Refractometry As an Alternative to the Biuret Method for Measuring Total Serum Proteins in Podocnemis Expansa (Podocnemididae) and Phrynops Geoffroanus (Chelidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geographic Variation in the Matamata Turtle, Chelus Fimbriatus, with Observations on Its Shell Morphology and Morphometry
n*entilkilt ilil Biok,gr', 1995. l(-l):19: 1995 by CheloninD Research Foundltion Geographic Variation in the Matamata Turtle, Chelus fimbriatus, with Observations on its Shell Morphology and Morphometry MlncBLo R. SANcnnz-Vu,urcnAr, PnrER C.H. PnrrcHARD:, ArrnEro P.rorrLLo-r, aNn Onan J. LINlnBs3 tDepartment of Biological Anthropolog-,- and Anatomy, Duke lJniversin' Medical Cetter. Box 3170, Dtu'hcun, North Carolina277l0 USA IFat 919-684-8034]; 2Florida Audubotr Societ-t, 460 High,n;a,- 436, Suite 200, Casselberry, Florida 32707 USA: iDepartanento de Esttdios Anbientales, llniyersitlad Sinzrin Bolltnt", Caracas ]O80-A, APDO 89OOO l/enerte\a Ansrucr. - A sample of 126 specimens of Chelusftmbriatus was examined for geographic variation and morphology of the shell. A high degree of variation was found in the plastral formula and in the shape and size of the intergular scute. This study suggests that the Amazon population of matamatas is different from the Orinoco population in the following characters: shape ofthe carapace, plastral pigmentation, and coloration on the underside of the neck. Additionatly, a preliminary analysis indicates that the two populations could be separated on the basis of the allometric growth of the carapace in relation to the plastron. Kry Wonus. - Reptilia; Testudinesl Chelidae; Chelus fimbriatus; turtle; geographic variationl allometryl sexual dimorphism; morphology; morphometryl osteology; South America 'Ihe matamata turtle (Chelus fimbricttus) inhabits the scute morpholo..ey. Measured characters (in all cases straight- Amazon, Oyapoque. Essequibo. and Orinoco river systems line) were: maximum carapace len.-uth (CL). cArapace width of northern South America (Iverson. 1986). Despite a mod- at the ler,'el of the sixth marginal scute (CW). -
Movement and Habitat Use of Australias Largest Snakenecked Turtle
bs_bs_bannerJournal of Zoology Journal of Zoology. Print ISSN 0952-8369 Movement and habitat use of Australia’s largest snake-necked turtle: implications for water management D. S. Bower1*, M. Hutchinson2 & A. Georges1 1 Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia 2 South Australian Museum, Adelaide, SA, Australia Keywords Abstract freshwater; radio-telemetry; home range; weir; tortoise; river; sex differences. Hydrological regimes strongly influence ecological processes in river basins. Yet, the impacts of management regimes are unknown for many freshwater taxa in Correspondence highly regulated rivers. We used radio-telemetry to monitor the movement and Deborah S. Bower, School of Environmental activity of broad-shelled river turtles Chelodina expansa to infer the impact of and Life Sciences, University of Newcastle, current water management practices on turtles in Australia’s most regulated river Callaghan, NSW 2308, Australia. – the Murray River. We radio-tracked C. expansa to (1) measure the range span Tel: +61 02 49212045; and examine the effect of sex, size and habitat type on turtle movement, and (2) Fax: +61 02 49 216923 examine habitat use within the river channel and its associated backwaters. C. Email: [email protected] expansa occupied all macro habitats in the river (main channel, backwater, swamp and connecting inlets). Within these habitats, females occupied discrete home *Present address: School of Environmental ranges, whereas males moved up to 25 km. The extensive movement of male and Life Sciences, University of Newcastle, turtles suggests that weirs and other aquatic barriers may interfere with movement Callaghan, NSW, 2308, Australia. and dispersal. Turtles regularly move between backwaters and the main river channel, which highlights the likely disturbance from backwater detachment, a Editor: Virginia Hayssen water saving practice in the lower Murray River. -
Testudines: Pelomedusidae: Pelusios and Pelomedusa)
