(Platyhelminthes) Parasitic in Mexican Aquatic Vertebrates

Total Page:16

File Type:pdf, Size:1020Kb

(Platyhelminthes) Parasitic in Mexican Aquatic Vertebrates Checklist of the Monogenea (Platyhelminthes) parasitic in Mexican aquatic vertebrates Berenit MENDOZA-GARFIAS Luis GARCÍA-PRIETO* Gerardo PÉREZ-PONCE DE LEÓN Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153 CP 04510, México D.F. (México) [email protected] [email protected] (*corresponding author) [email protected] Published on 29 December 2017 urn:lsid:zoobank.org:pub:34C1547A-9A79-489B-9F12-446B604AA57F Mendoza-Garfi as B., García-Prieto L. & Pérez-Ponce De León G. 2017. — Checklist of the Monogenea (Platyhel- minthes) parasitic in Mexican aquatic vertebrates. Zoosystema 39 (4): 501-598. https://doi.org/10.5252/z2017n4a5 ABSTRACT 313 nominal species of monogenean parasites of aquatic vertebrates occurring in Mexico are included in this checklist; in addition, records of 54 undetermined taxa are also listed. All the monogeneans registered are associated with 363 vertebrate host taxa, and distributed in 498 localities pertaining to 29 of the 32 states of the Mexican Republic. Th e checklist contains updated information on their hosts, habitat, and distributional records. We revise the species list according to current schemes of KEY WORDS classifi cation for the group. Th e checklist also included the published records in the last 11 years, Platyhelminthes, Mexico, since the latest list was made in 2006. We also included taxon mentioned in thesis and informal distribution, literature. As a result of our review, numerous records presented in the list published in 2006 were Actinopterygii, modifi ed since inaccuracies and incomplete data were identifi ed. Even though the inventory of the Elasmobranchii, Anura, monogenean fauna occurring in Mexican vertebrates is far from complete, the data contained in our Testudines. checklist depict the actual knowledge about this group of fl atworms in Mexico. RÉSUMÉ Liste annotée des Monogenea (Platyhelminthes) parasites des vertébrés aquatiques mexicains. Une liste annotée des 313 espèces nominales de parasites monogènes de vertébrés aquatiques du Mexique est présentée ; 54 taxons indéterminés sont également répertoriés. Tous les monogènes cités sont associés à 363 taxons de vertébrés hôtes, et sont originaires de 498 localités représentant 29 des 32 états de la République mexicaine ; des informations révisées sur les hôtes, l’habitat et les distribu- tions sont proposées. La liste des espèces a été revisée en fonction des patrons actuels de classifi cation du groupe. La liste annotée comprend également les signalisations publiées au cours des 11 dernières MOTS CLÉ années, puisque la dernière liste datait de 2006. Nous avons également inclus les taxons mentionnés Platyhelminthes, Mexique, dans les thèses et la littérature grise. Suite à notre revue, de nombreuses signalisations ont été modi- distribution, fi ées, car des inexactitudes et des données incomplètes ont été identifi ées dans la liste publiée en Actinopterygii, 2006. Même si l’inventaire de la faune monogénique des vertébrés mexicains est loin d’être complet, Elasmobranchii, Anura, les données contenues dans notre liste annotée représentent les connaissances réelles sur ce groupe Testudines. de vers plats au Mexique. ZOOSYSTEMA • 2017 • 39 (4) © Publications scientifi ques du Muséum national d’Histoire naturelle, Paris. www.zoosystema.com 501 Mendoza-Garfi as B. et al. INTRODUCTION records in Kohn et al. (2006) since these authors only re- ferred the states where species were distributed), hosts (species Th e Platyhelminthes are the most species-rich group of name), and references (between parentheses, in chronological helminth parasites of wildlife vertebrates in Mexico (Pérez- sequence); when one record obtained from a parasite collection Ponce de León et al. 2011). According to García-Prieto et al. database has not been published, the acronym of this collec- (2014), within these parasitic fl atworms, Monogenea is the tion after the record is included. Type locality, type host, and second more species-rich class in Mexico, after the Trema- original reference of a type species are highlighted in bold. toda. Th e fi rst species of monogeneans described in Mexico In addition, the checklist also includes monogenean species were Axine yamagutii (Meserve, 1938), Mexicotyle mexicana identifi ed only to genus level or even in some cases, to fam- (Meserve, 1938), Neobenedenia adenea (Meserve, 1938), ily level (undetermined species). Th e nomenclatural changes Neobenedenia isabellae (Meserve, 1938), and Neopolystoma referred in some records are based on particular references domitilae (Caballero, 1938) (see Caballero 1938; Meserve indicated in the Remarks section. 