*RBT49.3/Mccord/A Taxon/AF

Total Page:16

File Type:pdf, Size:1020Kb

*RBT49.3/Mccord/A Taxon/AF Rev. Biol. Trop., 49(2): 715-764, 2001 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu ATaxonomic Reevaluation of Phrynops (Testudines: Chelidae) with the description of two new genera and a new species of Batrachemys. William P. McCord1, Mehdi Joseph-Ouni2 and William W. Lamar3 1 East Fishkill Animal Hospital, Hopewell Junction, New York 12533 USA; Fax: 845-221-2570; e-mail: [email protected] 2 EO Wildlife Conservation and Artistry; Brooklyn, New York 11228 USA; www.eoartistry.com; e-mail: [email protected] 3 College of Sciences, University of Texas at Tyler, 3900 University Blvd. Tyler, Texas, 75799, USA; Fax: 903-597- 5131; email:[email protected] Abstract: Relationships among turtle species loosely categorized within the South American genus Phrynops are explored. Three once recognized genera (Batrachemys, Mesoclemmys and Phrynops) that were demoted to sub- genera, and then synonymized with Phrynops, are demonstrated to warrant full recognition based on morphomet- ric analysis, skull osteology, and mitochondrial and nuclear gene sequencing. Mesoclemmys is resurrected from the synonymy of Phrynops as a monotypic genus including M. gibba. The genus Rhinemys, previously a synonym of Phrynops, is resurrected for the species R. rufipes. Ranacephala gen. nov. is described to include the species R. hogei. The genus Batrachemys is resurrected from the synonymy of Phrynops and includes B. dahli, B. nasuta, B. raniceps, B. tuberculata, and B. zuliae. The taxon vanderhaegei is placed in Bufocephala gen. nov. The genus Phrynops is redefined to include the taxa P. geoffroanus, P. hilarii, P. tuberosus, and P. williamsi. Cladistic analy- sis of morphological data supports this taxonomy. A new species of Batrachemys is described from the western Amazon region, and is distinguished by having facial markings in juveniles, a relatively wide head, and a flattened shell. The new species, B. heliostemma sp. nov., is sympatric with and most similar to the recently resurrected form Batrachemys raniceps in the upper Amazonian region of Peru and adjacent Brazil, Ecuador, Venezuela, and Colombia. Lastly, morphometric data from living and museum specimens of all species of Batrachemys are pre- sented. Key words: Turtles, Pleurodira, chelid, genera, South America, toadhead, Iquitos, systematics. “Turbulent” well describes the taxonomic We herein give a chronological account- history of the New World Pleurodira. Phrynops ing of the taxonomic history specifically of the (sensu lato) is a chelid genus endemic to South turtles listed under Phrynops (sensu lato). America that includes the toadheads, a group Starting with his monograph of the Testudines, of species whose inter-relationships have been Schweigger (1812) described the first three uncertain. With the exception of the Phrynops toadheads, Emys geoffroana, Emys nasuta and geoffroanus complex, most species are poorly Emys gibba. Noticing clear differences known, rare, or limited in distribution (Iverson, between the South American side-necked 1992). The toadheads (first defined by Gray, species in the genus Emys and their congeners, 1855, for the “Toad-Headed Hydraspis, H. the Australian side-necked turtles, Fitzinger raniceps sp. nov.”) have a sinuous and per- (1826), advised by Oppel, erected the new plexing history. Multiple synonyms and poorly genus Chelodina for the Australian forms, with recorded field data abound in the literature Emys longicollis of eastern Australia as the (i.e., Wermuth and Mertens 1977). generotype. 