Zoologica Scripta Molecular phylogeny of African hinged and helmeted terrapins (Testudines: Pelomedusidae: Pelusios and Pelomedusa) UWE FRITZ,WILLIAM R. BRANCH,MARGARETHA D. HOFMEYR,JE´ ROˆ ME MARAN,HYNEK PROKOP, ALFRED SCHLEICHER,PAVEL Sˇ IROKY´ ,HEIKO STUCKAS,MARIO VARGAS-RAMI´REZ,MIGUEL VENCES & ANNA K. HUNDSDO¨ RFER Submitted: 15 August 2010 Fritz, U., Branch, W. R., Hofmeyr, M. D., Maran, J., Prokop, H., Schleicher, A., Sˇ iroky´, Accepted: 22 October 2010 P., Stuckas, H., Vargas-Ramı´rez, M., Vences, M. & Hundsdo¨rfer, A. K. (2010). Molecular doi:10.1111/j.1463-6409.2010.00464.x phylogeny of African hinged and helmeted terrapins (Testudines: Pelomedusidae: Pelusios and Pelomedusa). — Zoologica Scripta, 00, 000–000. With 18 currently recognised species, Pelusios is one of the most speciose chelonian genera worldwide, even though the taxonomy of some species is contentious. Recent investigations suggested that the closely related, but morphologically distinct genus Pelomedusa is para- phyletic with respect to Pelusios, and that Pelomedusa consists of nine deeply divergent lin- eages. Using three mitochondrial and three nuclear DNA fragments (2054 bp mtDNA, 2025 bp nDNA), we examined for the first time the phylogeny of Pelusios by molecular means. Our analyses included all Pelusios species, except the probably extinct P. seychellensis, as well as the nine Pelomedusa lineages. The results showed that Pelusios and Pelomedusa are reciprocally monophyletic. Limited sampling of Pelusios species and homoplasy introduced by remote outgroups most likely explain the paraphyly of Pelomedusa in previous studies. The distinctiveness of most Pelusios species was confirmed, but none of the currently recognised species groups within Pelusios was monophyletic. -
Demographic Consequences of Superabundance in Krefft's River
i The comparative ecology of Krefft’s River Turtle Emydura krefftii in Tropical North Queensland. By Dane F. Trembath B.Sc. (Zoology) Applied Ecology Research Group University of Canberra ACT, 2601 Australia A thesis submitted in fulfilment of the requirements of the degree of Masters of Applied Science (Resource Management). August 2005. ii Abstract An ecological study was undertaken on four populations of Krefft’s River Turtle Emydura krefftii inhabiting the Townsville Area of Tropical North Queensland. Two sites were located in the Ross River, which runs through the urban areas of Townsville, and two sites were in rural areas at Alligator Creek and Stuart Creek (known as the Townsville Creeks). Earlier studies of the populations in Ross River had determined that the turtles existed at an exceptionally high density, that is, they were superabundant, and so the Townsville Creek sites were chosen as low abundance sites for comparison. The first aim of this study was to determine if there had been any demographic consequences caused by the abundance of turtle populations of the Ross River. Secondly, the project aimed to determine if the impoundments in the Ross River had affected the freshwater turtle fauna. Specifically this study aimed to determine if there were any difference between the growth, size at maturity, sexual dimorphism, size distribution, and diet of Emydura krefftii inhabiting two very different populations. A mark-recapture program estimated the turtle population sizes at between 490 and 5350 turtles per hectare. Most populations exhibited a predominant female sex-bias over the sampling period. Growth rates were rapid in juveniles but slowed once sexual maturity was attained; in males, growth basically stopped at maturity, but in females, growth continued post-maturity, although at a slower rate. -
New Records of Mesoclemmys Raniceps (Testudines, Chelidae) for the States of Amazonas, Pará and Rondônia, North Brazil, Including the Tocantins Basin
Herpetology Notes, volume 12: 283-289 (2019) (published online on 18 February 2019) New records of Mesoclemmys raniceps (Testudines, Chelidae) for the states of Amazonas, Pará and Rondônia, North Brazil, including the Tocantins basin Elizângela Silva Brito1,*, Rafael Martins Valadão2, Fábio Andrew G. Cunha3, Cristiane Gomes de Araújo4, Patrik F. Viana5, and Izaias Fernandes Médice6 Of the 58 species of living Chelidae (Rhodin et al., Among the rare species of the genus, Mesoclemmys 2017), 20 are known from Brazil (Costa and Bérnils, raniceps (Gray, 1856), a medium-sized freshwater turtle 2018). Of these, nine occur in the Amazon basin, (approximately 330 mm carapace length - CL; Rueda- including species of the genera Chelus, Mesoclemmys, Almonacid et al., 2007), inhabits streams and flooded Platemys, Phrynops and Rhinemys (Ferrara et