1938). Monogeneans represent one of the groups of helminth Species recorded after the publication of the checklist by parasites that have been studied continuously in Mexico for Kohn et al. (2006) are indicated with an asterisk (*); how- over 80 years, although the knowledge about the diversity of ever, species recorded before the publication of the check list the groups still remains fragmentary. Several attempts have by Kohn et al. (2006) but not included by these authors are been made in the past to quantify the species richness of marked with (§); taxa included in our study but not registered these worms as parasites of Mexican aquatic vertebrates (see by Kohn et al. (2006) because they were presented in thesis, Lamothe-Argumedo & Jaimes-Cruz 1982; Flores-Crespo & are indicated with (ǂ). Flores-Crespo 2003; Kohn et al. 2006). A decade ago, Kohn Records not considered in the list of these authors (included et al. (2006) listed a total of “210 species from Mexico” (ac- in thesis and some in formal literature) but included in our tually, 196 taxa). However, a detailed review of that checklist work are indicated in each record with (**). in relation to Mexican records and its comparison with the When more information is necessary to clarify some record, information contained in the database of the Colección Na- we include a section of Notes. For each record, the acronym cional de Helmintos (CNHE), revealed some discrepancies and accession number of the collection(s) where the specimens (e.g., omission of information, duplication of species records, are deposited is also presented. lack of nomenclature updating, mistaken records, etc.). Due to the aforementioned discrepancies, and the fact that the ABBREVIATIONS last decade witnessed an important increase in the number of Th e deposition of type specimens is indicated with the let- studies on monogeneans, in this paper we present the most ters H (for holotype) and P (for paratype) as superscript up-to-date checklist of the monogenean parasites of aquatic after accession numbers. Acronyms used in the checklist vertebrates of Mexico with the aims of: 1) partially revisit the are as follows: checklist published by Kohn et al. (2006), adding, modifying, CHCM Colección Helmintológica del CINVESTAV, and updating the information presented by these authors for Mérida, Yucatán; Mexican species; and 2) CHE-UAEH Colección de Helmintos, Universidad Autónoma depict the actual knowledge about del Estado de Hidalgo, Centro de Investigaciones this group of fl atworms in Mexico. Biológicas, Pachuca, Hidalgo; CMNPA Canadian Museum of Nature, Parasite Collection, Ontario; MATERIAL AND METHODS CNHE Colección Nacional de Helmintos, Instituto de Biología, UNAM, Mexico; COPA-UAEM Colección Parasitológica de la Universidad Autónoma Th e present list of monogenean species of Mexican aquatic del Estado de Morelos, Cuernavaca, Morelos; vertebrates is mainly based on previously published records, CPMHN-UABCS Colección Parasitológica del Museo de Historia as well as some records that were not published, but referred Natural de la Universidad Autónoma de Baja in the databases of the following parasite collections: Th e California Sur, La Paz, Baja California Sur, Mexico; ECOPA Colección Parasitológica de El Colegio de la Fron- British Museum (Natural History) Collection at the Natural tera Sur, Chetumal, Quintana Roo; History Museum, London (NHMUK); Colección Nacional HWML Harold W; Manter Laboratory of Parasitology, de Helmintos, Mexico City (CNHE); Harold W. Manter University of Nebraska-Lincoln, Nebraska; Laboratory of Parasitology, Nebraska (HWML), and Smith- IPCAS Helminthological Collection of the Institute of sonian’s National Museum of Natural History, Washington Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice; D.C. (USNM). In most cases, the checklist follows the clas- LGHBPI Laboratory of General Helminthology, Institute sifi cation and systematic arrangement of Boeger & Kritsky of Biology and Pedology, Far East Science Centre, (1993); some records follow World Register of Marine