General Considerations on the Karyotypic Evolution of Chelonia from the Amazon Region of Brazil

Total Page:16

File Type:pdf, Size:1020Kb

General Considerations on the Karyotypic Evolution of Chelonia from the Amazon Region of Brazil Cytologia 41: 559-565, 1976 General Considerations on the Karyotypic Evolution of Chelonia from the Amazon Region of Brazil R. M. Barros,1 M. M. Sampaio,1 M. F. Assis,1 M. Ayres1 and O. R. Cunha2 Received February 8, 1975 In comparison with other orders of Reptilia, there have been very few reports on the chromosomes of Chelonia in the recent literature. Van Brink (1959) described the chromosomes of Emys orbiculares and Chrysemys bellii bellii, both with a diploid number of 50 with macro and microchromosomes. Later, Sasaki and Itoh (1967) described identical karyotypes for Clemmys japonica and Geoclemmys reevesii, with a diploid number of 52, including many microchromosomes. Ayres et al. (1968, 1969) described two kinds of the diploid number, 28 for P. cayennensis, P. expansa, P. unifilis and P. sextuberculata, and 26 for P. dumeriliana. These same numbers were described by Huang and Clark (1969) for P. unifilis and P. expansa. These species do not have microchromosomes, their diploid number being very low in comparison to other species already studied. Sampaio et al. (1969, 1971) described the karyotypes of Geochelone carbonaria and G. denticulata, both with 52 chromo somes. The karyotypes are identical except for no. 12 pair which differed in having pericentric inversion. The karyotype of G. carbonaria is identical to that of Clem mys japonica and Geoclemmys reevesii described by Sasaki and Itoh (1967). Barros et al. (1970, 1972) found 56 chromosomes in the subspecies Kinosternon scorpioides scorpioides and K. s. carajasensis. These two subspecies have a karyotype very similar to that of Geoemyda punctularia punctularia, with the same diploid number. The differences between them could well be explained by pericentric inversions (Bar ros et al. 1973). This paper deals with the chromosomes of the following species of Chelonia (family Chelidae) from the Amazon Region of Brazil: Platemys platicephala, Mesoclemmys gibba and Chelus fimbriatus. Material and methods One male of Platemys platicephala, one female of Mesoclemmys gibba, and one male and two females of Chelus fimbriatus were chromosomally studied. The chro mosome slides were prepared following the method of Gorman et al. (1967). The procedure has already been described in detail by Barros et al. (1972). Results The karyotypes are summarized in Table 1. 1 Centro de Ciencias Biolbgicas , Universidade Federal do Para, Belem, Para, Brasil. 2 Museu Paraense "Emilio Goeldi", Belem, Para, Brasil. 560 R. M. Barros et al. Cytologia 41 Table 1. Karyotypic data of the species studied Platemys platicephala Diploid number: 2n=64. Haploid number: n=32. Number of micro chromosomes : 42. Fundamental number: 64. Karyotype: All chromosomes are acrocentric (Fig. 1). Fig. 1. Male karyotype of Platemys platicephala . Meiosis: The majority of cells in the initial stages of prophase I represent positive heteropycnosis. In diakinesis the larger and medium bivalents show 2 to 3 chiasmata, while the smaller ones have only one chiasma (Figs. 4, d, e, f) . Mesoclemmys gibba Diploid number: 2n=60. Number of microchromosomes: 40. Fundamental number: 66. Karyotype: Pairs no. 1 and 2 are metacentric . The no. 3 pair is submetacentric. Pairs 4 to 11 are acrocentric. Pairs 12 to 30 are microchromosomes , in which the morphology is difficult to ascertain (Fig. 2). 1976 General Considerations on the Karyotipic Evolution of Chelonia 561 Chelus fimbriatus Diploid number: 2n=50. Haploid number: n=25. Number of micro chromosomes: 30. Fundamental number: 64. Fig. 2. Female karyotype of Mesoclemmys gibba. Fig. 3. Female karyotype of Chelus fimbriatus. 