Integrative Computational Biology for Cancer Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Viral Integration Transforms Chromatin to Drive Oncogenesis
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.12.942755; this version posted February 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Viral integration transforms chromatin to drive oncogenesis Mehran Karimzadeh (ORCID: 0000-0002-7324-6074)1,2,3, Christopher Arlidge (ORCID: 0000-0001-9454-8541)2, Ariana Rostami (ORCID: 0000-0002-3423-8303)1,2, Mathieu Lupien (ORCID: 0000-0003-0929-9478)1,2,5, Scott V. Bratman (ORCID: 0000-0001-8610-4908)1,2,5, and Michael M. Hoffman (ORCID: 0000-0002-4517-1562)1,2,3,4,5 1Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada 2Princess Margaret Cancer Centre, Toronto, ON, Canada 3Vector Institute, Toronto, ON, Canada 4Department of Computer Science, University of Toronto, Toronto, ON, Canada 5Lead contact: michael.hoff[email protected], [email protected], [email protected] February 12, 2020 Abstract Human papillomavirus (HPV) drives almost all cervical cancers and up to ∼70% of head and neck cancers. Frequent integration into the host genome occurs only for tumourigenic strains of HPV. We hypothesized that changes in the epigenome and transcriptome contribute to the tumourigenicity of HPV. We found that viral integration events often occurred along with changes in chromatin state and expression of genes near the integration site. We investigated whether introduction of new transcription factor binding sites due to HPV integration could invoke these changes. Some regions within the HPV genome, particularly the position of a conserved CTCF sequence motif, showed enriched chromatin accessibility signal. -
The Clinical Significance of Small Copy Number Variants In
JMG Online First, published on August 8, 2014 as 10.1136/jmedgenet-2014-102588 Genome-wide studies J Med Genet: first published as 10.1136/jmedgenet-2014-102588 on 8 August 2014. Downloaded from ORIGINAL ARTICLE The clinical significance of small copy number variants in neurodevelopmental disorders Reza Asadollahi,1 Beatrice Oneda,1 Pascal Joset,1 Silvia Azzarello-Burri,1 Deborah Bartholdi,1 Katharina Steindl,1 Marie Vincent,1 Joana Cobilanschi,1 Heinrich Sticht,2 Rosa Baldinger,1 Regina Reissmann,1 Irene Sudholt,1 Christian T Thiel,3 Arif B Ekici,3 André Reis,3 Emilia K Bijlsma,4 Joris Andrieux,5 Anne Dieux,6 David FitzPatrick,7 Susanne Ritter,8 Alessandra Baumer,1 Beatrice Latal,8 Barbara Plecko,9 Oskar G Jenni,8 Anita Rauch1 ▸ Additional material is ABSTRACT complex syndromes.23Due to the extensive aetio- published online only. To view Background Despite abundant evidence for logical heterogeneity of NDDs, the majority of please visit the journal online (http://dx.doi.org/10.1136/ pathogenicity of large copy number variants (CNVs) in patients remain without aetiological diagnosis, jmedgenet-2014-102588). neurodevelopmental disorders (NDDs), the individual which hampers disease management, genetic coun- significance of genome-wide rare CNVs <500 kb has not selling and in-depth studies of the underlying For numbered affiliations see end of article. been well elucidated in a clinical context. molecular mechanisms. With the advent of new Methods By high-resolution chromosomal microarray genomic technologies, however, diagnostic yield is Correspondence to analysis, we investigated the clinical significance of all steadily improving and a rapidly growing number Professor Anita Rauch, Institute rare non-polymorphic exonic CNVs sizing 1–500 kb in a of novel, aetiologically defined disorders are of Medical Genetics, University of Zurich, Wagistrasse 12, cohort of 714 patients with undiagnosed NDDs. -
Genes Associated with Anhedonia
Ren et al. Translational Psychiatry (2018) 8:150 DOI 10.1038/s41398-018-0198-3 Translational Psychiatry ARTICLE Open Access Genes associated with anhedonia: a new analysis in a large clinical trial (GENDEP) Hongyan Ren1, Chiara Fabbri2, Rudolf Uher3, Marcella Rietschel 4,OleMors5, Neven Henigsberg 6,JoannaHauser7, Astrid Zobel8, Wolfgang Maier8, Mojca Z. Dernovsek9,DanielSouery10, Annamaria Cattaneo11, Gerome Breen2, Ian W. Craig2,AnneE.Farmer2,PeterMcGuffin2, Cathryn M. Lewis 2 and Katherine J. Aitchison 1,2 Abstract A key feature of major depressive disorder (MDD) is anhedonia, which is a predictor of response to antidepressant treatment. In order to shed light on its genetic underpinnings, we conducted a genome-wide association study (GWAS) followed by investigation of biological