Species Academy of Sciences of the USSR, Vladivostok; (WoRMS 2016). MHNG Th e Muséum d’Histoire naturelle, Geneva; Th e families and species of monogeneans are presented in MNHN Muséum national d’Histoire naturelle, Paris; NHMUK Natural History Museum, London; alphabetical order, followed by the Class of the host, site of QM Queensland Museum, South Brisbane; infection, geographic distribution, including State(s) and USNM Smithsonian’s National Museum of Natural His- locality(ies) of collection (not mentioned for the Mexican tory, Washington, D.C. 502 ZOOSYSTEMA • 2017 • 39 (4) Monogeneans from Mexico 112° W 104° 96° 88° 34° N UNITED STATES OF AMERICA MEXICO 26° Gulf of Mexico North Pacific Ocean 18° 500 km 0° FIG. 1. — Map of Mexico showing the sampled sites for
Recommended publications
  • Ahead of Print Online Version Gyrodactylus Aff. Mugili Zhukov
    Ahead of print online version FoliA PArAsitologicA 60 [5]: 441–447, 2013 © institute of Parasitology, Biology centre Ascr issN 0015-5683 (print), issN 1803-6465 (online) http://folia.paru.cas.cz/ Gyrodactylus aff. mugili Zhukov, 1970 (Monogenoidea: Gyro- dactylidae) from the gills of mullets (Mugiliformes: Mugilidae) collected from the inland waters of southern Iraq, with an evalutation of previous records of Gyrodactylus spp. on mullets in Iraq Delane C. Kritsky1, Atheer H. Ali2 and Najim R. Khamees2 1 Health Education Program, school of Health Professions, idaho state University, Pocatello, idaho, UsA; 2 Department of Fisheries and Marine resources, college of Agriculture, University of Basrah, Basrah, iraq Abstract: Gyrodactylus aff. mugili Zhukov, 1970 (Monogenoidea: gyrodactylidae) is recorded and described from the gill lamellae of 11 of 35 greenback mullet, Chelon subviridis (Valenciennes) (minimum prevalence 31%), from the brackish waters of the shatt Al-Arab Estuary in southern iraq. the gyrodactylid was also found on the gill lamellae of one of eight speigler’s mullet, Valamugil speigleri (Bleeker), from the brackish waters of the shatt Al-Basrah canal (minimum prevalence 13%). Fifteen Klunzinger’s mullet, Liza klunzingeri (Day), and 13 keeled mullet, Liza carinata (Valenciennes), collected and examined from southern iraqi waters, were apparently uninfected. the gyrodactylids from the greenback mullet and speigler’s mullet were considered to have affinity toG. mu- gili Zhukov, 1970, and along with G. mugili may represent members of a species complex occurring on mullets in the indo-Pacific region. A single damaged gyrodactylid from the external surfaces of the abu mullet, Liza abu (Heckel), was insufficient for species identification.
    [Show full text]
  • Two New Species of Sea Catfish Named
    Media only: Elisabeth King (507) 212-8216; [email protected] June 30, 2017 Sean Mattson (507) 212-8290; [email protected] Media website: http://www.stri.si.edu/english/about_stri/media/press_releases/index.php Two new species of sea catfish named A group of scientists from Panama, Colombia, Brazil and Puerto Rico have described two new species of sea catfish in the genus Ariopsis, in a report published in the journal Zootaxa. Based on a specimen from Casaya Island in Panama’s Las Perlas archipelago, they named the first new species, Jimenez’s Sea Catfish, Ariopsis jimenzi for Máximo Jiménez Acosta, a zooarchaeology technician in archaeologist Richard Cooke’s lab at the Smithsonian Tropical Research Institute. Jiménez drew attention to the possible existence of a new species based on his examination of bone characteristics in specimens formerly originally believed to be A. seemanni, or the Colombian shark catfish. His observation that the bones belonged to a new species was immediately confirmed by molecular analysis. The second new species was named the New Granada sea catfish, Ariopsis canteri, for Diego Canter Ríos (1984-2007), a young and talented Colombian ichthyologist who died in a traffic accident near Santa Marta, Colombia along with three other biology undergraduates. He collected the data on the new species and also worked on this group of catfish for part of his bachelor’s thesis in marine biology. The zoologists in the team — Alexandre Marceniuk from Brazil’s Museu Paraense Emílio Goeldi; Arturo Acero of the Universidad Nacional de Colombia, and Ricardo Betancur of the University of Puerto Rico — constructed a family tree showing how the eight different species in the genus Ariopsis are related.