562 R. M. Barros et al. Cytologia 41 Karyotype: Pairs 1, 2, 6 and 9 are metacentric. Pairs 3, 4 and 5 are subme tacentric. Pairs 7, 8 and 10 are acrocentric. Pairs 11 to 25 are represented by microchromosomes (Fig. 3). Meiosis: The majority of cells in the pachytene stage exhibit positive hetero pycnosis, and one bivalent which showed a region without pairing. Larger bivalents with 3 to 6 chiasmata are observable in diakinesis, those of medium-size have two chiasmata while the smaller ones have one chiasma (Figs. 4, a, b, c). Fig. 4. A, metaphase II of Chelus fimbriatus, male. B, pachytene of Chelus fimbriatus, male. Arrow points to a region where does not occur pairing. C, diakinesis of Chelus fimbriatus, male. D, diaki nesis of Platemys platicephala, male. E, pachytene of Platemys platicephala, male, showing posi tive heteropycnosis. F, metaphase II of Platemys platicephala, male. Discussion 1. Karyotype variation The family Chelidae shows a considerable karyotypic variation. The species, Platemys platicephala, has the largest diploid number (64) with the greatest number of microchromosomes (42); the chromosomes of this species are all acrocentric. 1976 General Considerations on the Karyotipic Evolution of Chelonia 563 Mesoclemmys gibba has 60 chromosomes and medium-sized chromosomes are all acrocentric. Chelus fimbriatus, with 50 chromosomes, has the smallest diploid number among the three species studied having 30 microchromosomes, and meta centric and acrocentric medium-sized chromosomes. Chelus fimbriatus has a funda mental number identical to that of Platemys platicephala. Robertsonian fission fusion mechanism could be responsible to the difference occurring between these two species. There seem to be a relationship between the diploid number, the number of me tacentric and acrocentric chromosomes and microchromosomes of these three species of the Chelidae. Karyotypes with a low diploid number have more metacentric and less acrocen tric chromosomes and microchromosomes, than karyotypes with a high diploid number. The relationship may be the result of centric fusions between the acro centric chromosomes, resulting in an increased number of metacentric and a re duction of the diploid number. Furthermore, if the decreasing number of micro chromosomes is related to an increase of metacentric chromosomes, it could be argued that a process of centric fusions occurred among the larger microchromo somes and a few of the acrocentric chromosomes. On the other hand, the decrease in the number of microchromosomes could be resulted from their gradual elimina tion (Nogusa 1953). Interesting is the fact that the species of Podocnemis with a low diploid number and many metacentric, have no microchromosomes (Ayres et al. 1968, 1969). In P. dumeriliana which has the lowest diploid number over found in Chelonia (26), all the chromosomes are metacentric. These findings suggest that, in general, the species with many metacentric chromosomes are characterized by a low number of micro chromosomes. The cytogenetics data of Chelonia seem to indicate the occurrence of three groups of karyotypes: Group A-Karyotypes with a high diploid number (60-64), having many acrocentric chromosomes, few or no metacentric and many micro chromosomes. The species, Mesoclemmys gibba and Platemys platicephala, belong to this group. Group B-Karyotypes with a slightly lower diploid number (50-56) having many metacentric and few acrocentric chromosomes. In this group there are fewer microchromosomes than group A. In this group fall the following species, Chelus fimbriatus, Kinosternon scorpioi des scorpioides, Kinosternon scorpioides carajasensis, Geoemyda punctularia punctularia, and two species of genus Geochelone. Group C-Karyotypes with a low diploid number (26-28) characterized by few or no acrocentric many metacentric and an absence of micro chromosomes. The species of genus Podocnemis belong to this group. On the above basis it is apparent that centric fusions or elimination of micro chromosomes or both, are a principal mechanism involved in the evolution of chelo nian karyotypes. 