pathway enrichment using an anhedonia dimension for 759 patients with MDD in the GENDEP study. The GWAS identified 18 SNPs associated at genome-wide significance with the top one being an intronic SNP (rs9392549) in PRPF4B (pre-mRNA processing factor 4B) located on chromosome 6 (P = 2.07 × 10−9) while gene-set enrichment analysis returned one gene ontology term, axon cargo transport (GO: 0008088) with a nominally significant P value (1.15 × 10−5). Furthermore, our exploratory analysis yielded some interesting, albeit not statistically significant genetic correlation with Parkinson’s Disease and nucleus accumbens gray matter. In addition, polygenic risk scores (PRSs) generated from our association analysis were found to be able to predict treatment efficacy of the antidepressants in this study. In conclusion, we found some markers significantly associated with anhedonia, and some suggestive findings of related pathways and biological functions, which could be further investigated in other studies. -
Maternal Low-Fat Diet Programs the Hepatic Epigenome Despite Exposure to an Obesogenic Postnatal Diet
nutrients Article Maternal Low-Fat Diet Programs the Hepatic Epigenome despite Exposure to an Obesogenic Postnatal Diet Laura Moody 1, Justin Shao 2, Hong Chen 3 and Yuan-Xiang Pan 4,* 1 Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 2 Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Exeter High School, 1 Blue Hawk Drive, Exeter, NH 03833, USA 3 Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 4 Department of Food Science and Human Nutrition, Division of Nutritional Sciences, and Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA * Correspondence: [email protected]; Tel.: +1-217-333-3466 Received: 29 June 2019; Accepted: 27 August 2019; Published: 3 September 2019 Abstract: Obesity and metabolic disease present a danger to long-term health outcomes. It has been hypothesized that epigenetic marks established during early life might program individuals and have either beneficial or harmful consequences later in life. In the present study, we examined whether maternal diet alters DNA methylation and whether such modifications persist after an obesogenic postnatal dietary challenge. During gestation and lactation, male Sprague-Dawley rats were exposed to either a high-fat diet (HF; n = 10) or low-fat diet (LF; n = 10). After weaning, all animals were fed a HF diet for an additional nine weeks. There were no differences observed in food intake or body weight between groups. Hepatic DNA methylation was quantified using both methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation-sensitive restriction enzyme sequencing (MRE-seq). -
A Resource for Exploring the Understudied Human Kinome for Research and Therapeutic
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.02.022277; this version posted March 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A resource for exploring the understudied human kinome for research and therapeutic opportunities Nienke Moret1,2,*, Changchang Liu1,2,*, Benjamin M. Gyori2, John A. Bachman,2, Albert Steppi2, Clemens Hug2, Rahil Taujale3, Liang-Chin Huang3, Matthew E. Berginski1,4,5, Shawn M. Gomez1,4,5, Natarajan Kannan,1,3 and Peter K. Sorger1,2,† *These authors contributed equally † Corresponding author 1The NIH Understudied Kinome Consortium 2Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts 02115, USA 3 Institute of Bioinformatics, University of Georgia, Athens, GA, 30602 USA 4 Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA 5 Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA † Peter Sorger Warren Alpert 432 200 Longwood Avenue Harvard Medical School, Boston MA 02115 [email protected] cc: [email protected] 617-432-6901 ORCID Numbers Peter K. Sorger 0000-0002-3364-1838 Nienke Moret 0000-0001-6038-6863 Changchang Liu 0000-0003-4594-4577 Benjamin M. Gyori 0000-0001-9439-5346 John A. Bachman 0000-0001-6095-2466 Albert Steppi 0000-0001-5871-6245 Shawn M. -
Promoterless Transposon Mutagenesis Drives Solid Cancers Via Tumor Suppressor Inactivation
