Abstract Algebra Lecture Notes

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Algebra Lecture Notes Abstract Algebra Lecture Notes David M. McClendon Department of Mathematics Ferris State University Fall 2018 edition 1 Contents Contents 2 0 Review of Math 324 4 0.1 Sets . 4 0.2 Relations . 12 0.3 Functions . 14 0.4 Cardinality . 19 0.5 Summary of proof techniques . 21 0.6 Outlines for common types of proofs . 23 1 Major problems of abstract algebra 33 1.1 Straightedge and compass constructions . 33 1.2 Polynomial equations . 44 1.3 Summary: the major questions we want to tackle . 56 2 Integers and rational numbers 57 2.1 N: the natural numbers . 57 2.2 Z: the integers . 64 2.3 Q: the rational numbers . 69 2.4 Divisibility . 73 2.5 The Euclidean algorithm and applications . 79 2.6 Congruence classes modulo n ....................... 86 3 Real and complex numbers 98 3.1 Theorems of Hippasus and Theatitus . 98 3.2 R: the real numbers . 101 3.3 C: complex numbers . 107 3.4 Fundamental Theorem of Algebra . 115 3.5 Complex roots, cubic equations and regular polygons . 117 2 Contents 4 Polynomial rings 126 4.1 Definition and basic properties . 126 4.2 Irreducibility tests . 135 5 Fields 141 5.1 Field extensions . 142 5.2 Algebraic extensions . 143 5.3 Linear algebra and field extensions . 146 5.4 Classical construction problems, revisited . 152 6 Morphisms 156 6.1 What is a homomorphism? . 156 6.2 Isomorphisms and invariants . 160 6.3 Ring homomorphisms . 165 6.4 Automorphisms . 173 7 Groups 174 7.1 An update on the big picture . 174 7.2 What is a group? . 177 7.3 Examples of groups . 187 7.4 Permutation groups . 195 7.5 Subgroups and cosets . 205 7.6 Normal subgroups and quotient groups . 209 8 Quintic equations 217 8.1 Solvability by radicals . 217 8.2 Galois groups . 220 8.3 Quintic equations, revisited . 227 Index 231 3 Chapter 0 Review of Math 324 Math 324 is an introduction to mathematical language: that means sets, relations and functions. It is also an introduction to proof. In the first four sections of this chapter, we review the language (and general theorems about that language you should know) that was developed in Math 324; in the last section, we discuss gen- eral methods to prove statements. Before we get started, here are some symbols and an abbreviation I use often: ∀ means “for all” ∃ means “there exists” ∧ means “and” ∨ means “or” ∼ means “not” s.t. is short for “such that” 0.1 Sets The fundamental objects of mathematics are called sets. A set is really just a list of objects (in math, the objects are usually numbers, or vectors, or functions). Definition 0.1 A set is a definable collection of objects. The objects which comprise a set are called the set’s elements. If x is an element of set E, we write x ∈ E; if x is not an element of set E, we write x∈ / E. 4 0.1. Sets Examples of sets (observe that sets are usually denoted by capital letters): A = {3, 5, 7, 9, 11} B = {1, 2, 3, 4, 5, 6} C = {3, 5, 7} The elements of set C described above are 3, 5 and 7. For the set A above, 3 ∈ A and 5 ∈ A but 8 ∈/ A. We often define a set without listing the elements (using English language). For example, the sets A, B and C given above could be described, respectively, by saying “let A be the set of odd numbers from 3 to 11”; “let B be the set of integers from 1 to 6”; “let C be the set of odd numbers from 3 to 7”. We also describe sets by using what is called set-builder notation: to describe the same sets A, B, C as above using set-builder notation, we would write (or say) A = {x : 3 ≤ x ≤ 11 and x is odd} B = {x : 1 ≤ x ≤ 6 and x is an integer} C = {x : 3 ≤ x ≤ 7 and x is odd}. The first statement above is interpreted as follows: it says that set A is equal to the set of numbers x such that (the colon means “such that” in mathematics) 3 ≤ x ≤ 11 and x is odd. Notice that this is exactly the set {3, 5, 7, 9, 11}. To show you a different kind of example: if you were defining some set of functions (instead of a set of numbers), then instead of x you’d write f, and then after the colon you’d describe what has to be true about f for the function f to be in the set. For example, the set D of functions whose derivative at x = 2 is positive could be described by writing D = {f : f 0(2) > 0}. For this set D, it would be valid to say that if g(x) = x3, then g ∈ D (because g0(2) = 3(22) = 12 > 0) but if h(x) = 3 − 4x, then h∈ / D (because h0(2) = −4 ≤ 0). Definition 0.2 The empty set, denoted ∅, is the set with no elements. 