564 R. M. Barros et al. Cytologia 41 2. Meiotic aspects and the mechanism of sex differentiation Chelonia presumably do not have heteromorphic sex chromosomes. This has been, however, a point of contention amongst cytologists. Many papers have indicated sex determination of XO type in females: Oguma (1934) in Amyda japonica; Nakamura (1935, 1949) in Caretta caretta olivacea and Clemmys japonica, Susuki (1950) in Amyda maaki, and Makino (1952) in Chelonia japonica. In these species the sex chromosomes would be represented by micro chromosomes. On the other hand, Matthey (1931, 1957) and van Brink (1959) did not find sex chromosome differentiation in Emys orbiculares. Similarly in the genus Podocnemis (Ayres et al. 1968, 1969; Huang and Clark 1969), Geochelone (Sampaio et al. 1969, 1971), Kinosternon (Barros et a1. 1970, 1972) and Geoemyda (Barros et al. 1973), sexual heteromorphism was not shown to occur. More recent data indicate that sexual chromosomic differences do not occur in the Chelonia. In the present study, where both males and females were studied (Chelus fim briatus), there was no difference between the chromosomic complements of the two sexes. However, the meiotic specimens of Platemys platicephala showed heterochro matic regions in the initial stages of prophase I. In Chelus fimbriatus, besides heterochromatin, one bivalent showed a region without pairing in the pachytene stage. Similar autosomic heterochromatic regions are present in two subspecies of the genus Kinosternon (Barros et al. 1970, 1972). In the meiotic cells of these subspecies, there were areas of partial or total condensation which were asynchronous in some bivalents, and in the diplotene there was one bivalent which showed a typical early behavior in relation to the others. Heteropycnosis and bivalents with asynchronous behavior in
Recommended publications
  • Geographic Variation in the Matamata Turtle, Chelus Fimbriatus, with Observations on Its Shell Morphology and Morphometry
    n*entilkilt ilil Biok,gr', 1995. l(-l):19: 1995 by CheloninD Research Foundltion Geographic Variation in the Matamata Turtle, Chelus fimbriatus, with Observations on its Shell Morphology and Morphometry MlncBLo R. SANcnnz-Vu,urcnAr, PnrER C.H. PnrrcHARD:, ArrnEro P.rorrLLo-r, aNn Onan J. LINlnBs3 tDepartment of Biological Anthropolog-,- and Anatomy, Duke lJniversin' Medical Cetter. Box 3170, Dtu'hcun, North Carolina277l0 USA IFat 919-684-8034]; 2Florida Audubotr Societ-t, 460 High,n;a,- 436, Suite 200, Casselberry, Florida 32707 USA: iDepartanento de Esttdios Anbientales, llniyersitlad Sinzrin Bolltnt", Caracas ]O80-A, APDO 89OOO l/enerte\a Ansrucr. - A sample of 126 specimens of Chelusftmbriatus was examined for geographic variation and morphology of the shell. A high degree of variation was found in the plastral formula and in the shape and size of the intergular scute. This study suggests that the Amazon population of matamatas is different from the Orinoco population in the following characters: shape ofthe carapace, plastral pigmentation, and coloration on the underside of the neck. Additionatly, a preliminary analysis indicates that the two populations could be separated on the basis of the allometric growth of the carapace in relation to the plastron. Kry Wonus. - Reptilia; Testudinesl Chelidae; Chelus fimbriatus; turtle; geographic variationl allometryl sexual dimorphism; morphology; morphometryl osteology; South America 'Ihe matamata turtle (Chelus fimbricttus) inhabits the scute morpholo..ey. Measured characters (in all cases straight- Amazon, Oyapoque. Essequibo. and Orinoco river systems line) were: maximum carapace len.-uth (CL). cArapace width of northern South America (Iverson. 1986). Despite a mod- at the ler,'el of the sixth marginal scute (CW).