716 REVISTA DE BIOLOGÍA TROPICAL Apparently unaware of Fitzinger’s work, Wagler’s work, that genus name was used erro- Bell (1828) proposed the genus Hydraspis to neously (e.g., Siebenrock 1904, 1909; include all side-necked turtles. The generotype Luederwaldt 1926) for many of the South was also Testudo (Emys) longicollis, and it was American chelids, including the toadheads as diagnosed as having a depressed head and well as taxa currently assigned to Platemys and body; projecting nose and narrow nostrils; a Acanthochelys. Since Hydraspis was clearly a long and “extensile” neck; and an anteriorly junior synonym of Chelodina (same gen- broad first vertebral scute. erotype; Chelodina has precedence), Stejneger In 1830, Wagler described the monotypic (1909) again corrected the problem by syn- genus Phrynops for the Brazilian species Emys onymizing Hydraspis under Chelodina. geoffroana Schweigger (1812). He also creat- Like Boulenger, Stejneger (1909) also ed the genus Rhinemys to subsume four other observed that Schweigger’s (1812) Emys species then assigned to Emys: E. rufipes Spix nasuta was distinct from the species then (1824), E. gibba Schweigger (1812), E. nasuta included in Phrynops. Since E. rufipes was Schweigger (1812) and E. radiolata Mikan the generotype for Rhinemys, and Rhinemys (1820). had been synonymized with Phrynops by Realizing that Wagler had not designated Gray (1844), E. nasuta required a new nomi- a generotype for Rhinemys, Fitzinger (1843) nal genus. Thus, Stejneger (1909) proposed specifically chose the species E. rufipes as the the genus Batrachemys with B. nasuta as the type. Emys rufipes Spix (1824) was not the generotype, although he provided no descrip- oldest species in the genus Rhinemys, being tive characteristics. preceded by E. nasuta Schweigger (1812:298) Stejneger’s (1909) revision was apparent- and E. gibba Schweigger (1812:299). But, as ly unavailable to Siebenrock (1909), who still “first reviewer,” Fitzinger had the right to recognized Hydraspis as the genus for South choose whichever of Wagler’s four Rhinemys American toadheads of the Phrynops geof- species he deemed appropriate. It is possible froanus complex (P. geoffroanus, P. tuberosus, that his decision was based on the fact that E. P. rufipes and P. wagleri) and used the generic rufipes has the most prominent nose of the designation of Rhinemys for the Batrachemys toadheads then being considered (Rhinemys nasuta complex (at that time, using specimens translates to “nose-turtle”). of “R. nasuta” from Suriname to Bolivia and Gray (1844) believed that R. rufipes and various localities of the upper Amazon region). P. geoffroyana (=P. geoffroanus) were con- By the mid-twentieth century, the three generic. Since international nomenclatorial genera – Batrachemys, Phrynops and rules permit the first reviser to select the valid Mesoclemmys, were still in use. The monotyp- genus in the case of two generic names pro- ic genus Mesoclemmys held M. gibba; posed on the same date, despite the fact that Phrynops included P. geoffroanus geoffroanus, Rhinemys appeared prior to Phrynops (Wagler P. g. tuberosus, P. g. hilarii and P. rufipes; and 1830: 134 vs. 135) in the same publication, Batrachemys included B. nasuta, B. tubercula- Gray synonymized Rhinemys under Phrynops. ta and B. dahli (Wermuth and Mertens, 1961; Further examination of toadheads by Gray Pritchard, 1967). (1873a) led him to describe the monotypic In their description of a new toadhead genus Mesoclemmys for the species Rhinemys from Bolívar, Colombia, Zangerl and Medem gibba. This genus was considered valid until (1958) questioned the need for three genera of assigned subgeneric status by Zangerl and toadheads. They suggested that the traits sup- Medem (1958). posedly diagnostic of the three genera were in Subsequent to Bell’s (1828) description of fact substantial enough only for subgeneric Hydraspis, during the nineteenth and twentieth division under the priority (oldest) name centuries, and despite both Gray’s and Phrynops (see also Lescure and Fretey 1975). INTERNATIONAL JOURNAL OF TROPICAL BIOLOGY AND CONSERVATION 717 Their decision was based heavily on the relationships (but see Shaffer et al. 1997, and