    [Show full text]
  • The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
    LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Download E-Book (PDF)
    African Journal of Biotechnology Volume 14 Number 33, 19 August, 2015 ISSN 1684-5315 ABOUT AJB The African Journal of Biotechnology (AJB) (ISSN 1684-5315) is published weekly (one volume per year) by Academic Journals. African Journal of Biotechnology (AJB), a new broad-based journal, is an open access journal that was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly, to provide the most rapid turn-around time possible for reviewing and publishing, and to disseminate the articles freely for teaching and reference purposes. All articles published in AJB are peer- reviewed. Submission of Manuscript Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author Click here to Submit manuscripts online If you have any difficulty using the online submission system, kindly submit via this email [email protected]. With questions or concerns, please contact the Editorial Office at [email protected]. Editor-In-Chief Associate Editors George Nkem Ude, Ph.D Prof. Dr. AE Aboulata Plant Breeder & Molecular Biologist Plant Path. Res. Inst., ARC, POBox 12619, Giza, Egypt Department of Natural Sciences 30 D, El-Karama St., Alf Maskan, P.O. Box 1567, Crawford Building, Rm 003A Ain Shams, Cairo, Bowie State University Egypt 14000 Jericho Park Road Bowie, MD 20715, USA Dr. S.K Das Department of Applied Chemistry and Biotechnology, University of Fukui, Japan Editor Prof. Okoh, A. I. N.
    [Show full text]
  • FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
    SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Parasites of Fishes: Trematodes 237
    STUDIES ON THE PARASITES OF INDIAN FISHES.* IV. TREMATODA: MONOGENEA, MICROCOTYLIDAE. By YOGENDRA R. TRIPATHI, Central Inland Fisheries Reseafrcl~ Station, Calcutta. CONTENTS. Page. Introduction • • 231 Systematic account of the species • • • • 232 Taxonomic position of the genera 239 Summary 244 Acknowledg'ments 244 References 244 INTRODUCTION. In the course of the examination of Indian marine and estuarine food fishes for parasites, the following species of Monogenea of the family Microcotylidae were collected from the gills, and are described in this paper. Th(l i~.'Jidence (\f icl't)ction is given in Table I. TABLE I. Host. No. ex- No. infec­ Parasite. Place. amined. ted. Oh,rocentru8 dorab 6 4 M egamicrocotyle chirocen- Puri. tru8, Gen. et sp. nov. OkorinemU8 tala 1 1 Diplasiocotyle chorinemi, Mahanadi estu. sp. nov. ary. Oybium guttatum 4 2 Thoracocotyle ooole, Puri. sp. nov. 4 3 Lithidiocotyle secundu8, Puri. " " sp. nov. Pamapama 48 30 M icrocotyle pamae, sp. Chilka lake nov. and Hoogly. Polynemus indicu8 6 3 M icrocotyle polynemi Chilka lake, MacCallum 1917. Hoogly and Mahanadi. P. telradactylum 30 9 " " " Btromateus cinereu8 6 3 Bicotyle stromatea, Gen. Puri. et sp. nov. ... *Published with the permission of the Chief Research Office» Central Inland FIsheries Research Station. 231 J ZSI/M 10 232 Records of the Indian Museum [Vol. 52, The parasites were fixed in Bouin's fluid e;r Bouin-Duboscq fluid under pressure of cover slip and stained with Ehrlich's haematoxylin, which gave satisfactory results. Those on the gills of Ch.orinemus tala were picked from specimens of fish preserved in 5 per cent formalin in the field and examined in the laboratory after washing and stainin.g as above, but the fixation was not satisfactory.
