Mesoclemmys Vanderhaegei (Bour 1973) – Vanderhaege's Toad

Total Page:16

File Type:pdf, Size:1020Kb

Mesoclemmys Vanderhaegei (Bour 1973) – Vanderhaege's Toad Conservation Biology of Freshwater Turtles and Tortoises: A Compilation ProjectChelidae of the IUCN/SSC — Mesoclemmys Tortoise and vanderhaegei Freshwater Turtle Specialist Group 083.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, J.B. Iverson, and R.A. Mittermeier, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.083.vanderhaegei.v1.2014 © 2014 by Chelonian Research Foundation • Published 27 December 2014 Mesoclemmys vanderhaegei (Bour 1973) – Vanderhaege’s Toad-headed Turtle, Karumbé-hy THIAGO S. MARQUES1, STEPHAN BÖHM2, ELIZÂNGELA S. BRITO3, MARIO R. CABRERA4, AND LUCIANO M. VERDADE1 1Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, C.P. 96, 13416-000, Piracicaba, São Paulo, Brazil [[email protected]; [email protected]]; 2Johannagasse 18/16, 1050 Wien, Austria [[email protected]]; 3Programa de Pós-graduação em Biologia de Água Doce e Pesca Interior (BADPI), Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo 2936, 69067-375 Manaus, Amazonas, Brazil [[email protected]]; 4Museo de Zoología and Instituto de Diversidad y Ecología Animal (CONICET/UNC), Universidad Nacional de Córdoba, Vélez Sarsfield 299, (5000) Córdoba, Argentina [[email protected]] SUmmARY. – Vanderhaege’s Toad-headed Turtle, Mesoclemmys vanderhaegei (Family Chelidae), is a poorly known freshwater turtle that is widely distributed in central South America. It occurs in the Amazonas, Tocantins, Paraguay, Parana, and Uruguay River basins, where it inhabits shallow streams, ponds, and marshes. Its taxonomic status has long been uncertain and confusion with similar looking species of toad-headed turtles still occurs frequently, leading to erroneous distribution records. Adults can reach up to 285 mm straight carapace length. No subspecies are currently recognized, although there are obvious differences in shell, iris coloration, and body size among populations. The species seems to rely mainly on a carnivorous or opportunistic omnivorous diet. Females are capable of depositing more than one clutch per year with a mean clutch size of 6.4 ± 3.9 eggs. Due to its great ecological adaptability, the species occurs in pristine habitats as well as agricultural and urban areas, but with a cryptic lifestyle. There is little known about its basic ecology except for local studies in Brazil, but detailed ecological surveys in Paraguay and Argentina are lacking. The current population status cannot be fully determined. DIstRIBUTION. – Argentina, Bolivia, Brazil, Paraguay. Occurs in portions of the Amazonas, Tocantins, Paraguay, Parana, and Uruguay drainage basins, and in montane streams of Santa Cruz in Bolivia. SYNONYMY. – Phrynops schöpfii Fitzinger in Diesing 1839 (nomen nudum), Phrynops schoepffii Fitzinger in Siebenrock 1904 (nomen nudum, partim), Phrynops paraguayensis Vanzolini in Donoso-Barros 1965 (nomen nudum), Phrynops tuberculatus vanderhaegei Bour 1973; Phrynops (Batrachemys) vanderhaegei, Phrynops vanderhaegei, Batrachemys vanderhaegei, Bufocephala vanderhaegei, Mesoclemmys vanderhaegei. SUBSPECIES. – None recognized. STATUS. – IUCN 2014 Red List: Lower Risk/Near Threatened (NT, assessed 1996, needs updating); TFTSG Draft 2012: Near Threatened or Data Deficient; CITES: not listed; Brazil: not listed; São Paulo state: Insufficient data; Argentina: Data deficient. Taxonomy. — Since the species’ description as more specimens and confirmed Pritchard’s (1979) elevation Phrynops tuberculatus vanderhaegei (Bour 1973), there of the taxon by assigning it full specific rank asPhrynops has been debate (e.g., McDiarmid and Foster 1987) about vanderhaegei (Bour 1973). Furthermore, they restricted the specific rank of the taxon and its strong similarity the type