unpublished work of Williams and Vanzolini. Gaffney and Meylan 1988, for other details on Bour (1973; see also Bour and Pauler, chelid phylogeny). Wermuth and Mertens 1987) considered the subgenera so poorly (1977) expressed concern regarding the recog- diagnosed as to warrant full synonymy under nition of subgenera within Phrynops, noting the Phrynops, an arrangement followed by unstable subgeneric differences, such as the Vanzolini et al.. (1980) and Rhodin et al.. variable neural bone arrangements. (1982). Ernst and Barbour (1989) mentioned Although inconclusive, the monophyly of the subgenera, but followed Bour (1973) in not the genus Phrynops (sensu lato) seemed to be recognizing them. However, some authors supported by the “early” genetic data of Frair (e.g., Winokur and Legler 1974; Freiberg (1980, 1982) and Reed et al. (1991). Using mito- 1975; Albrecht 1976; Gaffney 1979; Winokur chondrial DNA sequencing, morphological and 1982; Lema 1994; and Cabrera 1998) retained paleontological approaches, Schaffer et al. Batrachemys as a full genus in their works. (1997) provided hypotheses of chelonian phy- Pritchard (1967, 1979) and Pritchard and logeny that show both the family Chelidae and Trebbau (1984) recognized the three contro- the genus Phrynops (sensu lato) to be mono- versial subgenera. They diagnosed the sub- phyletic. However, in an effort to resolve the genus Mesoclemmys largely on morphological conflicting taxonomic proposals, Seddon et al. characters: small chin barbels (=barbels); the (1997) sequenced 411 mitochondrial 12S rRNA presence of zero to five often discontiguous nucleotides of 16 representative species within neural bones, never contacting the nuchal the 11 recognized chelid genera. Analysis using (proneural) bone; less than thirty cm in shell parsimony and neighbor-joining algorithms length;
Recommended publications
  • Competing Generic Concepts for Blanding's, Pacific and European
    Zootaxa 2791: 41–53 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Competing generic concepts for Blanding’s, Pacific and European pond turtles (Emydoidea, Actinemys and Emys)—Which is best? UWE FRITZ1,3, CHRISTIAN SCHMIDT1 & CARL H. ERNST2 1Museum of Zoology, Senckenberg Dresden, A. B. Meyer Building, D-01109 Dresden, Germany 2Division of Amphibians and Reptiles, MRC 162, Smithsonian Institution, P.O. Box 37012, Washington, D.C. 20013-7012, USA 3Corresponding author. E-mail: [email protected] Abstract We review competing taxonomic classifications and hypotheses for the phylogeny of emydine turtles. The formerly rec- ognized genus Clemmys sensu lato clearly is paraphyletic. Two of its former species, now Glyptemys insculpta and G. muhlenbergii, constitute a well-supported basal clade within the Emydinae. However, the phylogenetic position of the oth- er two species traditionally placed in Clemmys remains controversial. Mitochondrial data suggest a clade embracing Actinemys (formerly Clemmys) marmorata, Emydoidea and Emys and as its sister either another clade (Clemmys guttata + Terrapene) or Terrapene alone. In contrast, nuclear genomic data yield conflicting results, depending on which genes are used. Either Clemmys guttata is revealed as sister to ((Emydoidea + Emys) + Actinemys) + Terrapene or Clemmys gut- tata is sister to Actinemys marmorata and these two species together are the sister group of (Emydoidea + Emys); Terra- pene appears then as sister to (Actinemys marmorata + Clemmys guttata) + (Emydoidea + Emys). The contradictory branching patterns depending from the selected loci are suggestive of lineage sorting problems. Ignoring the unclear phy- logenetic position of Actinemys marmorata, one recently proposed classification scheme placed Actinemys marmorata, Emydoidea blandingii, Emys orbicularis, and Emys trinacris in one genus (Emys), while another classification scheme treats Actinemys, Emydoidea, and Emys as distinct genera.