5 0.1. Sets Definition 0.3 Let E be a set. The power set of E, denoted 2E or P(E), is the set of all subsets of E. The elements of a power set are themselves sets. Example: if E = {1, 2}, then 2E = {∅, {1}, {2}, {1, 2}}. Venn diagrams A useful way to think about sets is to draw pictures called Venn diagrams. To draw a Venn diagram, represent each set you’re thinking about by a circle (or an oval, or a square, or a rectangle, or some other shape); think of an object as be- ing an element of the set if and only if it is inside the shape corresponding to the set. For example, a Venn diagram for the set A described above (recall that A = {3, 5, 7, 9, 11}) would be given by something like 2 4 6 8 10 12 1 3 5 7 9 11 A because the box describing A contains exactly the elements of A (nothing more and nothing less). Similarly, a Venn diagram representing the sets A, B and C from above at the same time would be something like 2 4 6 8 10 12 1 3 5 7 9 11 C A B 6 0.1. Sets Subsets and set equality Definition 0.4 Let E and F be two sets. • We say E is a subset of F , and write E ⊆ F , if ∀ x, x ∈ E ⇒ x ∈ F . If E is not a subset of F , we write E 6⊆ F . If E ⊆ F , we also write F ⊇ E and say that F is a superset of E. • We say E and F are equal, and write E = F , if E ⊆ F and F ⊆ E. If E and F are not equal, we write E 6= F . Example: {0, 1, 2} ⊆ {0, 1, 2, 4, 8} but {0, 1, 2} 6⊆ {0, 2, 4}. Note the difference between the symbols ∈ and ⊆: the first symbol should be preceded by an element, but the second symbol should be preceded by a set. Generally speaking, to say E ⊆ F means “everything in E also is in F ” or “E is inside F ”. If you draw a Venn diagram, to say S ⊆ T means that the shape corresponding to set S is completely inside the shape corresponding to set T . For example, for the sets A and C given in the preceding section, C ⊆ A since every element of C is also in A. To say two sets are equal means that they contain exactly the same elements. Example: {n ∈ N : n is an even prime} = {n ∈ N : n − 2 = 0} because the only element in each set is 2. Operations on sets Definition 0.5 Let E and F be sets. • The union of E and F , denoted E ∪ F , is defined as follows: E ∪ F = {x : x ∈ E or x ∈ F }. • The intersection of E and F , denoted E ∩ F , is defined as follows: E ∩ F = {x : x ∈ E and x ∈ F }. 7 0.1. Sets Definition 0.6 Let E and F be sets. • We say E and F are disjoint if E ∩ F = ∅. • The complement of E, denoted EC , is the set EC = {x : x∈ / E}. • The difference of E and F , denoted E − F and read “E minus F ”, is the set E − F = E ∩ F C . • The symmetric difference of E and F , denoted E 4 F , is the set E 4 F = (E − F ) ∪ (F − E). • The (Cartesian) product of E and F , denoted E × F and read “E cross F ”, is the set E × F = {(x, y): x ∈ E and y ∈ F }. The elements of a Cartesian product are called ordered pairs. We denote E ×E by E2. • Let E be a set and let n be a positive integer. The nth Cartesian power of E, denoted En, is the set of ordered n-tuples of elements from E: n E = {(x1, x2, ..., xn): ∀j, xj ∈ E}. Concepts: • ∪ is set language for “or”–the union of a bunch of sets is the set consisting of elements belonging to at least one of the sets. For example, using the sets described earlier, A ∪ B = {1, 2, 3, 4, 5, 6, 7, 9, 11} because all of the numbers listed there either are in A, or in B, or both. In terms of Venn diagrams, the union is usually thought of as a “MasterCard- symbol” shaped region that encompasses the sets whose union you are tak- ing.