al., 2017). forest, but can also be found in rivers, shallow lakes and The genus Mesoclemmys is the most diverse in Brazil, temporary pools in the forest (Vogt, 2008; Ferrara et and five of the eight species of Mesoclemmys in Brazil al., 2017). Mesoclemmys raniceps is relatively easy to occur within the Amazon basin (Souza, 2005; Ferrara identify, especially as an adult. Specimens of this species et al., 2017). Species of genus Mesoclemmys are rare have a large broad head, which is approximately one and inconspicuous when compared to other freshwater quarter of the length of the CL (head width between 23- turtles, and live in hard-to-reach places, to extent that 27%). The head is dark, but may show depigmentation in populations are rarely studied. This genus represents adults, resulting in a lighter color, generally in patches, the least studied among Amazonian turtles (Vogt, 2008; as shown in Figure 2 (af). -
Conservación Y Tráfico De La Tortuga Matamata, Chelus Fimbriata
Lasso et al. Conservación y tráfico de la tortuga matamata, Chelus fimbriata (Schneider, 1783) en Colombia: un ejemplo del trabajo conjunto entre el Sistema Nacional Ambiental, ONG y academia Conservación y tráfico de la tortuga matamata, Chelus fimbriata (Schneider, 1783) en Colombia: un ejemplo del trabajo conjunto entre el Sistema Nacional Ambiental, ONG y academia Conservation and trafficking of the Matamata Turtle, Chelus fimbriata (Schneider, 1783) in Colombia: an example of joint efforts of the National Environmental System, one NGO, and academia Carlos A. Lasso, Fernando Trujillo, Monica A. Morales-Betancourt, Laura Amaya, Susana Caballero y Beiker Castañeda Resumen Se presentan los resultados de una iniciativa interinstitucional (Corpoamazonia, Corporinoquia, Instituto Humboldt, Universidad de Los Andes y Fundación Omacha), donde se verificó, con herramientas moleculares, que varios lotes de tortugas matamata (Chelus fimbriata) decomisadas en la ciudad de Leticia, departamento del Amazonas, Colombia, correspondían a ejemplares capturados en la Orinoquia y cuyo destino final era aparentemente Perú, como parte de una red de tráfico de fauna. Basados en este hallazgo, 2 corporaciones liberaron 400 individuos neonatos en el en el río Bita y la Reserva Natural Privada Bojonawi en el departamento del Vichada, Orinoquia colombiana. Se evidencia el tráfico de esta especie probablemente hacia Perú, donde la comercialización de tortugas es legal. Se recomienda el uso de protocolos de identificación genética para determinar y controlar la procedencia geográfica de tortugas decomisadas a futuro, como paso previo y necesario para su liberación. Palabras clave. Amazonas. Identificación molecular. Liberación de especies. Orinoquia. Tráfico de especies. Abstract We present the results of an interinstitutional initiative that verified the provenance of several groups of the Matamata Turtle (Chelus fimbriata), confiscated in the city of Leticia, department of Amazonas, Colombia, with molecular tools. -
Recent Evolutionary History of the Australian Freshwater Turtles Chelodina Expansa and Chelodina Longicollis
Recent evolutionary history of the Australian freshwater turtles Chelodina expansa and Chelodina longicollis. by Kate Meredith Hodges B.Sc. (Hons) ANU, 2004 A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy School of Biological Sciences Department of Genetics and Evolution The University of Adelaide December, 2015 Kate Hodges with Chelodina (Macrochelodina) expansa from upper River Murray. Photo by David Thorpe, Border Mail. i Declaration I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time. -
Geographical Distribution Patterns of South American Side-Necked Turtles (Chelidae), with Emphasis on Brazilian Species
Rev. Esp. Herp. (2005) 19:33-46 Geographical distribution patterns of South American side-necked turtles (Chelidae), with emphasis on Brazilian species FRANCO LEANDRO SOUZA Universidade Federal de Mato Grosso do Sul, Centro de Ciências Biológicas e da Saúde, Departamento de Biologia, 79070-900 Campo Grande, MS, Brazil (e-mail: [email protected]) Abstract: The Chelidae (side-necked turtles) are the richest and most widespread turtle family in South America with endemic patterns at the species level related to water basins. Based on available literature records, the geographic distribution of the 22 recognized chelid species from South America was examined in