locality to Tobati, La Cordillera, Paraguay. to the Amazonian Gibba Turtle Mesoclemmys gibba Due to the lack of clear morphological affinity to any (Schweigger 1812) and the Tuberculated Toad-headed of their newly elevated genera of Phrynops, Mesoclemmys, Turtle, Mesoclemmys tuberculata (Luederwaldt 1926). or Batrachemys, McCord et al. (2001) placed the species in When first describing the species, Bour (1973) designated the new monotypic genus Bufocephala. By describing the a living male (without number) as the holotype from the morphologically intermediate Mesoclemmys perplexa from vague type locality of “probably the surroundings of central-eastern Brazil, Bour and Zaher (2005) proposed a Asuncion in Paraguay.” Bour and Pauler (1987) provided more cautious approach by including B. vanderhaegei (sensu clear morphological diagnostic characters between M. McCord et al. 2001) into the genus Mesoclemmys Gray tuberculata, M. gibba, and M. vanderhaegei by including 1873. This solution is currently accepted, but further studies 083.2 Conservation Biology of Freshwater Turtles and Tortoises • Chelonian Research Monographs, No. 5 Figure 1. Mesoclemmys vanderhaegei from Cáceres, Mato Grosso, Brazil. Photo by Elizângela S. Brito. on the phylogeny of the toad-headed turtles based on both dark brown to black with a yellow halo at the margins. The phenotypic and genetic characters should be prioritized. intergular scute clearly separates the gulars, but not the Description. — Mesoclemmys vanderhaegei is a humerals. In juveniles, the plastron is entirely black. medium-sized chelid turtle with an overall flat shell shape, Dorsal head coloration is gray, while the ventral body webbed feet, and wide head. Males can reach up to 285 mm and head parts, including the jaws, are of cream-like color. straight carapace length (CL), while the largest known female Sometimes an extent of dark mottling can occur along the is 280 mm CL (Métrailler 2005a). However, average sizes in upper and lower jaws as well as on the gular area, which is populations are often significantly smaller, with a population more often the case in juveniles. Contrary to the statement in central Brazil (females 168 ± 16 mm CL, males 139 ± 18 of McCord et al. (2001), there is not always a horizontal bar mm, n = 80; Brito et al. 2009a) and one in southeastern Brazil present in the iris. For comparison see Vetter (2005); this (females 203 ± 27 mm, males 171 ± 20 mm, n = 31; Marques trait cannot be assigned to single separate populations. Two et al. 2013) showing variation in body size. small barbels are present on the chin. Complete osteological descriptions of the skull and shell Sexual dimorphism is present in all populations, where of the species are given by Bour and Pauler (1987) and Cabrera males are distinguished from females by their longer tails (1998), who analyzed the morphological distinctiveness in and smaller anal notch, in addition to their usually smaller toad-headed turtles. The carapace is uniformly dark brown body size. Brito et al. (2009a) and Marques et al. (2013) to black, mildly domed and ellipsoid; sometimes a median groove is present in adults. The carapace is broadest across the 8th marginals and deepest at the 3rd vertebral. Vertebrals are broader than long. The plastron of adults shows great variation in black pigmentation and can be uniformly yellow to nearly entirely Figure 3. Mesoclemmys vanderhaegei from Cáceres, Mato Grosso, Figure 2. Mesoclemmys vanderhaegei from Angatuba, São Paulo, Brazil (top) and Angatuba, São Paulo, Brazil (bottom). Photos by Brazil. Photos by Thiago S. Marques. Elizângela S. Brito (top) and Thiago S. Marques (bottom). Chelidae — Mesoclemmys vanderhaegei 083.3 Figure 4. Distribution of Mesoclemmys vanderhaegei in Brazil, Bolivia, Paraguay, and Argentina in central South America. Purple lines = boundaries delimiting major watersheds (level 3 hydrologic unit compartments – HUCs); red dots = museum and literature occurrence records of native populations based on Iverson (1992) plus more recent and authors’ data; green shading = projected native distribution based on GIS-defined HUCs constructed around verified localities and then adding HUCs that connect known point localities in the same watershed or physiographic region, and similar habitats and elevations as verified HUCs (Buhlmann et al. 2009; TTWG 2014), and adjusted based on authors’ subsequent data. reported striking differences in body size between sexes in M. vanderhaegei, 232.5 mm maximum in M. gibba) and and populations. slightly broader head. Mesoclemmys tuberculata has an No morphological description of hatchlings are available even broader head, which sometimes shows a mottled dorsal in the literature, but some hatchlings have been collected in pattern. Additionally, flavism seems to be more frequent inM. different regions. Souza et al. (2000) captured two hatchlings tuberculata. Mesoclemmys gibba and M. tuberculata never (39.2 mm CL, 16.4 g mass; and 41.9 mm CL, 16.0 g mass) have horizontal black bars in their iris, and M. vanderhaegei in Itirapina Ecological Station in São Paulo state, Brazil. can also be distinguished from other toad-headed turtles by No subspecies are currently recognized, and M. its pugnacious behavior when handled. vanderhaegei is sometimes difficult to differentiate from Distribution. — Mesoclemmys vanderhaegei has a M. gibba and M. tuberculata due to their morphological wide geographic distribution in South America, including similarity. However, M. vanderhaegei is usually distinguished the Amazonas, Tocantins, Paraguay, Parana, and Uruguay from M. gibba by its greater CL in adults (285 mm maximum river basins, usually associated with open formations (Souza 2005). It inhabits water
Recommended publications
  • Geographic Variation in the Matamata Turtle, Chelus Fimbriatus, with Observations on Its Shell Morphology and Morphometry
    n*entilkilt ilil Biok,gr', 1995. l(-l):19: 1995 by CheloninD Research Foundltion Geographic Variation in the Matamata Turtle, Chelus fimbriatus, with Observations on its Shell Morphology and Morphometry MlncBLo R. SANcnnz-Vu,urcnAr, PnrER C.H. PnrrcHARD:, ArrnEro P.rorrLLo-r, aNn Onan J. LINlnBs3 tDepartment of Biological Anthropolog-,- and Anatomy, Duke lJniversin' Medical Cetter. Box 3170, Dtu'hcun, North Carolina277l0 USA IFat 919-684-8034]; 2Florida Audubotr Societ-t, 460 High,n;a,- 436, Suite 200, Casselberry, Florida 32707 USA: iDepartanento de Esttdios Anbientales, llniyersitlad Sinzrin Bolltnt", Caracas ]O80-A, APDO 89OOO l/enerte\a Ansrucr. - A sample of 126 specimens of Chelusftmbriatus was examined for geographic variation and morphology of the shell. A high degree of variation was found in the plastral formula and in the shape and size of the intergular scute. This study suggests that the Amazon population of matamatas is different from the Orinoco population in the following characters: shape ofthe carapace, plastral pigmentation, and coloration on the underside of the neck. Additionatly, a preliminary analysis indicates that the two populations could be separated on the basis of the allometric growth of the carapace in relation to the plastron. Kry Wonus. - Reptilia; Testudinesl Chelidae; Chelus fimbriatus; turtle; geographic variationl allometryl sexual dimorphism; morphology; morphometryl osteology; South America 'Ihe matamata turtle (Chelus fimbricttus) inhabits the scute morpholo..ey. Measured characters (in all cases straight- Amazon, Oyapoque. Essequibo. and Orinoco river systems line) were: maximum carapace len.-uth (CL). cArapace width of northern South America (Iverson. 1986). Despite a mod- at the ler,'el of the sixth marginal scute (CW).
