Zoology, University of Nigeria, Nsukka, Enugu State, Nigeria. Email: [email protected] Phone: +234(0)8026212686 Abstract This study reviews the effects of parasites of fresh water fish hosts. Like other living organisms, fish harbour parasites either external or internal which cause a host of pathological debilities in them. The parasites live in close obligate association and derive benefits such as nutrition at the host’s expense, usually without killing the host. They utililize energy otherwise available for the hosts growth, sustenance, development, establishment and reproduction and as such may harm their hosts in a number of ways and affect fish production. The common parasites of fishes include the unicellular microparasites (viruses, bacteria, fungi and protozoans). The protozoans i.e. microsporidians and mixozoans are considered in this review. The multicellular macroparasites mainly comprised of the helminthes and arthropods are also highlighted. The effects of parasites on their fish hosts maybe exacerbated by different pollutants including heavy metals and hydrocarbons, organic enrichment of sediments by domestic sewage and others such as parasite life cycles and fish population size. Keywords: Parasites, Helminths, Protozoans, Microparasites, Macroparasites, Debilities, Freshwater fish Introduction the flagellates have direct life cycles and affect especially the pond reared fish populations. Several studies have revealed rich parasitic fauna Microsporidians are obligate intracellular parasites in freshwater fishes (Onyia, 1970; Kennedy et al., that require host tissues for reproduction (FAO, 1986; Ugwuzor, 1987; Onwuliri and Mgbemena, 1996). -
Toxicity of Formalin for Fingerlings of Cyprinus Carpio Var. Koi and in Vitro
J Parasit Dis (Jan-Mar 2019) 43(1):46–53 https://doi.org/10.1007/s12639-018-1056-1 ORIGINAL ARTICLE Toxicity of formalin for fingerlings of Cyprinus carpio var. koi and in vitro efficacy against Dactylogyrus minutus Kulwie`c, 1927 (Monogenea: Dactylogyridae) 1 2 1 Karen Roberta Tancredo • Nata´lia da Costa Marchiori • Scheila Anelise Pereira • Maurı´cio Laterc¸a Martins1 Received: 24 August 2018 / Accepted: 12 November 2018 / Published online: 14 December 2018 Ó Indian Society for Parasitology 2018 Abstract The toxicity of formalin on Cyprinus carpio var. Introduction koi and its anti-parasite effects against Dactylogyrus min- utus (Monogenea) in in vitro tests is analyzed. Specimens The koi carp Cyprinus carpio (Linnaeus, 1758) is an of D. minutus were submitted to eight concentrations of ornamental fish with high market demand due to its ease in formalin: 50, 75, 100, 125, 150, 175, 200, 250 mg L-1,in breeding and to its great variation in color patterns (Hus- triplicate. Concentrations of formalin 100, 150 and sain et al. 2014, 2015). It is a fast-growing species (Hashem 200 mg L-1 were then tested to determine the median et al. 1997) and very tolerant to variations in water quality lethal concentration of 50% of the fish per immersion bath. parameters and stocking density (Carneiro et al. 2015). Fish behavior was also observed during the first 6 h of However, its cultivation has been affected by ectoparasite exposure. The 200 mg L-1 concentration was the most Monogenea Dactylogyrus Diesing 1850, featuring 900 rapid efficacy for D. minutus, killing all parasites in species (Gibson et al. -
Worms, Germs, and Other Symbionts from the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor
h ' '' f MASGC-B-78-001 c. 3 A MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor NATIONAL SEA GRANT DEPOSITORY \ PELL LIBRARY BUILDING URI NA8RAGANSETT BAY CAMPUS % NARRAGANSETT. Rl 02882 Robin M. Overstreet r ii MISSISSIPPI—ALABAMA SEA GRANT CONSORTIUM MASGP—78—021 MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico by Robin M. Overstreet Gulf Coast Research Laboratory Ocean Springs, Mississippi 39564 This study was conducted in cooperation with the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant No. 04-7-158-44017 and National Marine Fisheries Service, under PL 88-309, Project No. 