    [Show full text]
  • Geographic Variation in the Matamata Turtle, Chelus Fimbriatus, with Observations on Its Shell Morphology and Morphometry
    n*entilkilt ilil Biok,gr', 1995. l(-l):19: 1995 by CheloninD Research Foundltion Geographic Variation in the Matamata Turtle, Chelus fimbriatus, with Observations on its Shell Morphology and Morphometry MlncBLo R. SANcnnz-Vu,urcnAr, PnrER C.H. PnrrcHARD:, ArrnEro P.rorrLLo-r, aNn Onan J. LINlnBs3 tDepartment of Biological Anthropolog-,- and Anatomy, Duke lJniversin' Medical Cetter. Box 3170, Dtu'hcun, North Carolina277l0 USA IFat 919-684-8034]; 2Florida Audubotr Societ-t, 460 High,n;a,- 436, Suite 200, Casselberry, Florida 32707 USA: iDepartanento de Esttdios Anbientales, llniyersitlad Sinzrin Bolltnt", Caracas ]O80-A, APDO 89OOO l/enerte\a Ansrucr. - A sample of 126 specimens of Chelusftmbriatus was examined for geographic variation and morphology of the shell. A high degree of variation was found in the plastral formula and in the shape and size of the intergular scute. This study suggests that the Amazon population of matamatas is different from the Orinoco population in the following characters: shape ofthe carapace, plastral pigmentation, and coloration on the underside of the neck. Additionatly, a preliminary analysis indicates that the two populations could be separated on the basis of the allometric growth of the carapace in relation to the plastron. Kry Wonus. - Reptilia; Testudinesl Chelidae; Chelus fimbriatus; turtle; geographic variationl allometryl sexual dimorphism; morphology; morphometryl osteology; South America 'Ihe matamata turtle (Chelus fimbricttus) inhabits the scute morpholo..ey. Measured characters (in all cases straight- Amazon, Oyapoque. Essequibo. and Orinoco river systems line) were: maximum carapace len.-uth (CL). cArapace width of northern South America (Iverson. 1986). Despite a mod- at the ler,'el of the sixth marginal scute (CW).
    [Show full text]
  • First Report of Neopolystoma Price, 1939 (Monogenea: Polystomatidae) with the Description of Three New Species Louis H
    Du Preez et al. Parasites & Vectors (2017) 10:53 DOI 10.1186/s13071-017-1986-y RESEARCH Open Access Tracking platyhelminth parasite diversity from freshwater turtles in French Guiana: First report of Neopolystoma Price, 1939 (Monogenea: Polystomatidae) with the description of three new species Louis H. Du Preez1,2*, Mathieu Badets1, Laurent Héritier1,3,4 and Olivier Verneau1,3,4 Abstract Background: Polystomatid flatworms in chelonians are divided into three genera, i.e. Polystomoides Ward, 1917, Polystomoidella Price, 1939 and Neopolystoma Price, 1939, according to the number of haptoral hooks. Among the about 55 polystome species that are known to date from the 327 modern living chelonians, only four species of Polystomoides are currently recognised within the 45 South American freshwater turtles. Methods: During 2012, several sites in the vicinity of the cities Cayenne and Kaw in French Guiana were investigated for freshwater turtles. Turtles were collected at six sites and the presence of polystomatid flatworms was assessed from the presence of polystome eggs released by infected specimens. Results: Among the three turtle species that were collected, no polystomes were found in the gibba turtle Mesoclemmys gibba (Schweigger, 1812). The spot-legged turtle Rhinoclemmys punctularia (Daudin, 1801) was infected with two species of Neopolystoma Price, 1939, one in the conjunctival sacs and the other in the urinary bladder, while the scorpion mud turtle Kinosternon scorpioides (Linnaeus, 1766) was found to be infected with a single Neopolystoma species in the conjunctival sacs. These parasites could be distinguished from known species of Neopolystoma by a combination of morphological characteristics including body size, number and length of genital spines, shape and size of the testis.