    [Show full text]
  • First Report of Neopolystoma Price, 1939 (Monogenea: Polystomatidae) with the Description of Three New Species Louis H
    Du Preez et al. Parasites & Vectors (2017) 10:53 DOI 10.1186/s13071-017-1986-y RESEARCH Open Access Tracking platyhelminth parasite diversity from freshwater turtles in French Guiana: First report of Neopolystoma Price, 1939 (Monogenea: Polystomatidae) with the description of three new species Louis H. Du Preez1,2*, Mathieu Badets1, Laurent Héritier1,3,4 and Olivier Verneau1,3,4 Abstract Background: Polystomatid flatworms in chelonians are divided into three genera, i.e. Polystomoides Ward, 1917, Polystomoidella Price, 1939 and Neopolystoma Price, 1939, according to the number of haptoral hooks. Among the about 55 polystome species that are known to date from the 327 modern living chelonians, only four species of Polystomoides are currently recognised within the 45 South American freshwater turtles. Methods: During 2012, several sites in the vicinity of the cities Cayenne and Kaw in French Guiana were investigated for freshwater turtles. Turtles were collected at six sites and the presence of polystomatid flatworms was assessed from the presence of polystome eggs released by infected specimens. Results: Among the three turtle species that were collected, no polystomes were found in the gibba turtle Mesoclemmys gibba (Schweigger, 1812). The spot-legged turtle Rhinoclemmys punctularia (Daudin, 1801) was infected with two species of Neopolystoma Price, 1939, one in the conjunctival sacs and the other in the urinary bladder, while the scorpion mud turtle Kinosternon scorpioides (Linnaeus, 1766) was found to be infected with a single Neopolystoma species in the conjunctival sacs. These parasites could be distinguished from known species of Neopolystoma by a combination of morphological characteristics including body size, number and length of genital spines, shape and size of the testis.
    [Show full text]
  • Buhlmann Etal 2009.Pdf
    Chelonian Conservation and Biology, 2009, 8(2): 116–149 g 2009 Chelonian Research Foundation A Global Analysis of Tortoise and Freshwater Turtle Distributions with Identification of Priority Conservation Areas 1 2 3 KURT A. BUHLMANN ,THOMAS S.B. AKRE ,JOHN B. IVERSON , 1,4 5 6 DENO KARAPATAKIS ,RUSSELL A. MITTERMEIER ,ARTHUR GEORGES , 7 5 1 ANDERS G.J. RHODIN ,PETER PAUL VAN DIJK , AND J. WHITFIELD GIBBONS 1University of Georgia, Savannah River Ecology Laboratory, Drawer E, Aiken, South Carolina 29802 USA [[email protected]; [email protected]]; 2Department of Biological and Environmental Sciences, Longwood University, 201 High Street, Farmville, Virginia 23909 USA [[email protected]]; 3Department of Biology, Earlham College, Richmond, Indiana 47374 USA [[email protected]]; 4Savannah River National Laboratory, Savannah River Site, Building 773-42A, Aiken, South Carolina 29802 USA [[email protected]]; 5Conservation International, 2011 Crystal Drive, Suite 500, Arlington, Virginia 22202 USA [[email protected]; [email protected]]; 6Institute for Applied Ecology Research Group, University of Canberra, Australian Capitol Territory 2601, Canberra, Australia [[email protected]]; 7Chelonian Research Foundation, 168 Goodrich Street, Lunenburg, Massachusetts 01462 USA [[email protected]] ABSTRACT. – There are currently ca. 317 recognized species of turtles and tortoises in the world. Of those that have been assessed on the IUCN Red List, 63% are considered threatened, and 10% are critically endangered, with ca. 42% of all known turtle species threatened. Without directed strategic conservation planning, a significant portion of turtle diversity could be lost over the next century. Toward that conservation effort, we compiled museum and literature occurrence records for all of the world’s tortoises and freshwater turtle species to determine their distributions and identify priority regions for conservation.