Recommended publications
  • How to Show That Various Numbers Either Can Or Cannot Be Constructed Using Only a Straightedge and Compass
    How to show that various numbers either can or cannot be constructed using only a straightedge and compass Nick Janetos June 3, 2010 1 Introduction It has been found that a circular area is to the square on a line equal to the quadrant of the circumference, as the area of an equilateral rectangle is to the square on one side... -Indiana House Bill No. 246, 1897 Three problems of classical Greek geometry are to do the following using only a compass and a straightedge: 1. To "square the circle": Given a circle, to construct a square of the same area, 2. To "trisect an angle": Given an angle, to construct another angle 1/3 of the original angle, 3. To "double the cube": Given a cube, to construct a cube with twice the area. Unfortunately, it is not possible to complete any of these tasks until additional tools (such as a marked ruler) are provided. In section 2 we will examine the process of constructing numbers using a compass and straightedge. We will then express constructions in algebraic terms. In section 3 we will derive several results about transcendental numbers. There are two goals: One, to show that the numbers e and π are transcendental, and two, to show that the three classical geometry problems are unsolvable. The two goals, of course, will turn out to be related. 2 Constructions in the plane The discussion in this section comes from [8], with some parts expanded and others removed. The classical Greeks were clear on what constitutes a construction. Given some set of points, new points can be defined at the intersection of lines with other lines, or lines with circles, or circles with circles.
    [Show full text]
  • Operations with Complex Numbers Adding & Subtracting: Combine Like Terms (풂 + 풃풊) + (풄 + 풅풊) = (풂 + 풄) + (풃 + 풅)풊 Examples: 1
    Name: __________________________________________________________ Date: _________________________ Period: _________ Chapter 2: Polynomial and Rational Functions Topic 1: Complex Numbers What is an imaginary number? What is a complex number? The imaginary unit is defined as 풊 = √−ퟏ A complex number is defined as the set of all numbers in the form of 푎 + 푏푖, where 푎 is the real component and 푏 is the coefficient of the imaginary component. An imaginary number is when the real component (푎) is zero. Checkpoint: Since 풊 = √−ퟏ Then 풊ퟐ = Operations with Complex Numbers Adding & Subtracting: Combine like terms (풂 + 풃풊) + (풄 + 풅풊) = (풂 + 풄) + (풃 + 풅)풊 Examples: 1. (5 − 11푖) + (7 + 4푖) 2. (−5 + 7푖) − (−11 − 6푖) 3. (5 − 2푖) + (3 + 3푖) 4. (2 + 6푖) − (12 − 4푖) Multiplying: Just like polynomials, use the distributive property. Then, combine like terms and simplify powers of 푖. Remember! Multiplication does not require like terms. Every term gets distributed to every term. Examples: 1. 4푖(3 − 5푖) 2. (7 − 3푖)(−2 − 5푖) 3. 7푖(2 − 9푖) 4. (5 + 4푖)(6 − 7푖) 5. (3 + 5푖)(3 − 5푖) A note about conjugates: Recall that when multiplying conjugates, the middle terms will cancel out. With complex numbers, this becomes even simpler: (풂 + 풃풊)(풂 − 풃풊) = 풂ퟐ + 풃ퟐ Try again with the shortcut: (3 + 5푖)(3 − 5푖) Dividing: Just like polynomials and rational expressions, the denominator must be a rational number. Since complex numbers include imaginary components, these are not rational numbers. To remove a complex number from the denominator, we multiply numerator and denominator by the conjugate of the Remember! You can simplify first IF factors can be canceled.