    [Show full text]
  • Buhlmann Etal 2009.Pdf
    Chelonian Conservation and Biology, 2009, 8(2): 116–149 g 2009 Chelonian Research Foundation A Global Analysis of Tortoise and Freshwater Turtle Distributions with Identification of Priority Conservation Areas 1 2 3 KURT A. BUHLMANN ,THOMAS S.B. AKRE ,JOHN B. IVERSON , 1,4 5 6 DENO KARAPATAKIS ,RUSSELL A. MITTERMEIER ,ARTHUR GEORGES , 7 5 1 ANDERS G.J. RHODIN ,PETER PAUL VAN DIJK , AND J. WHITFIELD GIBBONS 1University of Georgia, Savannah River Ecology Laboratory, Drawer E, Aiken, South Carolina 29802 USA [[email protected]; [email protected]]; 2Department of Biological and Environmental Sciences, Longwood University, 201 High Street, Farmville, Virginia 23909 USA [[email protected]]; 3Department of Biology, Earlham College, Richmond, Indiana 47374 USA [[email protected]]; 4Savannah River National Laboratory, Savannah River Site, Building 773-42A, Aiken, South Carolina 29802 USA [[email protected]]; 5Conservation International, 2011 Crystal Drive, Suite 500, Arlington, Virginia 22202 USA [[email protected]; [email protected]]; 6Institute for Applied Ecology Research Group, University of Canberra, Australian Capitol Territory 2601, Canberra, Australia [[email protected]]; 7Chelonian Research Foundation, 168 Goodrich Street, Lunenburg, Massachusetts 01462 USA [[email protected]] ABSTRACT. – There are currently ca. 317 recognized species of turtles and tortoises in the world. Of those that have been assessed on the IUCN Red List, 63% are considered threatened, and 10% are critically endangered, with ca. 42% of all known turtle species threatened. Without directed strategic conservation planning, a significant portion of turtle diversity could be lost over the next century. Toward that conservation effort, we compiled museum and literature occurrence records for all of the world’s tortoises and freshwater turtle species to determine their distributions and identify priority regions for conservation.
    [Show full text]
  • Register 2 0
    © T E R R A R I S T I K - F A C H M A G A Z I N R E G I S T E R 2 0 1 0 1 REPTILIA-Register 2010 Terrarienpraxis 85, Oktober/November, 15(5): 38–45. BIRTEL, Andreas (2010): Ein Gewächshaus für Grüne Leguane und Pan- GEHRING, Philip-Sebastian, Maciej PABIJAN, Fanomezana M. RATSOAVI- therchamäleons. – Nr. 84, August/September 2010, 15(4): 44–45. NA, Jörn KÖHLER, Konrad MEBERT & Frank GLAW (2010): Calum- BRAUN, Sandra (2010): Bau eines naturnahen Schauterrariums für ein ma tarzan. Eine neue Chamäleonart aus Madaskar braucht dringend Jemenchamäleon. – Nr. 84, August/September 2010, 15(4): 40–43. Hilfe! – Nr. 86, Dezember 2010/Januar 2011, 15(6): 60–64. FRÖMBERG, Carsten (2010): Gestaltung von Verstecken unter Nutzung GUTSCHE, Alexander (2010): Mehrere Amphibien- und Reptilienarten von Latex-Bindemittel. – Nr. 84, August/September 2010, 15(4): neu in das Washingtoner Artenschutzabkommen (CITES) aufge- 36–38. nommen. – Nr. 83, Juni/Juli 2010, 15(3): 3–8. LONGHITANO, Filip (2010): Vorteile der Rackhaltung. – Nr. 84, August/ JACHAN, Georg (2010): Pfl ege und Vermehrung der Usambara-Busch- September 2010, 15(4): 34–35. viper Atheris ceratophora. – Nr. 83, Juni/Juli 2010, 15(3): 58–68. SCHLÜTER, Uwe (2010): Ernährung nord- und westafrikanischer Wara- KOCH, André (2010): Bestialische Behandlung indonesischer Großrep- ne in der Natur und bei Terrarienhaltung. – Nr. 86, Dezember 2010/ tilien für westliche Luxusprodukte. – Nr. 86, Dezember 2010/Januar Januar 2011, 15(6): 36–45. 2011, 15(6): 3–6. SCHMIDT, Dieter (2010): Naturterrarium oder Heimtierkäfi g? – Nr. 84, KOCH, Claudia (2010): Geheimnisvolles Peru.