relation to water basins and for the 19 Brazilian species also in light of climate and habitat characteristics. Species-distribution maps were used to identify species richness in a given area. Parsimony analysis of endemicity (PAE) was employed to verify the species-areas similarities and relationships among the species. For Brazilian species, annual rainfall in each water basin explained 81% of variation in turtle distribution and at a regional scale (country-wide) temperature also influenced their distribution. While rainfall had a significant positive relationship with species number in a given area, a negative but non-significant relationship was identified for temperature. Excepting an unresolved clade formed by some northern water basins, well-defined northern-northeastern and central-south groups (as identified for water basins) as well as biome differentiation give support to a hypothesis of a freshwater turtle fauna regionalization. Also, a more general biogeographical pattern is evidenced by those Brazilian species living in open or closed formations. -
A New Subspecies of Chelodina Mccordi (Testudines: Chelidae) from Eastern Rote Island, Indonesia
A New Subspecies of Chelodina mccordi (Testudines: Chelidae) from Eastern Rote Island, Indonesia By William P. McCord1, Mehdi Joseph-Ouni2, and Cris Hagen3 1East Fishkill Animal Hospital, Hopewell Junction, NY 12533, USA. 2EO Wildlife & Wilderness Conservation, Brooklyn, NY 11228, USA. 3Savannah River Ecology Laboratory, Aiken, SC 29802, USA. Abstract. A recent field trip to Rote (Pulau Rote; Roti) Island involving these authors has confirmed that two morphologically distinct forms of Chelodina exist there; leading here to a formal description and diagnosis of Chelodina mccordi roteensis ssp. nov. from eastern Rote Island, Indonesia. Our morphological and phenotypic analysis differentiates this new subspecies from the conspecific nominotypical form. Key words: Turtle, Pleurodira, chelid, Chelodina mccordi, Rote Island, Indonesia. Extant species of side-necked turtles narrow parietal crests, relatively more robust heads (Pleurodira Cope, 1864) are assigned to three (for subgeneric group A) and shells, and an overall families: Chelidae Gray, 1825, Podocnemidae brown coloration. Cope, 1868, and Pelomedusidae Cope, 1868. Chelodina mccordi was once well distributed Within the family Chelidae, the genus throughout the lakes and swamps of Rote Island Chelodina Fitzinger, 1826, includes species of snake- or (SALIM and YUWONO, pers. obs.). In the seasonal long-necked turtles. Historically (GOODE, 1967; BUR- lakes of the Central Plateau region, which may have BIDGE et al., 1974) and recently (GEORGES et al., been a zone of intergradation between eastern and 2002), Chelodina has been designated as comprising first western populations, C. mccordi has experienced near two, then three subgeneric groups: A (= Chelodina), B complete extirpation. In the past 20 years population (= Macrochelodina Wells and Wellington, 1985), and C numbers have been diminished to near extinction by (unnamed, containing only Chelodina oblonga Gray, both the pet trade and mismanaged agricultural prac- 1841, = Chelodina colliei Gray, 1856). -
AUSTRALIAN BIODIVERSITY RECORD ______2007 (No 2) ISSN 1325-2992 March, 2007 ______
AUSTRALIAN BIODIVERSITY RECORD ______________________________________________________________ 2007 (No 2) ISSN 1325-2992 March, 2007 ______________________________________________________________ Some Taxonomic and Nomenclatural Considerations on the Class Reptilia in Australia. Some Comments on the Elseya dentata (Gray, 1863) complex with Redescriptions of the Johnstone River Snapping Turtle, Elseya stirlingi Wells and Wellington, 1985 and the Alligator Rivers Snapping Turtle, Elseya jukesi Wells 2002. by Richard W. Wells P.O. Box 826, Lismore, New South Wales Australia, 2480 Introduction As a prelude to further work on the Chelidae of Australia, the following considerations relate to the Elseya dentata species complex. See also Wells and Wellington (1984, 1985) and Wells (2002 a, b; 2007 a, b.). Elseya Gray, 1867 1867 Elseya Gray, Ann. Mag. Natur. Hist., (3) 20: 44. – Subsequently designated type species (Lindholm 1929): Elseya dentata (Gray, 1863). Note: The genus Elseya is herein considered to comprise only those species with a very wide mandibular symphysis and a distinct median alveolar ridge on the upper jaw. All members of the latisternum complex lack a distinct median alveolar ridge on the upper jaw and so are removed from the genus Elseya (see Wells, 2007b). This now restricts the genus to the following Australian species: Elseya albagula Thomson, Georges and Limpus, 2006 2006 Elseya albagula Thomson, Georges and Limpus, Chelon. Conserv. Biol., 5: 75; figs 1-2, 4 (top), 5a,6a, 7. – Type locality: Ned Churchwood Weir (25°03'S 152°05'E), Burnett River, Queensland, Australia. Elseya dentata (Gray, 1863) 1863 Chelymys dentata Gray, Ann. Mag. Natur. Hist., (3) 12: 98. – Type locality: Beagle’s Valley, upper Victoria River, Northern Territory. -