    [Show full text]
  • First Report of Neopolystoma Price, 1939 (Monogenea: Polystomatidae) with the Description of Three New Species Louis H
    Du Preez et al. Parasites & Vectors (2017) 10:53 DOI 10.1186/s13071-017-1986-y RESEARCH Open Access Tracking platyhelminth parasite diversity from freshwater turtles in French Guiana: First report of Neopolystoma Price, 1939 (Monogenea: Polystomatidae) with the description of three new species Louis H. Du Preez1,2*, Mathieu Badets1, Laurent Héritier1,3,4 and Olivier Verneau1,3,4 Abstract Background: Polystomatid flatworms in chelonians are divided into three genera, i.e. Polystomoides Ward, 1917, Polystomoidella Price, 1939 and Neopolystoma Price, 1939, according to the number of haptoral hooks. Among the about 55 polystome species that are known to date from the 327 modern living chelonians, only four species of Polystomoides are currently recognised within the 45 South American freshwater turtles. Methods: During 2012, several sites in the vicinity of the cities Cayenne and Kaw in French Guiana were investigated for freshwater turtles. Turtles were collected at six sites and the presence of polystomatid flatworms was assessed from the presence of polystome eggs released by infected specimens. Results: Among the three turtle species that were collected, no polystomes were found in the gibba turtle Mesoclemmys gibba (Schweigger, 1812). The spot-legged turtle Rhinoclemmys punctularia (Daudin, 1801) was infected with two species of Neopolystoma Price, 1939, one in the conjunctival sacs and the other in the urinary bladder, while the scorpion mud turtle Kinosternon scorpioides (Linnaeus, 1766) was found to be infected with a single Neopolystoma species in the conjunctival sacs. These parasites could be distinguished from known species of Neopolystoma by a combination of morphological characteristics including body size, number and length of genital spines, shape and size of the testis.
    [Show full text]
  • Testudines: Pelomedusidae: Pelusios and Pelomedusa)
    Zoologica Scripta Molecular phylogeny of African hinged and helmeted terrapins (Testudines: Pelomedusidae: Pelusios and Pelomedusa) UWE FRITZ,WILLIAM R. BRANCH,MARGARETHA D. HOFMEYR,JE´ ROˆ ME MARAN,HYNEK PROKOP, ALFRED SCHLEICHER,PAVEL Sˇ IROKY´ ,HEIKO STUCKAS,MARIO VARGAS-RAMI´REZ,MIGUEL VENCES & ANNA K. HUNDSDO¨ RFER Submitted: 15 August 2010 Fritz, U., Branch, W. R., Hofmeyr, M. D., Maran, J., Prokop, H., Schleicher, A., Sˇ iroky´, Accepted: 22 October 2010 P., Stuckas, H., Vargas-Ramı´rez, M., Vences, M. & Hundsdo¨rfer, A. K. (2010). Molecular doi:10.1111/j.1463-6409.2010.00464.x phylogeny of African hinged and helmeted terrapins (Testudines: Pelomedusidae: Pelusios and Pelomedusa). — Zoologica Scripta, 00, 000–000. With 18 currently recognised species, Pelusios is one of the most speciose chelonian genera worldwide, even though the taxonomy of some species is contentious. Recent investigations suggested that the closely related, but morphologically distinct genus Pelomedusa is para- phyletic with respect to Pelusios, and that Pelomedusa consists of nine deeply divergent lin- eages. Using three mitochondrial and three nuclear DNA fragments (2054 bp mtDNA, 2025 bp nDNA), we examined for the first time the phylogeny of Pelusios by molecular means. Our analyses included all Pelusios species, except the probably extinct P. seychellensis, as well as the nine Pelomedusa lineages. The results showed that Pelusios and Pelomedusa are reciprocally monophyletic. Limited sampling of Pelusios species and homoplasy introduced by remote outgroups most likely explain the paraphyly of Pelomedusa in previous studies. The distinctiveness of most Pelusios species was confirmed, but none of the currently recognised species groups within Pelusios was monophyletic.