cancers Article Promoterless Transposon Mutagenesis Drives Solid Cancers via Tumor Suppressor Inactivation Aziz Aiderus 1,† , Ana M. Contreras-Sandoval 1,† , Amanda L. Meshey 1,†, Justin Y. Newberg 1,2,‡, Jerrold M. Ward 3,§, Deborah A. Swing 4, Neal G. Copeland 2,3,4,k, Nancy A. Jenkins 2,3,4,k, Karen M. Mann 1,2,3,4,5,6,7,* and Michael B. Mann 1,2,3,4,6,7,8,9,* 1 Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Aziz.Aiderus@moffitt.org (A.A.); Ana.ContrerasSandoval@moffitt.org (A.M.C.-S.); Amanda.Meshey@moffitt.org (A.L.M.); [email protected] (J.Y.N.) 2 Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; [email protected] (N.G.C.); [email protected] (N.A.J.) 3 Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; [email protected] 4 Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; [email protected] 5 Departments of Gastrointestinal Oncology & Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA 6 Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA 7 Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA 8 Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center, Tampa, FL 33612, USA 9 Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA * Correspondence: Karen.Mann@moffitt.org (K.M.M.); Michael.Mann@moffitt.org (M.B.M.) † These authors contributed equally. -
Comparative Kinome Analysis to Identify Putative Colon Tumor Biomarkers
J Mol Med (2012) 90:447–456 DOI 10.1007/s00109-011-0831-6 ORIGINAL ARTICLE Comparative kinome analysis to identify putative colon tumor biomarkers Ewa E. Hennig & Michal Mikula & Tymon Rubel & Michal Dadlez & Jerzy Ostrowski Received: 30 June 2011 /Revised: 22 October 2011 /Accepted: 28 October 2011 /Published online: 18 November 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Kinase domains are the type of protein domain showed differential expression patterns (fold change≥1.5) most commonly found in genes associated with tumorigen- in at least one tissue pair-wise comparison (AD vs. NC, AC esis. Because of this, the human kinome (the protein kinase vs. NC, and/or AC vs. AD). Kinases that exhibited similar component of the genome) represents a promising source of trends in expression at both the mRNA and protein levels cancer biomarkers and potential targets for novel anti- were further analyzed in individual samples of NC (n=20), cancer therapies. Alterations in the human colon kinome AD (n=39), and AC (n=24) by quantitative reverse during the progression from normal colon (NC) through transcriptase PCR. Individual samples of NC and tumor adenoma (AD) to adenocarcinoma (AC) were investigated tissue were distinguishable based on the mRNA levels of a using integrated transcriptomic and proteomic datasets. set of 20 kinases. Altered expression of several of these Two hundred thirty kinase genes and 42 kinase proteins kinases, including chaperone activity of bc1 complex-like (CABC1) kinase, bromodomain adjacent to zinc finger domain protein 1B (BAZ1B) kinase, calcium/calmodulin- dependent protein kinase type II subunit delta (CAMK2D), Electronic supplementary material The online version of this article serine/threonine-protein kinase 24 (STK24), vaccinia- (doi:10.1007/s00109-011-0831-6) contains supplementary material, which is available to authorized users. -
Annotation of the Understudied Kinome and Preliminary Teseting of Kinase Inhibitor Combinations
ANNOTATION OF THE UNDERSTUDIED KINOME AND PRELIMINARY TESETING OF KINASE INHIBITOR COMBINATIONS Claire Reisig Hall A thesis submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Master of Science in the Joint Program of Biomedical Engineering in the School of Medicine. Chapel Hill 2017 Approved by: Shawn Gomez Jeffrey Macdonald Glenn Walker © 2017 Claire Reisig Hall ALL RIGHTS RESERVED ii ABSTRACT Claire Reisig Hall: Annotation of the Understudied Kinome and Preliminary Testing of Kinase Inhibitor Combinations (Under the direction of Shawn Gomez) A technique utilizing multiplexed inhibitor beads and mass spectrometry (MIB/MS) detects functional protein kinases in breast cancer cell lines. Data from this technique was used to shed light on the understudied kinome, a portion of which is captured by the MIB/MS method. Regression analysis was performed to find correlations in kinase activity. The functional linkages were then used to annotate the understudied kinases. Annotations revealed new possible functions and disease relations for many understudied kinases. Kinase inhibitor combinations were suggested by principle components analysis (PCA) results performed on MIB/MS data from treated breast cancer cell lines. The combinations were preliminarily tested for signs of effectiveness. Dose curves and growth assays were performed to compare drug combinations in the SKBR3 cell line. The interpretation of in vitro experiment results was impeded because of poor -
Transposon Mutagenesis Identifies Genes Driving Hepatocellular Carcinoma in a Chronic Hepatitis B Mouse Model