    [Show full text]
  • Demographic Consequences of Superabundance in Krefft's River
    i The comparative ecology of Krefft’s River Turtle Emydura krefftii in Tropical North Queensland. By Dane F. Trembath B.Sc. (Zoology) Applied Ecology Research Group University of Canberra ACT, 2601 Australia A thesis submitted in fulfilment of the requirements of the degree of Masters of Applied Science (Resource Management). August 2005. ii Abstract An ecological study was undertaken on four populations of Krefft’s River Turtle Emydura krefftii inhabiting the Townsville Area of Tropical North Queensland. Two sites were located in the Ross River, which runs through the urban areas of Townsville, and two sites were in rural areas at Alligator Creek and Stuart Creek (known as the Townsville Creeks). Earlier studies of the populations in Ross River had determined that the turtles existed at an exceptionally high density, that is, they were superabundant, and so the Townsville Creek sites were chosen as low abundance sites for comparison. The first aim of this study was to determine if there had been any demographic consequences caused by the abundance of turtle populations of the Ross River. Secondly, the project aimed to determine if the impoundments in the Ross River had affected the freshwater turtle fauna. Specifically this study aimed to determine if there were any difference between the growth, size at maturity, sexual dimorphism, size distribution, and diet of Emydura krefftii inhabiting two very different populations. A mark-recapture program estimated the turtle population sizes at between 490 and 5350 turtles per hectare. Most populations exhibited a predominant female sex-bias over the sampling period. Growth rates were rapid in juveniles but slowed once sexual maturity was attained; in males, growth basically stopped at maturity, but in females, growth continued post-maturity, although at a slower rate.
    [Show full text]
  • New Records of Mesoclemmys Raniceps (Testudines, Chelidae) for the States of Amazonas, Pará and Rondônia, North Brazil, Including the Tocantins Basin
    Herpetology Notes, volume 12: 283-289 (2019) (published online on 18 February 2019) New records of Mesoclemmys raniceps (Testudines, Chelidae) for the states of Amazonas, Pará and Rondônia, North Brazil, including the Tocantins basin Elizângela Silva Brito1,*, Rafael Martins Valadão2, Fábio Andrew G. Cunha3, Cristiane Gomes de Araújo4, Patrik F. Viana5, and Izaias Fernandes Médice6 Of the 58 species of living Chelidae (Rhodin et al., Among the rare species of the genus, Mesoclemmys 2017), 20 are known from Brazil (Costa and Bérnils, raniceps (Gray, 1856), a medium-sized freshwater turtle 2018). Of these, nine occur in the Amazon basin, (approximately 330 mm carapace length - CL; Rueda- including species of the genera Chelus, Mesoclemmys, Almonacid et al., 2007), inhabits streams and flooded Platemys, Phrynops and Rhinemys (Ferrara et al., 2017). forest, but can also be found in rivers, shallow lakes and The genus Mesoclemmys is the most diverse in Brazil, temporary pools in the forest (Vogt, 2008; Ferrara et and five of the eight species of Mesoclemmys in Brazil al., 2017). Mesoclemmys raniceps is relatively easy to occur within the Amazon basin (Souza, 2005; Ferrara identify, especially as an adult. Specimens of this species et al., 2017). Species of genus Mesoclemmys are rare have a large broad head, which is approximately one and inconspicuous when compared to other freshwater quarter of the length of the CL (head width between 23- turtles, and live in hard-to-reach places, to extent that 27%). The head is dark, but may show depigmentation in populations are rarely studied. This genus represents adults, resulting in a lighter color, generally in patches, the least studied among Amazonian turtles (Vogt, 2008; as shown in Figure 2 (af).