    [Show full text]
  • Demographic Consequences of Superabundance in Krefft's River
    i The comparative ecology of Krefft’s River Turtle Emydura krefftii in Tropical North Queensland. By Dane F. Trembath B.Sc. (Zoology) Applied Ecology Research Group University of Canberra ACT, 2601 Australia A thesis submitted in fulfilment of the requirements of the degree of Masters of Applied Science (Resource Management). August 2005. ii Abstract An ecological study was undertaken on four populations of Krefft’s River Turtle Emydura krefftii inhabiting the Townsville Area of Tropical North Queensland. Two sites were located in the Ross River, which runs through the urban areas of Townsville, and two sites were in rural areas at Alligator Creek and Stuart Creek (known as the Townsville Creeks). Earlier studies of the populations in Ross River had determined that the turtles existed at an exceptionally high density, that is, they were superabundant, and so the Townsville Creek sites were chosen as low abundance sites for comparison. The first aim of this study was to determine if there had been any demographic consequences caused by the abundance of turtle populations of the Ross River. Secondly, the project aimed to determine if the impoundments in the Ross River had affected the freshwater turtle fauna. Specifically this study aimed to determine if there were any difference between the growth, size at maturity, sexual dimorphism, size distribution, and diet of Emydura krefftii inhabiting two very different populations. A mark-recapture program estimated the turtle population sizes at between 490 and 5350 turtles per hectare. Most populations exhibited a predominant female sex-bias over the sampling period. Growth rates were rapid in juveniles but slowed once sexual maturity was attained; in males, growth basically stopped at maturity, but in females, growth continued post-maturity, although at a slower rate.
    [Show full text]
  • Check List 8(2): 294-297, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (Available at Journal of Species Lists and Distribution
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ZENODO Check List 8(2): 294-297, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution N New records and distribution extensions of three species of Mesoclemmys Gray, 1863 (Testudines: Chelidae) in ISTRIBUTIO Mato Grosso state, Brazil, with observations on terrestrial D movements RAPHIC G EO Elizângela Silva de Brito 1*, Christine Strüssmann 2,3, Ricardo Alexandre Kawashita-Ribeiro 3, Drausio G N Honório Morais 4, Robson Waldemar Ávila 5 and Vitor Azarias Campos 3 O OTES 1 Programa de Pós-Graduação em Biologia de Água Doce e Pesca Interior, Instituto Nacional de Pesquisas da Amazônia. Av. André Araújo, n. 2936, N Aleixo. CEP 69060-001. Manaus, AM, Brazil. 2 Departamento de Ciências Básicas e Produção Animal, Faculdade de Agronomia, Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso. Av. Fernando Correia da Costa, n. 2367, Boa Esperança. CEP 78060-900. Cuiabá, MT, Brazil. 3 Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Instituto de Biociências. Av. Fernando Correia da Costa, n. 2367, Boa Esperança. CEP 78060-900. Cuiabá, MT, Brazil. 4 Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Botucatu, Instituto de Biociências, Departamento de Parasitologia. Distrito de Rubião, Caixa Postal 510. CEP 18618-000. Botucatu, SP, Brazil. 5 Universidade Regional do Cariri, Campus do Pimenta, Centro de Ciências Biológicas e da Saúde, Departamento de Ciências Biológicas, Rua Cel. Antonio Luiz, 1161, Bairro do Pimenta.