    [Show full text]
  • Theory of Trigintaduonion Emanation and Origins of Α and Π
    Theory of Trigintaduonion Emanation and Origins of and Stephen Winters-Hilt Meta Logos Systems Aurora, Colorado Abstract In this paper a specific form of maximal information propagation is explored, from which the origins of , , and fractal reality are revealed. Introduction The new unification approach described here gives a precise derivation for the mysterious physics constant (the fine-structure constant) from the mathematical physics formalism providing maximal information propagation, with being the maximal perturbation amount. Furthermore, the new unification provides that the structure of the space of initial ‘propagation’ (with initial propagation being referred to as ‘emanation’) has a precise derivation, with a unit-norm perturbative limit that leads to an iterative-map-like computed (a limit that is precisely related to the Feigenbaum bifurcation constant and thus fractal). The computed can also, by a maximal information propagation argument, provide a derivation for the mathematical constant . The ideal constructs of planar geometry, and related such via complex analysis, give methods for calculation of to incredibly high precision (trillions of digits), thereby providing an indirect derivation of to similar precision. Propagation in 10 dimensions (chiral, fermionic) and 26 dimensions (bosonic) is indicated [1-3], in agreement with string theory. Furthermore a preliminary result showing a relation between the Feigenbaum bifurcation constant and , consistent with the hypercomplex algebras indicated in the Emanator Theory, suggest an individual object trajectory with 36=10+26 degrees of freedom (indicative of heterotic strings). The overall (any/all chirality) propagation degrees of freedom, 78, are also in agreement with the number of generators in string gauge symmetries [4].
    [Show full text]
  • Truly Hypercomplex Numbers
    TRULY HYPERCOMPLEX NUMBERS: UNIFICATION OF NUMBERS AND VECTORS Redouane BOUHENNACHE (pronounce Redwan Boohennash) Independent Exploration Geophysical Engineer / Geophysicist 14, rue du 1er Novembre, Beni-Guecha Centre, 43019 Wilaya de Mila, Algeria E-mail: [email protected] First written: 21 July 2014 Revised: 17 May 2015 Abstract Since the beginning of the quest of hypercomplex numbers in the late eighteenth century, many hypercomplex number systems have been proposed but none of them succeeded in extending the concept of complex numbers to higher dimensions. This paper provides a definitive solution to this problem by defining the truly hypercomplex numbers of dimension N ≥ 3. The secret lies in the definition of the multiplicative law and its properties. This law is based on spherical and hyperspherical coordinates. These numbers which I call spherical and hyperspherical hypercomplex numbers define Abelian groups over addition and multiplication. Nevertheless, the multiplicative law generally does not distribute over addition, thus the set of these numbers equipped with addition and multiplication does not form a mathematical field. However, such numbers are expected to have a tremendous utility in mathematics and in science in general. Keywords Hypercomplex numbers; Spherical; Hyperspherical; Unification of numbers and vectors Note This paper (or say preprint or e-print) has been submitted, under the title “Spherical and Hyperspherical Hypercomplex Numbers: Merging Numbers and Vectors into Just One Mathematical Entity”, to the following journals: Bulletin of Mathematical Sciences on 08 August 2014, Hypercomplex Numbers in Geometry and Physics (HNGP) on 13 August 2014 and has been accepted for publication on 29 April 2015 in issue No.
    [Show full text]
  • Chapter I, the Real and Complex Number Systems
    CHAPTER I THE REAL AND COMPLEX NUMBERS DEFINITION OF THE NUMBERS 1, i; AND p2 In order to make precise sense out of the concepts we study in mathematical analysis, we must first come to terms with what the \real numbers" are. Everything in mathematical analysis is based on these numbers, and their very definition and existence is quite deep. We will, in fact, not attempt to demonstrate (prove) the existence of the real numbers in the body of this text, but will content ourselves with a careful delineation of their properties, referring the interested reader to an appendix for the existence and uniqueness proofs. Although people may always have had an intuitive idea of what these real num- bers were, it was not until the nineteenth century that mathematically precise definitions were given. The history of how mathematicians came to realize the necessity for such precision in their definitions is fascinating from a philosophical point of view as much as from a mathematical one. However, we will not pursue the philosophical aspects of the subject in this book, but will be content to con- centrate our attention just on the mathematical facts. These precise definitions are quite complicated, but the powerful possibilities within mathematical analysis rely heavily on this precision, so we must pursue them. Toward our primary goals, we will in this chapter give definitions of the symbols (numbers) 1; i; and p2: − The main points of this chapter are the following: (1) The notions of least upper bound (supremum) and greatest lower bound (infimum) of a set of numbers, (2) The definition of the real numbers R; (3) the formula for the sum of a geometric progression (Theorem 1.9), (4) the Binomial Theorem (Theorem 1.10), and (5) the triangle inequality for complex numbers (Theorem 1.15).