    [Show full text]
  • Check List 8(2): 294-297, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (Available at Journal of Species Lists and Distribution
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ZENODO Check List 8(2): 294-297, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution N New records and distribution extensions of three species of Mesoclemmys Gray, 1863 (Testudines: Chelidae) in ISTRIBUTIO Mato Grosso state, Brazil, with observations on terrestrial D movements RAPHIC G EO Elizângela Silva de Brito 1*, Christine Strüssmann 2,3, Ricardo Alexandre Kawashita-Ribeiro 3, Drausio G N Honório Morais 4, Robson Waldemar Ávila 5 and Vitor Azarias Campos 3 O OTES 1 Programa de Pós-Graduação em Biologia de Água Doce e Pesca Interior, Instituto Nacional de Pesquisas da Amazônia. Av. André Araújo, n. 2936, N Aleixo. CEP 69060-001. Manaus, AM, Brazil. 2 Departamento de Ciências Básicas e Produção Animal, Faculdade de Agronomia, Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso. Av. Fernando Correia da Costa, n. 2367, Boa Esperança. CEP 78060-900. Cuiabá, MT, Brazil. 3 Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Instituto de Biociências. Av. Fernando Correia da Costa, n. 2367, Boa Esperança. CEP 78060-900. Cuiabá, MT, Brazil. 4 Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Botucatu, Instituto de Biociências, Departamento de Parasitologia. Distrito de Rubião, Caixa Postal 510. CEP 18618-000. Botucatu, SP, Brazil. 5 Universidade Regional do Cariri, Campus do Pimenta, Centro de Ciências Biológicas e da Saúde, Departamento de Ciências Biológicas, Rua Cel. Antonio Luiz, 1161, Bairro do Pimenta.
    [Show full text]
  • Recent Evolutionary History of the Australian Freshwater Turtles Chelodina Expansa and Chelodina Longicollis
    Recent evolutionary history of the Australian freshwater turtles Chelodina expansa and Chelodina longicollis. by Kate Meredith Hodges B.Sc. (Hons) ANU, 2004 A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy School of Biological Sciences Department of Genetics and Evolution The University of Adelaide December, 2015 Kate Hodges with Chelodina (Macrochelodina) expansa from upper River Murray. Photo by David Thorpe, Border Mail. i Declaration I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.
    [Show full text]
  • Geographical Distribution Patterns of South American Side-Necked Turtles (Chelidae), with Emphasis on Brazilian Species
    Rev. Esp. Herp. (2005) 19:33-46 Geographical distribution patterns of South American side-necked turtles (Chelidae), with emphasis on Brazilian species FRANCO LEANDRO SOUZA Universidade Federal de Mato Grosso do Sul, Centro de Ciências Biológicas e da Saúde, Departamento de Biologia, 79070-900 Campo Grande, MS, Brazil (e-mail: [email protected]) Abstract: The Chelidae (side-necked turtles) are the richest and most widespread turtle family in South America with endemic patterns at the species level related to water basins. Based on available literature records, the geographic distribution of the 22 recognized chelid species from South America was examined in relation to water basins and for the 19 Brazilian species also in light of climate and habitat characteristics. Species-distribution maps were used to identify species richness in a given area. Parsimony analysis of endemicity (PAE) was employed to verify the species-areas similarities and relationships among the species. For Brazilian species, annual rainfall in each water basin explained 81% of variation in turtle distribution and at a regional scale (country-wide) temperature also influenced their distribution. While rainfall had a significant positive relationship with species number in a given area, a negative but non-significant relationship was identified for temperature. Excepting an unresolved clade formed by some northern water basins, well-defined northern-northeastern and central-south groups (as identified for water basins) as well as biome differentiation give support to a hypothesis of a freshwater turtle fauna regionalization. Also, a more general biogeographical pattern is evidenced by those Brazilian species living in open or closed formations.