    [Show full text]
  • Conservación Y Tráfico De La Tortuga Matamata, Chelus Fimbriata
    Lasso et al. Conservación y tráfico de la tortuga matamata, Chelus fimbriata (Schneider, 1783) en Colombia: un ejemplo del trabajo conjunto entre el Sistema Nacional Ambiental, ONG y academia Conservación y tráfico de la tortuga matamata, Chelus fimbriata (Schneider, 1783) en Colombia: un ejemplo del trabajo conjunto entre el Sistema Nacional Ambiental, ONG y academia Conservation and trafficking of the Matamata Turtle, Chelus fimbriata (Schneider, 1783) in Colombia: an example of joint efforts of the National Environmental System, one NGO, and academia Carlos A. Lasso, Fernando Trujillo, Monica A. Morales-Betancourt, Laura Amaya, Susana Caballero y Beiker Castañeda Resumen Se presentan los resultados de una iniciativa interinstitucional (Corpoamazonia, Corporinoquia, Instituto Humboldt, Universidad de Los Andes y Fundación Omacha), donde se verificó, con herramientas moleculares, que varios lotes de tortugas matamata (Chelus fimbriata) decomisadas en la ciudad de Leticia, departamento del Amazonas, Colombia, correspondían a ejemplares capturados en la Orinoquia y cuyo destino final era aparentemente Perú, como parte de una red de tráfico de fauna. Basados en este hallazgo, 2 corporaciones liberaron 400 individuos neonatos en el en el río Bita y la Reserva Natural Privada Bojonawi en el departamento del Vichada, Orinoquia colombiana. Se evidencia el tráfico de esta especie probablemente hacia Perú, donde la comercialización de tortugas es legal. Se recomienda el uso de protocolos de identificación genética para determinar y controlar la procedencia geográfica de tortugas decomisadas a futuro, como paso previo y necesario para su liberación. Palabras clave. Amazonas. Identificación molecular. Liberación de especies. Orinoquia. Tráfico de especies. Abstract We present the results of an interinstitutional initiative that verified the provenance of several groups of the Matamata Turtle (Chelus fimbriata), confiscated in the city of Leticia, department of Amazonas, Colombia, with molecular tools.
    [Show full text]
  • Refractometry As an Alternative to the Biuret Method for Measuring Total Serum Proteins in Podocnemis Expansa (Podocnemididae) and Phrynops Geoffroanus (Chelidae)
    ACTA AMAZONICA http://dx.doi.org/10.1590/1809-4392201601383 Refractometry as an alternative to the biuret method for measuring total serum proteins in Podocnemis expansa (Podocnemididae) and Phrynops geoffroanus (Chelidae) Lourdes Marina Bezerra PESSOA1*, Maíra Gonçalves da Mota LIMA1, Filipe Tavares CARNEIRO1, Nathalia Salgado ZANANI1, Marcela Corrêa SCALON1, Thamiris Figueiredo SILVA1, Mariana Accioly LIMA1, Maia Araújo ABRAHIM1, Giane Regina PALUDO1 1 University of Brasilia, Faculty of Agronomy and Veterinary Medicine, Federal District, Brazil. * Corresponding author: [email protected] ABSTRACT Total serum protein is a significant indicator of health condition in animals. The aim of this study was to analyze the precision of the portable refractometer in determining the concentration of total serum proteins in Podocnemis expansa and Phrynops geoffroanus. A total of 26 animals were used. The blood samples were collected from the supraoccipital sinus and stored in tubes without anticoagulant. Total serum protein was determined using both the biuret reaction and refractometry. The total serum protein mean concentration (g dL-1) with biuret method and refractometry for P. expansa were 3.16 and 3.2; and for P. geoffroanus were 3.56 and 2.72, respectively. These results indicate that total serum protein values can be determined with precision in P. expansa and P. geoffroanus using a portable refractometer. KEYWORDS: biuret method, refractometry, Podocnemis expansa, Phrynops geoffroanus. Refratometria como alternativa ao método do biureto para mensuração de proteínas séricas totais em Podocnemis expansa e Phrynops geoffroanus (Podocnemididae, Chelidae) RESUMO A proteína sérica total é um indicador significativo do estado de saúde em animais. O objetivo desse estudo foi analisar a precisão do refratômetro portátil para determinar a concentração de proteínas séricas totais em Podocnemis expansa e Phrynops geoffroanus.