    [Show full text]
  • Doing Physics with Quaternions
    Doing Physics with Quaternions Douglas B. Sweetser ©2005 doug <[email protected]> All righs reserved. 1 INDEX Introduction 2 What are Quaternions? 3 Unifying Two Views of Events 4 A Brief History of Quaternions Mathematics 6 Multiplying Quaternions the Easy Way 7 Scalars, Vectors, Tensors and All That 11 Inner and Outer Products of Quaternions 13 Quaternion Analysis 23 Topological Properties of Quaternions 28 Quaternion Algebra Tool Set Classical Mechanics 32 Newton’s Second Law 35 Oscillators and Waves 37 Four Tests of for a Conservative Force Special Relativity 40 Rotations and Dilations Create the Lorentz Group 43 An Alternative Algebra for Lorentz Boosts Electromagnetism 48 Classical Electrodynamics 51 Electromagnetic Field Gauges 53 The Maxwell Equations in the Light Gauge: QED? 56 The Lorentz Force 58 The Stress Tensor of the Electromagnetic Field Quantum Mechanics 62 A Complete Inner Product Space with Dirac’s Bracket Notation 67 Multiplying quaternions in Polar Coordinate Form 69 Commutators and the Uncertainty Principle 74 Unifying the Representations of Integral and Half−Integral Spin 79 Deriving A Quaternion Analog to the Schrödinger Equation 83 Introduction to Relativistic Quantum Mechanics 86 Time Reversal Transformations for Intervals Gravity 89 Unified Field Theory by Analogy 101 Einstein’s vision I: Classical unified field equations for gravity and electromagnetism using Riemannian quaternions 115 Einstein’s vision II: A unified force equation with constant velocity profile solutions 123 Strings and Quantum Gravity 127 Answering Prima Facie Questions in Quantum Gravity Using Quaternions 134 Length in Curved Spacetime 136 A New Idea for Metrics 138 The Gravitational Redshift 140 A Brief Summary of Important Laws in Physics Written as Quaternions 155 Conclusions 2 What Are Quaternions? Quaternions are numbers like the real numbers: they can be added, subtracted, multiplied, and divided.
    [Show full text]
  • 50 Mathematical Ideas You Really Need to Know
    50 mathematical ideas you really need to know Tony Crilly 2 Contents Introduction 01 Zero 02 Number systems 03 Fractions 04 Squares and square roots 05 π 06 e 07 Infinity 08 Imaginary numbers 09 Primes 10 Perfect numbers 11 Fibonacci numbers 12 Golden rectangles 13 Pascal’s triangle 14 Algebra 15 Euclid’s algorithm 16 Logic 17 Proof 3 18 Sets 19 Calculus 20 Constructions 21 Triangles 22 Curves 23 Topology 24 Dimension 25 Fractals 26 Chaos 27 The parallel postulate 28 Discrete geometry 29 Graphs 30 The four-colour problem 31 Probability 32 Bayes’s theory 33 The birthday problem 34 Distributions 35 The normal curve 36 Connecting data 37 Genetics 38 Groups 4 39 Matrices 40 Codes 41 Advanced counting 42 Magic squares 43 Latin squares 44 Money mathematics 45 The diet problem 46 The travelling salesperson 47 Game theory 48 Relativity 49 Fermat’s last theorem 50 The Riemann hypothesis Glossary Index 5 Introduction Mathematics is a vast subject and no one can possibly know it all. What one can do is explore and find an individual pathway. The possibilities open to us here will lead to other times and different cultures and to ideas that have intrigued mathematicians for centuries. Mathematics is both ancient and modern and is built up from widespread cultural and political influences. From India and Arabia we derive our modern numbering system but it is one tempered with historical barnacles. The ‘base 60’ of the Babylonians of two or three millennia BC shows up in our own culture – we have 60 seconds in a minute and 60 minutes in an hour; a right angle is still 90 degrees and not 100 grads as revolutionary France adopted in a first move towards decimalization.