    [Show full text]
  • Quelônios Amazônicos
    Manejo Conservacionista e Monitoramento Populacional de Quelônios Amazônicos Ministério do Meio Ambiente Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis Diretoria de Uso Sustentável de Biodiversidade e Florestas Coordenação de Fauna Silvestre Manejo Conservacionista e Monitoramento Populacional de Quelônios Amazônicos Brasília, 2016 Manejo conservacionista e monitoramento populacional de quelônios amazônicos MINISTÉRIO DO MEIO AMBIENTE COORDENAÇÃO-GERAL DE AUTORIZAÇÃO DE USO E GESTÃO DE FAUNA E RECURSOS José Sarney Filho PESQUEIROS João Pessoa Riograndense Moreira Júnior SECRETARIA DE BIODIVERSIDADE E FLORESTAS José Pedro de Oliveira Costa COORDENAÇÃO DE FAUNA SILVESTRE Iria de Souza Pinto DEPARTAMENTO DE CONSERVAÇÃO DA BIODIVERSIDADE INSTITUTO CHICO MENDES DE CONSERVAÇÃO Ugo Eichler Vercillo DA BIODIVERSIDADE Rômulo Mello INSTITUTO BRASILEIRO DO MEIO AMBIENTE E DOS RECURSOS NATURAIS RENOVÁVEIS DIRETORIA DE PESQUISA, AVALIAÇÃO E MONITORAMENTO DA BIODIVERSIDADE Suely Mara Vaz Guimarães de Aráujo Marcelo Marcelino de Oliveira DIRETORIA DE USO SUSTENTÁVEL DA COORDENAÇÃO-GERAL DE MANEJO PARA BIODIVERSIDADE E FLORESTAS CONSERVAÇÃO Ana Alice Biedzicki de Marques Rosana Junqueira Subirá CENTRO NACIONAL DE PESQUISA E CONSERVA- ÇÃO DE RÉPTEIS E ANFÍBIOS Vera Lúcia Ferreira Luz 2 Ministério do Meio Ambiente Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis Diretoria de Uso Sustentável de Biodiversidade e Florestas Coordenação de Fauna Silvestre Manejo Conservacionista e Monitoramento Populacional de Quelônios Amazônicos Brasília, 2016 Manejo conservacionista e monitoramento populacional de quelônios amazônicos ORGANIZADOR FOTOS GENTILMENTE CEDIDAS Rafael Antônio Machado Balestra Acervo Técnico do RAN Acervo Técnico do Projeto Pé-de-Pincha REVISORES TÉCNICOS Acervo Técnico do INPA Camila Rudge Ferrara Acervo Técnico do Programa Quelônios da Amazônia José Roberto Moreira Ana Paula Gomes Lustosa Rafael Antônio Machado Balestra Camila Rudge Ferrara Rafael Bernhard José Roberto Moreira Richard C.
    [Show full text]
  • Gibba Turtle) Family: Chelidae (Snake-Necked Turtles) Order: Testudines (Turtles and Tortoises) Class: Reptilia (Reptiles)
    UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour Mesoclemmys gibba (Gibba Turtle) Family: Chelidae (Snake-necked Turtles) Order: Testudines (Turtles and Tortoises) Class: Reptilia (Reptiles) Fig. 1. Gibba turtle, Mesoclemmys gibba. [http://www.chelonia.org/Phrynopsgibbus1.JPG, downloaded 25 October 2012] TRAITS. Mesoclemmys gibba, commonly known as the gibba turtle, was previously known as Phrynops gibbus (McCord et al., 2001). The upper region of the shell is known as the carapace which varies in colour from black to chestnut brown or dark grey (Jacksonville Zoo and Gardens, 2010). The carapace does not have a pattern. The length of an adult Mesoclymmys gibba measures from 23-30cm. The carapace length in males however does not exceed 17cm (Murphy, 2014) and the size of hatchlings range from 43 to 48mm (Mittermeier et al., 1978). The ellipsoidal carapace can be slightly bowed with a shallow supracaudal notch (above the tail). Small posterior projections or low keels may be present on the 3rd to 5th broad vertebrals. Therefore the surface can either be slightly roughened, due to the uneven medial keel, or smooth (Jacksonville Zoo and Gardens, 2010). “Neural bones vary from none to five, but, if present, they are rudimentary and never contact the nuchal” (Pritchard and Trebbau, 1984). The bottom region of the shell is known as the plastron which varies in colour from yellow to red brown. It is wide and long, well-developed, somewhat inverted anteriorly with a deep anal notch posteriorly. On each scute there is a brown patch with a possible narrow yellow border occurring anteriorly and UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour posteriorly (Jacksonville Zoo and Gardens 2010).