    [Show full text]
  • Zootaxa,Metazoan Parasites of Fishes from Coyuca Lagoon, Guerrero
    Zootaxa 1531: 39–48 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Metazoan parasites of fishes from Coyuca Lagoon, Guerrero, Mexico JUAN VIOLANTE-GONZÁLEZ & M. LEOPOLDINA AGUIRRE-MACEDO Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Unidad Mérida, Carretera Anti- gua a Progreso Km. 6, A.P. 73 Cordemex, 97310 Mérida, Yucatán, México. E-mail: [email protected] Abstract A total of 33 species of metazoan parasites were identified (31 helminth and 2 crustaceans) from 10 species of fish (n = 1,030) collected from Coyuca Lagoon, Guerrero, Mexico, between May 2001 and February 2003. Digeneans (7 adults and 11 larvae) dominated the parasite fauna. The most widespread species of parasite were: Digenea- Pseudoacanthos- tomum panamense, Diplostomum (Austrodiplostomum) compactum, Clinostomum complanatum; Nematoda- Contracae- cum sp.; Branchiura- Argulus sp.; and Copepoda- Ergasilus sp. Species composition of the parasite fauna exhibited a clear freshwater influence; 57.5% (19/33) of the identified species have a freshwater distribution. This is the first survey of parasites of fish from this location and all reported species are new geographical host records for Coyuca Lagoon, Guerrero, Mexico. Key words: Digenea, Nematoda, Crustacea, fish, Coyuca Lagoon, Guerrero, Mexico Introduction Coyuca Lagoon is one of the most important aquatic resources in the state of Guerrero, Mexico, because of its size (28.5 Km2) and fish production (Violante-González 2006). Located 35 km northwest of Acapulco, this lagoon is predominantly oligohaline (1.5 to 5 ppm) during most of the year, but has a marine influence during the rainy season when temporary connections open between it and the Pacific Ocean.
    [Show full text]
  • Two New Species of the Genus Xenotoca Hubbs and Turner, 1939 (Teleostei, Goodeidae) from Central-Western Mexico
    Zootaxa 4189 (1): 081–098 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4189.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:9BF8660A-4817-4EEA-853F-5856D1B8F6FA Two new species of the genus Xenotoca Hubbs and Turner, 1939 (Teleostei, Goodeidae) from central-western Mexico OMAR DOMÍNGUEZ-DOMÍNGUEZ1,3, DULCE MARÍA BERNAL-ZUÑIGA1 & KYLE R. PILLER2 1Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “R” planta baja, Ciudad Universitaria, Morelia, Michoacán, México 2Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, 70402, USA 3Corresponding author. E-mail: [email protected] Abstract The subfamily Goodeinae (Goodeidae) is one of the most representative and well-studied group of fishes from central Mexico, with around 18 genera and 40 species. Recent phylogenetic studies have documented a high degree of genetic diversity and divergences among populations, suggesting that the diversity of the group may be underestimated. The spe- cies Xenotoca eiseni has had several taxonomic changes since its description. Xenotoca eiseni is considered a widespread species along the Central Pacific Coastal drainages of Mexico, inhabiting six independent drainages. Recent molecular phylogenetic studies suggest that X. eiseni is a species complex, represented by at least three independent evolutionary lineages. We carried out a meristic and morphometric study in order to evaluate the morphological differences among these genetically divergent populations and describe two new species. The new species of goodeines, Xenotoca doadrioi and X. lyonsi, are described from the Etzatlan endorheic drainage and upper Coahuayana basin respectively.