    [Show full text]
  • Complex Numbers -.: Mathematical Sciences : UTEP
    2.4 Complex Numbers For centuries mathematics has been an ever-expanding field because of one particular “trick.” Whenever a notable mathematician gets stuck on a problem that seems to have no solution, they make up something new. This is how complex numbers were “invented.” A simple quadratic equation would be x2 10. However, in trying to solve this it was found that x2 1 and that was confusing. How could a quantity multiplied by itself equal a negative number? This is where the genius came in. A guy named Cardano developed complex numbers off the base of the imaginary number i 1 , the solution to our “easy” equation x2 1 . The system didn’t really get rolling until Euler and Gauss started using it, but if you want to blame someone it should be Cardano. My Definition – The imaginary unit i is a number such that i2 1 . That is, i 1 . Definition of a Complex Number – If a and b are real numbers, the number a + bi is a complex number, and it is said to be written in standard form. If b = 0, the number a + bi = a is a real number. If b≠ 0, the number a + bi is called an imaginary number. A number of the form bi, where b ≠ 0, is called a pure imaginary number. Equality of Complex Numbers – Two complex numbers a + bi and c + di, written in standard form, are equal to each other a bi c di if and only if a = c and b = d. Addition and Subtraction of Complex Numbers – If a + bi and c + di are two complex numbers written in standard form, their sum and difference are defined as follows.
    [Show full text]
  • Quaternions by Wasinee Siewrichol
    Quaternions Wasinee Siewsrichol Historical Context Complex numbers was a very popular subject in the early eighteenth hundreds. People knew how to multiply two numbers, but they did not know how to multiply three numbers. This question puzzled William Rowan Hamilton for a very long time. Hamilton wrote to his son: "Every morning in the early part of the above-cited month [Oct. 1843] on my coming down to breakfast, your brother William Edwin and yourself used to ask me, 'Well, Papa, can you multiply triplets?' Whereto I was always obliged to reply, with a sad shake of the head, 'No, I can only add and subtract them.'" Hamilton eventually found the solution, but in the fourth dimension. The concept of quaternions was first invented by the Irish mathematician William Rowan Hamilton on Monday, October 16th 1843 in Dublin, Ireland. Hamilton was on his way to the Royal Irish Academy with his wife and as he was passing over the Royal Canal on the Brougham Bridge. He made a dramatic realization that he immediately carved into the stone on the bridge. It is hard to tell, but on the bottom it writes i2 = j2 = k2 = ijk = −1 The first thing that Hamilton did was set the fourth dimension equal to zero. Then he spent the rest of his life trying to find a practical use for quaternions, but he did not find anything. By the early nineteenth century, Professor Josiah Willard Gibbs of Yale came up with the vector dot products and the cross product. Vectors are huge in physics for finding the velocity, acceleration, and force of an object.
    [Show full text]
  • A Brief History of Mathematics for Dynamic Systems
    A brief history of mathematics for dynamic systems Advances in mathematics and technology are usually made at a painstakingly slow pace, with small sparks of individual brilliance that are accompanied by good luck or divine inspiration. Over the past millennia, various cultures have produced groups of gifted individuals that have had a significant impact on modern mathematics, engineering, and technology, including: Egypt (3000 BC), Babylon (2000 BC), Greece and China (500 BC), India (500 AD), Africa (800 AD), Europe and Asia (1500 AD), United States and Soviet Union (1900 AD), and Worldwide Web (2000+ AD). 2.1.1 Real number systems • Egyptians (3000 BC): Egyptians used hieroglyphics (picture writing) for numerals. The system was based on 10, but did not include a zero or the principle of place value. The (approximate) hieroglyphic symbols shown below combine to depict the number 1,326 as | @@@ ^^ //////. 1 / Stroke 10 ^ Arch 100 @ Coiled Rope 1,000 | Lotus Flower 10,000 > Finger 100,000 ~ Tadpole • Babylonians (2000 BC): Developed a number system based on 60. Their number system was more consistent and structured than the Egyptian system and was simpler for mathematical calculations. The number of seconds in a minute (60) and number of minutes in an hour (60) are a consequence of the Babylonian number system. • Hittites in Mesopotamia (2000-700 BC): Developed the precursor to the Roman numeral system e.g., their first four numbers were I, II, III,andIIII (note how I looks like a finger or a stick). • Romans (500 BC): The early Roman system was based on the Hittite system, e.g., its first four numbers were I, II, III,andIIII.