    [Show full text]
  • AUSTRALIAN BIODIVERSITY RECORD ______2007 (No 2) ISSN 1325-2992 March, 2007 ______
    AUSTRALIAN BIODIVERSITY RECORD ______________________________________________________________ 2007 (No 2) ISSN 1325-2992 March, 2007 ______________________________________________________________ Some Taxonomic and Nomenclatural Considerations on the Class Reptilia in Australia. Some Comments on the Elseya dentata (Gray, 1863) complex with Redescriptions of the Johnstone River Snapping Turtle, Elseya stirlingi Wells and Wellington, 1985 and the Alligator Rivers Snapping Turtle, Elseya jukesi Wells 2002. by Richard W. Wells P.O. Box 826, Lismore, New South Wales Australia, 2480 Introduction As a prelude to further work on the Chelidae of Australia, the following considerations relate to the Elseya dentata species complex. See also Wells and Wellington (1984, 1985) and Wells (2002 a, b; 2007 a, b.). Elseya Gray, 1867 1867 Elseya Gray, Ann. Mag. Natur. Hist., (3) 20: 44. – Subsequently designated type species (Lindholm 1929): Elseya dentata (Gray, 1863). Note: The genus Elseya is herein considered to comprise only those species with a very wide mandibular symphysis and a distinct median alveolar ridge on the upper jaw. All members of the latisternum complex lack a distinct median alveolar ridge on the upper jaw and so are removed from the genus Elseya (see Wells, 2007b). This now restricts the genus to the following Australian species: Elseya albagula Thomson, Georges and Limpus, 2006 2006 Elseya albagula Thomson, Georges and Limpus, Chelon. Conserv. Biol., 5: 75; figs 1-2, 4 (top), 5a,6a, 7. – Type locality: Ned Churchwood Weir (25°03'S 152°05'E), Burnett River, Queensland, Australia. Elseya dentata (Gray, 1863) 1863 Chelymys dentata Gray, Ann. Mag. Natur. Hist., (3) 12: 98. – Type locality: Beagle’s Valley, upper Victoria River, Northern Territory.
    [Show full text]
  • Gibba Turtle) Family: Chelidae (Snake-Necked Turtles) Order: Testudines (Turtles and Tortoises) Class: Reptilia (Reptiles)
    UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour Mesoclemmys gibba (Gibba Turtle) Family: Chelidae (Snake-necked Turtles) Order: Testudines (Turtles and Tortoises) Class: Reptilia (Reptiles) Fig. 1. Gibba turtle, Mesoclemmys gibba. [http://www.chelonia.org/Phrynopsgibbus1.JPG, downloaded 25 October 2012] TRAITS. Mesoclemmys gibba, commonly known as the gibba turtle, was previously known as Phrynops gibbus (McCord et al., 2001). The upper region of the shell is known as the carapace which varies in colour from black to chestnut brown or dark grey (Jacksonville Zoo and Gardens, 2010). The carapace does not have a pattern. The length of an adult Mesoclymmys gibba measures from 23-30cm. The carapace length in males however does not exceed 17cm (Murphy, 2014) and the size of hatchlings range from 43 to 48mm (Mittermeier et al., 1978). The ellipsoidal carapace can be slightly bowed with a shallow supracaudal notch (above the tail). Small posterior projections or low keels may be present on the 3rd to 5th broad vertebrals. Therefore the surface can either be slightly roughened, due to the uneven medial keel, or smooth (Jacksonville Zoo and Gardens, 2010). “Neural bones vary from none to five, but, if present, they are rudimentary and never contact the nuchal” (Pritchard and Trebbau, 1984). The bottom region of the shell is known as the plastron which varies in colour from yellow to red brown. It is wide and long, well-developed, somewhat inverted anteriorly with a deep anal notch posteriorly. On each scute there is a brown patch with a possible narrow yellow border occurring anteriorly and UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour posteriorly (Jacksonville Zoo and Gardens 2010).
    [Show full text]
  • Ecology of the Chelid Turtles Platemys Platycephala, Mesoclemmys Gibba and Mesoclemmys Nasuta in French Guyana
    DIPLOMARBEIT Titel der Diplomarbeit Ecology of the chelid turtles Platemys platycephala, Mesoclemmys gibba and Mesoclemmys nasuta in French Guyana. With notes on short term migrations and dietary spectrum of Platemys platycephala in the Nouragues Field Reserve, French Guyana angestrebter akademischer Grad Magister der Naturwissenschaften (Mag. rer.nat.) Verfasserin / Verfasser: Stephan Böhm Studienrichtung /Studienzweig Ökologie (A 444) (lt. Studienblatt): Betreuerin / Betreuer: Prof. Dr. Walter Hödl Wien, im Dezember 2010 1 TABLE OF CONTENTS Introduction ............................................................................................................................ 3 Freshwater habitats in French Guyana............................................................................... 3 Turtles in French Guyana................................................................................................... 5 Expectations ....................................................................................................................... 8 Materials & Methods.............................................................................................................. 9 Literature acquisition..........................................................................................................9 Museum specimens ............................................................................................................ 9 Survey of data from captive keeping.................................................................................