REPTILIA: TESTUDINES: PODOCNEMIDIDAE Podocnemis Unifilis
890.1 REPTILIA: TESTUDINES: PODOCNEMIDIDAE Podocnemis unifilis Catalogue of American Amphibians and Reptiles. Schneider, L., J.B. Iverson, and R.C. Vogt. 2012. Podocnemis unifilis . Podocnemis unifilis Troschel 1848 Yellow-spotted River Turtle, Tracajá. Emys cayennensis Schweigger 1812:298. Type-lo- cality, “Cayenna” [= Cayenne]. Holotype not des - ignated but three syntypes are mentioned. Lec- totype, Paris Museum of Natural History (MNHN) 8359 (see Pritchard and Trebbau 1984 and Bour 2006 for justification), a juvenile dry specimen (head and shell separated), collected by L.C.M. Richard between 1781 and 1789 (not examined by authors). See Remarks . Testudo terekay : Humboldt and Bonpland 1819:482. Ch[elys]. (Hydraspis) Lata: Bell in Gray 1831a:17 ( no- men oblitum ) ( see Rhodin et al. 2008) . Ch[elys]. (Hydraspis) Cayennensis : Gray 1831a:17. Hydraspis Cayennensis : Gray 1831b:42. Emys Terekay Schinz 1833:41. Type-locality, “obern Orenoko [= upper Rio Orinoco] wie unterden Cataracten, und sogar auch im [Rio] Apure, im [Rio] Uritucu, im [Rio] Guarico und den kleinern Flüssen, welche die Llannos von Caracas durch - strömmen,” Venezuela. Holotype not located. Podocnemis dumeriliana : Duméril and Bibron 1835: 387 (part). Podocnemis unifilis Troschel 1848:647. Type-locality, “Rupununi und Takutu”, Guyana. Syntypes, Zoo- logische Museum Berlin (ZMB) 142 (2 specimens in alcohol), collected by R. Schomburgk, date unknown (not examined by authors, but existence confirmed by Fritz et al. 1994a). Podocnemis tracaya Coutinho 1868:149. Type-locali - ty, “Amazone.” Chelonemys dumeriliana : Gray 1870:83 (part). Podocnemis cayennensis : Siebenrock 1902:162 (part). Podocnemys unifilis : Shah 1961:215. Lapsus. Podocnemis unifillis : Zendzian and Barnard 1967: FIGURE 1. Podocnemis unifilis : Adult female (top), adult male (center), and hatchling (bottom). -
Gibba Turtle) Family: Chelidae (Snake-Necked Turtles) Order: Testudines (Turtles and Tortoises) Class: Reptilia (Reptiles)
UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour Mesoclemmys gibba (Gibba Turtle) Family: Chelidae (Snake-necked Turtles) Order: Testudines (Turtles and Tortoises) Class: Reptilia (Reptiles) Fig. 1. Gibba turtle, Mesoclemmys gibba. [http://www.chelonia.org/Phrynopsgibbus1.JPG, downloaded 25 October 2012] TRAITS. Mesoclemmys gibba, commonly known as the gibba turtle, was previously known as Phrynops gibbus (McCord et al., 2001). The upper region of the shell is known as the carapace which varies in colour from black to chestnut brown or dark grey (Jacksonville Zoo and Gardens, 2010). The carapace does not have a pattern. The length of an adult Mesoclymmys gibba measures from 23-30cm. The carapace length in males however does not exceed 17cm (Murphy, 2014) and the size of hatchlings range from 43 to 48mm (Mittermeier et al., 1978). The ellipsoidal carapace can be slightly bowed with a shallow supracaudal notch (above the tail). Small posterior projections or low keels may be present on the 3rd to 5th broad vertebrals. Therefore the surface can either be slightly roughened, due to the uneven medial keel, or smooth (Jacksonville Zoo and Gardens, 2010). “Neural bones vary from none to five, but, if present, they are rudimentary and never contact the nuchal” (Pritchard and Trebbau, 1984). The bottom region of the shell is known as the plastron which varies in colour from yellow to red brown. It is wide and long, well-developed, somewhat inverted anteriorly with a deep anal notch posteriorly. On each scute there is a brown patch with a possible narrow yellow border occurring anteriorly and UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour posteriorly (Jacksonville Zoo and Gardens 2010).