    [Show full text]
  • Morphological Variation in the Brazilian Radiated Swamp Turtle Acanthochelys Radiolata (Mikan, 1820) (Testudines: Chelidae)
    Zootaxa 4105 (1): 045–064 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4105.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:DD15BE49-9A20-454E-A1FF-9E650C2A5A84 Morphological variation in the Brazilian Radiated Swamp Turtle Acanthochelys radiolata (Mikan, 1820) (Testudines: Chelidae) RAFAELLA C. GARBIN1,4,5, DEBORAH T. KARLGUTH2, DANIEL S. FERNANDES2,4, ROBERTA R. PINTO3,4 1Département de Géosciences, Université de Fribourg, Fribourg, 1700, Switzerland 2Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil 3Universidade Católica de Pernambuco, Rua do Príncipe 526, Boa Vista, Recife, PE, 50050-900, Brazil 4Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, Rio de Janeiro, RJ, 20940-40, Brazil 5Corresponding author. E-mail: [email protected] Abstract The freshwater turtle Acanthochelys radiolata (Mikan, 1820) is endemic to the Atlantic Forest domain in Brazil and few studies have been done on the morphology, geographic variation and taxonomy of this species. In this paper we record the morphological variation, as well as sexual dimorphism and ontogenetic changes in A. radiolata throughout its distribution range. We analyzed 118 morphological characters from 41 specimens, both quantitative and qualitative, and performed statistical analyses to evaluate size and shape variation within our sample. Morphological analysis revealed that A. radi- olata is a polymorphic species, especially regarding color and shape. Two color patterns were recognized for the carapace and three for the plastron.
    [Show full text]
  • Register 2 0
    © T E R R A R I S T I K - F A C H M A G A Z I N R E G I S T E R 2 0 1 0 1 REPTILIA-Register 2010 Terrarienpraxis 85, Oktober/November, 15(5): 38–45. BIRTEL, Andreas (2010): Ein Gewächshaus für Grüne Leguane und Pan- GEHRING, Philip-Sebastian, Maciej PABIJAN, Fanomezana M. RATSOAVI- therchamäleons. – Nr. 84, August/September 2010, 15(4): 44–45. NA, Jörn KÖHLER, Konrad MEBERT & Frank GLAW (2010): Calum- BRAUN, Sandra (2010): Bau eines naturnahen Schauterrariums für ein ma tarzan. Eine neue Chamäleonart aus Madaskar braucht dringend Jemenchamäleon. – Nr. 84, August/September 2010, 15(4): 40–43. Hilfe! – Nr. 86, Dezember 2010/Januar 2011, 15(6): 60–64. FRÖMBERG, Carsten (2010): Gestaltung von Verstecken unter Nutzung GUTSCHE, Alexander (2010): Mehrere Amphibien- und Reptilienarten von Latex-Bindemittel. – Nr. 84, August/September 2010, 15(4): neu in das Washingtoner Artenschutzabkommen (CITES) aufge- 36–38. nommen. – Nr. 83, Juni/Juli 2010, 15(3): 3–8. LONGHITANO, Filip (2010): Vorteile der Rackhaltung. – Nr. 84, August/ JACHAN, Georg (2010): Pfl ege und Vermehrung der Usambara-Busch- September 2010, 15(4): 34–35. viper Atheris ceratophora. – Nr. 83, Juni/Juli 2010, 15(3): 58–68. SCHLÜTER, Uwe (2010): Ernährung nord- und westafrikanischer Wara- KOCH, André (2010): Bestialische Behandlung indonesischer Großrep- ne in der Natur und bei Terrarienhaltung. – Nr. 86, Dezember 2010/ tilien für westliche Luxusprodukte. – Nr. 86, Dezember 2010/Januar Januar 2011, 15(6): 36–45. 2011, 15(6): 3–6. SCHMIDT, Dieter (2010): Naturterrarium oder Heimtierkäfi g? – Nr. 84, KOCH, Claudia (2010): Geheimnisvolles Peru.