    [Show full text]
  • TSA Magazine 2008
    TSATURTLE SURVIVAL ALLIANCE AUGUST 2008 An IUCN Partnership Network for Sustainable Captive Management of Freshwater Turtles & Tortoises — www.TurtleSurvival.org N O MANS L A H K ITC M GIANT YANGTZE SOFTSHELL TURTLE, RAFETUS SWINHOEI (SEE ARTICLE P. 4) 1 From the TSA Co-Chairs As you read this eighth edition of the TSA newsletter, reflect back on how far this publication has come since 2001. It’s difficult to continue to call this a newsletter. Perhaps TSA magazine or annual report would be a better name. Regardless, we hope you like the new polished format and appreciate the extra pages. Putting this publication together takes more and more effort every year, and that is certainly a positive reflection on the growth of our organization. We have a lot going on around the globe, and our reputation for doing good turtle conservation work continues to grow. The TSA is becoming well known for taking decisive conservation action and being unafraid to take risks when situ- ations warrant. There can be no better example of this than our top story for 2008--the historic attempt to breed the last two Yangtze giant softshell turtles, Rafetus swinhoei, in China. Under the able leadership of Dr.Gerald Kuchling, and with superb support and assistance from Lu Shunquing of WCS-China, an agreement was reached to unite the only known living female Rafetus at Changsha Zoo with an ancient male at Suzhou Zoo. At least three workshops were held to reach this agreement. But once this happened, TSA began to raise funds in anticipation of an event we knew would be expensive, high profile, and risky.
    [Show full text]
  • TCF Summary Activity Report 2002–2018
    Turtle Conservation Fund • Summary Activity Report 2002–2018 Turtle Conservation Fund A Partnership Coalition of Leading Turtle Conservation Organizations and Individuals Summary Activity Report 2002–2018 1 Turtle Conservation Fund • Summary Activity Report 2002–2018 Recommended Citation: Turtle Conservation Fund [Rhodin, A.G.J., Quinn, H.R., Goode, E.V., Hudson, R., Mittermeier, R.A., and van Dijk, P.P.]. 2019. Turtle Conservation Fund: A Partnership Coalition of Leading Turtle Conservation Organi- zations and Individuals—Summary Activity Report 2002–2018. Lunenburg, MA and Ojai, CA: Chelonian Research Foundation and Turtle Conservancy, 54 pp. Front Cover Photo: Radiated Tortoise, Astrochelys radiata, Cap Sainte Marie Special Reserve, southern Madagascar. Photo by Anders G.J. Rhodin. Back Cover Photo: Yangtze Giant Softshell Turtle, Rafetus swinhoei, Dong Mo Lake, Hanoi, Vietnam. Photo by Timothy E.M. McCormack. Printed by Inkspot Press, Bennington, VT 05201 USA. Hardcopy available from Chelonian Research Foundation, 564 Chittenden Dr., Arlington, VT 05250 USA. Downloadable pdf copy available at www.turtleconservationfund.org 2 Turtle Conservation Fund • Summary Activity Report 2002–2018 Turtle Conservation Fund A Partnership Coalition of Leading Turtle Conservation Organizations and Individuals Summary Activity Report 2002–2018 by Anders G.J. Rhodin, Hugh R. Quinn, Eric V. Goode, Rick Hudson, Russell A. Mittermeier, and Peter Paul van Dijk Strategic Action Planning and Funding Support for Conservation of Threatened Tortoises and Freshwater
    [Show full text]