    [Show full text]
  • Metazoan Parasite Community of Blue Sea Catfish, Sciades Guatemalensis (Ariidae), from Tres Palos Lagoon, Guerrero, Mexico
    Parasitol Res DOI 10.1007/s00436-009-1488-8 ORIGINAL PAPER Metazoan parasite community of blue sea catfish, Sciades guatemalensis (Ariidae), from Tres Palos Lagoon, Guerrero, Mexico Juan Violante-González & Ma. Leopoldina Aguirre-Macedo & Agustín Rojas-Herrera & Salvador Gil Guerrero Received: 19 May 2008 /Accepted: 11 May 2009 # Springer-Verlag 2009 Abstract The seasonal dynamic of the metazoan parasite the Gulf of California to Panama (Castro-Aguirre et al. community of the blue sea catfish (Sciades guatemalensis) 1999). Due to constant local demand, it is a major fishery from Tres Palos Lagoon, Guerrero, Mexico, was studied at catch in the coastal lagoons of Guerrero state, Mexico. the component community and infracommunity levels. A Considered to be a carnivorous secondary consumer, it is a total of 382 fish were collected during the regional dry and characteristic estuarine species of the Guerrero coastal rainy seasons (a total of seven seasons) between April 2000 lagoon system (Yáñez-Arancibia 1978). The species’ and September 2007. Nine helminths were collected: Neo- parasite fauna from two coastal lagoons has been reported tetraonchus sp., Pseudoacanthostomum panamense, Austro- previously (Violante-González and Aguirre-Macedo 2007; diplostomum compactum, Clinostomum complanatum, Violante-González et al. 2007), but no studies have focused Metadena sp., Pseudoleptorhynchoides lamothei, Neoechi- on the stability of its parasite community over time in terms norhynchus cf. golvani, Hysterothylacium perezi,andCon- of species composition and abundance. tracaecum sp. The infection dynamics of some dominant The majority of research in Mexico on temporal helminths was influenced by environmental changes gener- variation in tropical parasite communities has involved ated by the dry/rainy season cycle.
    [Show full text]
  • FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
    SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • (Monogenea: Ancyrocephalidae (Sensu Lato) Bychowsky & Nagibina, 1968): an Endoparasite of Croakers (Teleostei: Sciaenidae) from Indonesia
    RESEARCH ARTICLE Pseudempleurosoma haywardi sp. nov. (Monogenea: Ancyrocephalidae (sensu lato) Bychowsky & Nagibina, 1968): An endoparasite of croakers (Teleostei: Sciaenidae) from Indonesia Stefan Theisen1*, Harry W. Palm1,2, Sarah H. Al-Jufaili1,3, Sonja Kleinertz1 a1111111111 a1111111111 1 Aquaculture and Sea-Ranching, University of Rostock, Rostock, Germany, 2 Centre for Studies in Animal Diseases, Udayana University, Badung Denpasar, Bali, Indonesia, 3 Laboratory of Microbiology Analysis, a1111111111 Fishery Quality Control Center, Ministry of Agriculture and Fisheries Wealth, Al Bustan, Sultanate of Oman a1111111111 a1111111111 * [email protected] Abstract OPEN ACCESS An endoparasitic monogenean was identified for the first time from Indonesia. The oesopha- Citation: Theisen S, Palm HW, Al-Jufaili SH, gus and anterior stomach of the croakers Nibea soldado (LaceÂpède) and Otolithes ruber Kleinertz S (2017) Pseudempleurosoma haywardi (Bloch & Schneider) (n = 35 each) sampled from the South Java coast in May 2011 and Joh- sp. nov. (Monogenea: Ancyrocephalidae (sensu lato) Bychowsky & Nagibina, 1968): An nius amblycephalus (Bleeker) (n = 2) (all Sciaenidae) from Kedonganan fish market, South endoparasite of croakers (Teleostei: Sciaenidae) Bali coast, in November 2016, were infected with Pseudempleurosoma haywardi sp. nov. from Indonesia. PLoS ONE 12(9): e0184376. Prevalences in the first two croakers were 63% and 46%, respectively, and the two J. ambly- https://doi.org/10.1371/journal.pone.0184376 cephalus harboured three
    [Show full text]