    [Show full text]
  • Fauna of Australia 2A
    FAUNA of AUSTRALIA 16. MORPHOLOGY AND PHYSIOLOGY OF THE CHELONIA John M. Legler 1 16. MORPHOLOGY AND PHYSIOLOGY OF THE CHELONIA Turtles are the subject of some of the earliest accounts of vetebrate anatomy, for example Bojanus (1819). Much of the work on turtle anatomy was done in Europe before 1920. The following important anatomical studies include but do not emphasise Australian turtles. Hoffman (1890) commented on the Australian chelid genera Chelodina and Emydura and several South American chelids, and Siebenrock (1897) discussed the skull of Chelodina longicollis. More recently, Schumacher (1973) described the jaw musculature of Chelodina longicollis and Emydura species and Walther (1922) presented a thorough anatomical study of a single specimen of Carettochelys insculpta Ashley (1955) and Bojanus (1819) described and illustrated typical turtle anatomy (Pseudemys and Emys), which is applicable to turtles of both suborders. Surveys of anatomy and physiology prepared before the middle of this century are based largely on the common or easily available taxa (for example Emys, Testudo, Chrysemys and Chelydra) in Europe, Asia and North America. Australian turtles received attention in direct proportion to their availability in collections outside Australia. The expansion of modern biological studies and especially Australian chelids since the 1950s essentially began with Goode (1967). Terminology for chelonian shell structures varies. That standardised by Carr (1952) is used here (Figs 16.1, 16.2). Unpublished data and observations, especially for Australian chelids, are drawn from the author’s research, and appear in statements which lack citations, unless otherwise indicated. EXTERNAL CHARACTERISTICS Turtles range widely in size. Using carapace length as a basis for comparison, the smallest are the North American Sternotherus sp.
    [Show full text]
  • Artisanal Fisheries Interactions and Bycatch of Freshwater Turtles at the Tapacurá Reservoir, Northeast Brazil
    Herpetology Notes, volume 13: 249-252 (2020) (published online on 14 March 2020) Artisanal fisheries interactions and bycatch of freshwater turtles at the Tapacurá reservoir, Northeast Brazil Rayssa L. Santos¹,²,*, Thaís L. Bezerra², Jozélia M. Sousa Correia², and Ednilza M. dos Santos² Interactions between freshwater turtles and artisanal mortality rates of two species of freshwater turtles P. are well described in the literature (Brito et al., 2015). geoffroanus and M. tuberculata were recorded. A total Environmental pressure from fisheries, coupled with of 23 carcasses were observed in various states of habitat loss, pollution and climate change, have been decomposition, both on the banks of the reservoir and cited as the main causes for the decline of these aquatic trapped in gillnets arranged vertically within the water reptile populations, which are listed in the IUCN body (Figure 1). Endangered Species List (IUCN, 2018). Biometric parameters were obtained and sexing was The term bycatch is defined as the capture of specimens performed when possible, by observing the anal plate that are not the intentional target of a given fishing opening and tail size, following the methodology activity, i.e. the action occurred in a causal, unexpected proposed by Balestra et al. (2016). Necropsies were way (FAO, 1990). Several studies report that the use performed at the Veterinary Hospital belonging to the of different types of fishing gears, especially gillnets, Pernambuco Federal Rural University. contribute to the decline of several aquatic marine M. tuberculata (n=3) had a mean Maximum Straight species (Reeves et al., 2013) and reiterate the limited Carapace Length (MSCL) of 25.3 ± 1.2 cm, and all three amount of information on bycatch species.
    [Show full text]