    [Show full text]
  • Check List 8(2): 294-297, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (Available at Journal of Species Lists and Distribution
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ZENODO Check List 8(2): 294-297, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution N New records and distribution extensions of three species of Mesoclemmys Gray, 1863 (Testudines: Chelidae) in ISTRIBUTIO Mato Grosso state, Brazil, with observations on terrestrial D movements RAPHIC G EO Elizângela Silva de Brito 1*, Christine Strüssmann 2,3, Ricardo Alexandre Kawashita-Ribeiro 3, Drausio G N Honório Morais 4, Robson Waldemar Ávila 5 and Vitor Azarias Campos 3 O OTES 1 Programa de Pós-Graduação em Biologia de Água Doce e Pesca Interior, Instituto Nacional de Pesquisas da Amazônia. Av. André Araújo, n. 2936, N Aleixo. CEP 69060-001. Manaus, AM, Brazil. 2 Departamento de Ciências Básicas e Produção Animal, Faculdade de Agronomia, Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso. Av. Fernando Correia da Costa, n. 2367, Boa Esperança. CEP 78060-900. Cuiabá, MT, Brazil. 3 Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Instituto de Biociências. Av. Fernando Correia da Costa, n. 2367, Boa Esperança. CEP 78060-900. Cuiabá, MT, Brazil. 4 Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Botucatu, Instituto de Biociências, Departamento de Parasitologia. Distrito de Rubião, Caixa Postal 510. CEP 18618-000. Botucatu, SP, Brazil. 5 Universidade Regional do Cariri, Campus do Pimenta, Centro de Ciências Biológicas e da Saúde, Departamento de Ciências Biológicas, Rua Cel. Antonio Luiz, 1161, Bairro do Pimenta.
    [Show full text]
  • Recent Evolutionary History of the Australian Freshwater Turtles Chelodina Expansa and Chelodina Longicollis
    Recent evolutionary history of the Australian freshwater turtles Chelodina expansa and Chelodina longicollis. by Kate Meredith Hodges B.Sc. (Hons) ANU, 2004 A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy School of Biological Sciences Department of Genetics and Evolution The University of Adelaide December, 2015 Kate Hodges with Chelodina (Macrochelodina) expansa from upper River Murray. Photo by David Thorpe, Border Mail. i Declaration I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.
    [Show full text]
  • Geographical Distribution Patterns of South American Side-Necked Turtles (Chelidae), with Emphasis on Brazilian Species
    Rev. Esp. Herp. (2005) 19:33-46 Geographical distribution patterns of South American side-necked turtles (Chelidae), with emphasis on Brazilian species FRANCO LEANDRO SOUZA Universidade Federal de Mato Grosso do Sul, Centro de Ciências Biológicas e da Saúde, Departamento de Biologia, 79070-900 Campo Grande, MS, Brazil (e-mail: [email protected]) Abstract: The Chelidae (side-necked turtles) are the richest and most widespread turtle family in South America with endemic patterns at the species level related to water basins. Based on available literature records, the geographic distribution of the 22 recognized chelid species from South America was examined in relation to water basins and for the 19 Brazilian species also in light of climate and habitat characteristics. Species-distribution maps were used to identify species richness in a given area. Parsimony analysis of endemicity (PAE) was employed to verify the species-areas similarities and relationships among the species. For Brazilian species, annual rainfall in each water basin explained 81% of variation in turtle distribution and at a regional scale (country-wide) temperature also influenced their distribution. While rainfall had a significant positive relationship with species number in a given area, a negative but non-significant relationship was identified for temperature. Excepting an unresolved clade formed by some northern water basins, well-defined northern-northeastern and central-south groups (as identified for water basins) as well as biome differentiation give support to a hypothesis of a freshwater turtle fauna regionalization. Also, a more general biogeographical pattern is evidenced by those Brazilian species living in open or closed formations.