    [Show full text]
  • Structurally Hyperbolic Algebras Dual to the Cayley-Dickson and Clifford
    Unspecified Journal Volume 00, Number 0, Pages 000–000 S ????-????(XX)0000-0 STRUCTURALLY-HYPERBOLIC ALGEBRAS DUAL TO THE CAYLEY-DICKSON AND CLIFFORD ALGEBRAS OR NESTED SNAKES BITE THEIR TAILS DIANE G. DEMERS For Elaine Yaw in honor of friendship Abstract. The imaginary unit i of C, the complex numbers, squares to −1; while the imaginary unit j of D, the double numbers (also called dual or split complex numbers), squares to +1. L.H. Kauffman expresses the double num- ber product in terms of the complex number product and vice-versa with two, formally identical, dualizing formulas. The usual sequence of (structurally- elliptic) Cayley-Dickson algebras is R, C, H,..., of which Hamilton’s quater- nions H generalize to the split quaternions H. Kauffman’s expressions are the key to recursively defining the dual sequence of structurally-hyperbolic Cayley- Dickson algebras, R, D, M,..., of which Macfarlane’s hyperbolic quaternions M generalize to the split hyperbolic quaternions M. Previously, the structurally- hyperbolic Cayley-Dickson algebras were defined by simply inverting the signs of the squares of the imaginary units of the structurally-elliptic Cayley-Dickson algebras from −1 to +1. Using the dual algebras C, D, H, H, M, M, and their further generalizations, we classify the Clifford algebras and their dual orienta- tion congruent algebras (Clifford-like, noncommutative Jordan algebras with physical applications) by their representations as tensor products of algebras. Received by the editors July 15, 2008. 2000 Mathematics Subject Classification. Primary 17D99; Secondary 06D30, 15A66, 15A78, 15A99, 17A15, 17A120, 20N05. For some relief from my duties at the East Lansing Food Coop, I thank my coworkers Lind- say Demaray, Liz Kersjes, and Connie Perkins, nee Summers.
    [Show full text]
  • Algebra and Geometry of Hamilton's Quaternions
    GENERAL ARTICLE Algebra and Geometry of Hamilton’s Quaternions ‘Well, Papa, Can You Multiply Triplets?’ Govind S Krishnaswami and Sonakshi Sachdev Inspired by the relation between the algebra of complex numbers and plane geometry, William Rowan Hamilton sought an algebra of triples for application to three-dimensional geometry. Un- able to multiply and divide triples, he invented a non-commutative division algebra of quadru- ples, in what he considered his most significant (left) Govind Krishnaswami is on the faculty of the work, generalizing the real and complex number Chennai Mathematical systems. We give a motivated introduction to Institute. His research in quaternions and discuss how they are related to theoretical physics spans Pauli matrices, rotations in three dimensions, the various topics three sphere, the group SU(2) and the celebrated from quantum field theory and particle physics to fluid, Hopf fibrations. plasma and non-linear dynamics. 1. Introduction (right) Sonakshi Sachdev is Every morning in the early part of the above-cited month a PhD student at the [October 1843], on my coming down to breakfast, your Chennai Mathematical (then) little brother William Edwin, and yourself, used Institute. She has worked on to ask me, “Well, Papa, can you multiply triplets”? the dynamics of rigid bodies, Whereto I was always obliged to reply, with a sad shake fluids and plasmas. of the head: “No, I can only add and subtract them.” W R Hamilton in a letter dated August 5, 1865 to his son A H Hamilton [1]. Imaginary and complex numbers arose in looking for ‘impossible’ solutions to polynomial equations such as x2 + 1 = 0.
    [Show full text]