TRULY HYPERCOMPLEX NUMBERS: UNIFICATION OF NUMBERS AND VECTORS Redouane BOUHENNACHE (pronounce Redwan Boohennash) Independent Exploration Geophysical Engineer / Geophysicist 14, rue du 1er Novembre, Beni-Guecha Centre, 43019 Wilaya de Mila, Algeria E-mail:
[email protected] First written: 21 July 2014 Revised: 17 May 2015 Abstract Since the beginning of the quest of hypercomplex numbers in the late eighteenth century, many hypercomplex number systems have been proposed but none of them succeeded in extending the concept of complex numbers to higher dimensions. This paper provides a definitive solution to this problem by defining the truly hypercomplex numbers of dimension N ≥ 3. The secret lies in the definition of the multiplicative law and its properties. This law is based on spherical and hyperspherical coordinates. These numbers which I call spherical and hyperspherical hypercomplex numbers define Abelian groups over addition and multiplication. Nevertheless, the multiplicative law generally does not distribute over addition, thus the set of these numbers equipped with addition and multiplication does not form a mathematical field. However, such numbers are expected to have a tremendous utility in mathematics and in science in general. Keywords Hypercomplex numbers; Spherical; Hyperspherical; Unification of numbers and vectors Note This paper (or say preprint or e-print) has been submitted, under the title “Spherical and Hyperspherical Hypercomplex Numbers: Merging Numbers and Vectors into Just One Mathematical Entity”, to the following journals: Bulletin of Mathematical Sciences on 08 August 2014, Hypercomplex Numbers in Geometry and Physics (HNGP) on 13 August 2014 and has been accepted for publication on 29 April 2015 in issue No.