    [Show full text]
  • Hatchling Morphology of the Tuberculate Toadhead Turtle (Mesoclemmys Tuberculata [Lüederwaldt, 1926]) from Northeastern Brazil (Testudines: Chelidae)
    Herpetology Notes, volume 8: 407-410 (2015) (published online on 12 August 2015) Hatchling morphology of the Tuberculate Toadhead Turtle (Mesoclemmys tuberculata [Lüederwaldt, 1926]) from northeastern Brazil (Testudines: Chelidae) Daniel Oliveira Santana1,*, Thiago Simon Marques2, Gustavo Henrique Calazans Vieira1, Renato Gomes Faria3 and Daniel Oliveira Mesquita1 The tuberculate toad-headed turtle, Mesoclemmys and Molina, 2004), but there are no descriptions of the tuberculata (Lüederwaldt, 1926), is a Neotropical hatchlings in the literature. Therefore, the objective of freshwater turtle endemic to Brazil (Bérnils and Costa, this study was to describe the morphology and color 2012) which is widely distributed in the Northeast region, pattern of a wild hatchling of M. tuberculata from the ranging from the inland northeastern semi-arid region in Atlantic Forest Region in northeastern Brazil. the Parnaíba river to the Atlantic-Northeastern Orient During an investigation about the ecology of freshwater and São Francisco basin (Souza, 2005). This species has turtles in northeastern Brazil, we hand-captured one been recorded in areas of Caatinga and Atlantic Forest hatchling of M. tuberculata on 30 July 2014, close to (Souza, 2005; Batistella et al., 2008; Santos et al., 2008; a pond (Figure 1) in the buffer zone of the Serra de Loebmann and Haddad, 2010; Morato et al., 2011; Itabaiana National Park, Itabaiana municipality, Sergipe Loebmann et al., 2006), and recently was also recorded State, Brazil (S 10º44.287’, W 037º23.189’, 250 m in the Cerrado biome, in the north of Minas Gerais State, a.s.l.). We used a digital caliper (precision of 0.01 mm) Brazil (Silveira and Valinhas, 2010).
    [Show full text]
  • Acanthochelys Macrocephala (Rhodin, Mittermeier, and Mcmorris 1984) – Big-Headed Pantanal Swamp Turtle, Pantanal Swamp Turtle
    Conservation Biology of Freshwater Turtles and Tortoises: A Compilation ProjectChelidae of the IUCN/SSC — Acanthochelys Tortoise and macrocephala Freshwater Turtle Specialist Group 040.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, J.B. Iverson, and R.A. Mittermeier, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.040.macrocephala.v1.2009 © 2009 by Chelonian Research Foundation • Published 9 December 2009 Acanthochelys macrocephala (Rhodin, Mittermeier, and McMorris 1984) – Big-Headed Pantanal Swamp Turtle, Pantanal Swamp Turtle ANDERS G.J. RHODIN 1, SÉB A STIEN MÉTR A ILLER 2, THO ma S VINKE 3, SA BINE VINKE 3, HA R A LD ARTNER 4, A ND RUSSELL A. MITTER M EIER 5 1Chelonian Research Foundation, 168 Goodrich St., Lunenburg, Massachusetts 01462 USA [[email protected]]; 2Chemin du Bosquet 6, CH-1967 Bramois, Switzerland [[email protected]]; 3Filadelfia 853, 9300 Fernheim, Paraguay [[email protected]]; 4Maria Ponsee 32, 3454 Reidling, Austria [[email protected]]; 5Conservation International, 2011 Crystal Drive, Suite 500, Arlington, Virginia 22202 USA [[email protected]] SU mma RY . – The big-headed Pantanal swamp turtle, Acanthochelys macrocephala (Family Che- lidae), is a medium-sized aquatic turtle (carapace length to 295 mm), endemic to the Pantanal and Chaco ecoregions of Brazil, Bolivia, and northern Paraguay. It has a limited distribution in the upper Río Paraguai drainage and is apparently restricted to the swampy lowlands of the Pantanal and the arid plains of the northern Chaco. The species inhabits marshes, wetland areas, shallow bays and brackish lagoons (salinas), as well as opportunistically utilizing ephemeral waterbodies, including roadside drainage ditches and farm irrigation reservoirs and artificial ponds in pasturelands taja( - mares).
    [Show full text]