2-262-R. TheMississippi-AlabamaSea Grant Consortium furnish ed all of the publication costs. The U.S. Government is authorized to produceand distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon. Copyright© 1978by Mississippi-Alabama Sea Gram Consortium and R.M. Overstrect All rights reserved. No pari of this book may be reproduced in any manner without permission from the author. Primed by Blossman Printing, Inc.. Ocean Springs, Mississippi CONTENTS PREFACE 1 INTRODUCTION TO SYMBIOSIS 2 INVERTEBRATES AS HOSTS 5 THE AMERICAN OYSTER 5 Public Health Aspects 6 Dcrmo 7 Other Symbionts and Diseases 8 Shell-Burrowing Symbionts II Fouling Organisms and Predators 13 THE BLUE CRAB 15 Protozoans and Microbes 15 Mclazoans and their I lypeiparasites 18 Misiellaneous Microbes and Protozoans 25 PENAEID -
Fancy Goldfish
Fancy Goldfish The term "Fancy” refers to goldfish that have been specifically bred to enhance certain colours, patterns and or body characteristics when compared with more orthodox or simply shaped goldfish, such as the comet. They are extremely popular with many enthusiasts as they offer some of the most unique and interesting coldwater fish available. As outlined below these fancy goldfish include; celestials, lionheads, pearlscales and orandas to mention just a few. Even though they exhibit many different colour patterns and body characteristics, they are all the one species, Carassius auratus. The domesticated dog Canis lupus familiaris is another great example of this, with a large amount of diversity all originating from the same species. The ancient Chinese kept goldfish some 1600 years ago. The original wild and drab coloured fish were selectively bred to enhance the fishes colour and finage, a practise continuing to this day. Over time breeders have developed many types of unusual or fancy goldfish. While fancy goldfish have the same water quality requirements as standard goldfish, such as comets and fantails, they are generally more sensitive to water quality fluctuations and require regular aquarium maintenance to ensure they remain in good health. Fancy goldfish are more susceptible to suffering from vitamin deficiencies when compared with standard varieties, so it is recommend to include vegetable based foods in their diet. Aquarium Industries Naturals Range Frozen Leafy Spinach is ideal, as it also includes essential vitamins and minerals. Aquatic plants are also a good addition. Common Fancy Varieties Orandas Ranchus Body short and globular. Fins well developed and long. -
Diseases of Cultured Warm-Water Marine Fish1
Rapp. P.-v. Réun. Cons. int. Explor. Mer, 182: 44^48. 1983 Review of diseases of cultured warm-water marine fish1 Han Paperna H. Steinitz Marine Biologv Laboratory of the Hebrew University of Jerusalem P.O.B. 469, Eilat 88103, Israel minant etiological agents are strains of the opportunistic Introduction species, Vibrio alginolyticus (V. parahaemolyticus, ac There is an increasing awareness of the importance of cording to some authors, Bergey’s Manual, 8th Edition, diseases in the developing mariculture of the warm- 1974; Colorni et al., 1981). Pathological changes water fishes gilthead seabream (Sparus aurata), seabass observed in moribund fish with confirmed septicemia (Dicentrarchus labrax), and grey mullets (Mugil cepha- were of a non-specific type: edematous and hemor lus, Liza ramanda, and other Mugilidae). rhagic changes apparently resulting primarily from the The etiology, epizootology, and the process of mechanical injuries and stress reaction (Colorni et al., pathogenesis of diseases of fish in warm-water envi 1981). Vibrio spp. are also involved in chronic bacterial ronments may differ considerably from those experi infections. However, to date adequate diagnosis of the enced in fish cultured in cold-water environments, even bacterial strains taking part in such infections has not when the same fish species or same type of pathogen is been accomplished. Pathological changes observed in involved. Gilthead seabream, seabass, and mullets (and such chronic infections are either non-specific — re also warm-water freshwater fish such as Tilapia spp. and miniscent of the acute type (chronic vibriosis in mullets silver carp, Hypophthalmichthys molitrix) are very sus cultured in Spain, ACUIGROUP, 1979) - or are of a ceptible to handling injuries (Paperna et al., 1977, Be- more specific nature and confined to the particular jerano et al., 1979). -
Parasites of the Common Carp Cyprinus Carpio L., 1758 (Teleostei: Cyprinidae) from Water Bodies of Turkey: Updated Checklist and Review for the 1964–2014 Period
Turkish Journal of Zoology Turk J Zool (2015) 39: 545-554 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1401-42 Parasites of the common carp Cyprinus carpio L., 1758 (Teleostei: Cyprinidae) from water bodies of Turkey: updated checklist and review for the 1964–2014 period 1, 1 2 Lorenzo VILIZZI *, Ali Serhan TARKAN , Fitnat Güler EKMEKÇİ 1 Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Muğla, Turkey 2 Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey Received: 18.01.2014 Accepted/Published Online: 14.11.2014 Printed: 30.07.2015 Abstract: A synopsis is provided of the parasites of common carp Cyprinus carpio L. from water bodies of Turkey based on literature data from 1964 to 2014. In total, 45 studies were included in the review and these provided data from 41 water bodies, comprising 12 man-made reservoirs, 21 natural lakes, and 8 water courses. Forty-one different taxa (including molluscan Glochidium sp.) in total were recorded. Of these taxa, 2 had not been previously reviewed for Turkey, and 4 were excluded from the list because of dubious identification. The Turkish parasite fauna of common carp living under natural conditions was dominated by ciliates (Ciliophora) among the protozoans and by flatworms (Platyhelminthes) among the metazoans, and this was both in terms of occurrence on fish and across water bodies. The absence of 7 taxa from both the European and North American checklists can be explained by the location of Turkey at the frontier between Asia and Europe. Additionally, the parasite fauna of the common carp in Turkey was consistently different from that of the far eastern species’ specimens. -
Koi Butterfly Koi
NAME, SHIPPING ADDRESS, & CONTACT NUMBER AVAILABILITY LIST MARCH 21st, 2016 PREFERRED ARRIVAL DATE: PREFERRED SHIPPING METHOD: ☐ UPS NEXT DAY AIR ☐ AIR FREIGHT KOI BUTTERFLY KOI Price Full Heavy Boxes Price Full Heavy Boxes Available? Each Box Box Ordered Available? Each Box Box Ordered STANDARD KOI STANDARD BUTTERFLY KOI 3-4" Yes $2.10 100 175 3-4" Yes $3.40 100 175 4-5" Yes $3.45 60 100 4-5" Yes $6.25 60 100 5-6" Yes $6.20 35 60 5-6" Yes $9.20 35 60 6-8" Yes $11.75 20 30 6-8" Yes $16.25 20 30 8-10" Limited $21.00 10 15 8-10" Yes $26.00 10 15 10-12" $41.25 6 8 10-12" Limted $46.00 6 8 12-14" $52.00 4 5 12-14" $65.00 4 5 PREMIUM KOI PREMIUM BUTTERFLY KOI 3-4" Yes $3.70 100 175 3-4" $4.75 100 175 4-5" Yes $6.40 60 100 4-5" Hikari Only $8.25 60 100 5-6" Yes $10.70 35 60 5-6" Yes $11.50 35 60 6-8" Yes $17.25 20 30 6-8" Yes $19.95 20 30 8-10" Hikari Only $31.00 10 15 8-10" Limited $38.50 10 15 10-12" Yes $53.00 6 8 10-12" $64.50 6 8 12-14" Yes $75.00 4 5 12-14" $92.00 4 5 14-16" $99.00 2 3 14-16" $125.00 2 3 16-18" $159.00 1 1 16-18" $195.00 1 1 PREMIUM SELECT KOI PREMIUM SELECT BUTTERFLY KOI 4-5" Yes $7.95 60 100 4-5" $9.95 60 100 5-6" $12.25 35 60 5-6" $13.95 35 60 6-8" $23.50 20 30 6-8" $25.50 20 30 8-10" $46.50 10 15 8-10" $54.00 10 15 10-12" Yes $68.00 6 8 10-12" $84.00 6 8 12-14" Yes $99.00 4 5 12-14" $124.00 4 5 14-16" $120.00 2 3 14-16" $139.00 2 3 16-18" $175.00 1 1 16-18" $185.00 1 1 HIKARI (METALLIC) KOI HIKARI (METALLIC) BUTTERFLY KOI 3-4" Yes $3.70 100 175 3-4" $4.75 100 175 4-5" Yes $6.40 60 100 4-5" Yes $8.25 60 100 5-6" Yes $10.70 35 60 5-6" Yes $11.50 35 60 6-8" Yes $17.25 20 30 6-8" Yes $19.95 20 30 8-10" Yes $31.00 10 15 8-10" $38.50 10 15 SKELETON KOI SKELETON BUTTERFLY KOI 3-4" Yes $3.70 100 175 3-4" $4.75 100 175 4-5" Yes $6.40 60 100 4-5" $8.25 60 100 5-6" Yes $10.70 35 60 5-6" $11.50 35 60 6-8" $17.25 20 30 6-8" $19.95 20 30 5-6” KOI & BUTTERFLY MIX BIO SECURE AAA IMPORTED KOI STD.