ARTICLES Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model Emilie A Bard-Chapeau1, Anh-Tuan Nguyen1, Alistair G Rust2, Ahmed Sayadi1, Philip Lee3, Belinda Q Chua1, Lee-Sun New4, Johann de Jong5, Jerrold M Ward1, Christopher K Y Chin1, Valerie Chew6, Han Chong Toh7, Jean-Pierre Abastado6, Touati Benoukraf 8, Richie Soong8, Frederic A Bard1, Adam J Dupuy9, Randy L Johnson10, George K Radda3, Eric Chun Yong Chan4, Lodewyk F A Wessels5, David J Adams2, Nancy A Jenkins1,11,12 & Neal G Copeland1,11,12 The most common risk factor for developing hepatocellular carcinoma (HCC) is chronic infection with hepatitis B virus (HBV). To better understand the evolutionary forces driving HCC, we performed a near-saturating transposon mutagenesis screen in a mouse HBV model of HCC. This screen identified 21 candidate early stage drivers and a very large number (2,860) of candidate later stage drivers that were enriched for genes that are mutated, deregulated or functioning in signaling pathways important for human HCC, with a striking 1,199 genes being linked to cellular metabolic processes. Our study provides a comprehensive overview of the genetic landscape of HCC. Nearly 500,000 people are diagnosed with HCC each year, and their genome-wide association studies map to these distal enhancers9, rais- overall 5-year survival rate is below 12%. The highest incidence of ing the possibility that noncoding mutations in these distal elements HCC is in regions in which infection with HBV is endemic, and men might also substantially contribute to cancer and potentially explain- Nature America, Inc. -
Investigating Differential Expression in PTSD Patients Versus Controls: an RNA-Seq Study
Investigating differential expression in PTSD patients versus controls: An RNA-Seq study by Laetitia Dicks Thesis presented in partial fulfilment of the requirements for the degree of Master of Science (Human Genetics) in the Faculty of Medicine and Health Sciences at Stellenbosch University Supervisor: Prof. SMJ Hemmings Co-supervisor: Prof. S Seedat Co-supervisor: Dr M Jalali Sefid Dashti December 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. December 2017 i Stellenbosch University https://scholar.sun.ac.za Copyright © 2017 Stellenbosch University All rights reserved ii Stellenbosch University https://scholar.sun.ac.za ABSTRACT Post-traumatic stress disorder (PTSD) is a debilitating neuropsychiatric disorder underpinned by complex, multi-factorial interactions including genetic and environmental factors. To date, most genetic studies have focused on specific candidate genes involved in PTSD and therefore lack a holistic view of the disorder. In this study, we aimed to utilise RNA-Seq to investigate molecular mechanisms and possible blood bio-signatures in South African PTSD patients. Whole blood gene expression levels of South African mixed ancestry ethnicity (Coloured) individuals were compared between PTSD diagnosed (N = 19) and trauma-exposed control (N = 29) individuals. RNA from whole blood from each participant was subjected to RNA-Seq using the Illumina HiSeq 4000 platform at a sequencing depth of 50 million paired-end reads. -
Bioinformatic Identification of Disease Driver Networks Using Functional Profiling Data
Institute for Molecular Medicine Finland, FIMM University of Helsinki, Helsinki, Finland Doctoral Programme in Biomedicine (DPBM) BIOINFORMATIC IDENTIFICATION OF DISEASE DRIVER NETWORKS USING FUNCTIONAL PROFILING DATA Agnieszka Szwajda ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Medicine, University of Helsinki, for public examination in lecture hall 3, Biomedicum Helsinki, Haartmaninkatu 8, on Friday 2nd of February 2018, at 12 noon. Helsinki, 2018 Supervised by: Professor Tero Aittokallio, Ph.D. Institute for Molecular Medicine Finland, FIMM University of Helsinki Helsinki, Finland Krister Wennerberg, Ph.D. Institute for Molecular Medicine Finland, FIMM University of Helsinki Helsinki, Finland Reviewed by: Associate Professor Harri Lähdesmäki, D.Sc. Department of Computer Science Aalto University School of Science Espoo, Finland Associate Professor Henri Xhaard, Ph.D. Division of Pharmaceutical Chemistry and Technology University of Helsinki Helsinki, Finland Opponent: Professor Matti Nykter, Ph.D. Institute of Biosciences and Medical Technology University of Tampere Tampere, Finland Custos: Professor Samuli Ripatti, Ph.D. Institute for Molecular Medicine Finland, FIMM University of Helsinki Helsinki, Finland © Agnieszka Szwajda Cover layout by Anita Tienhaara ISBN 978-951-51-3959-7 (paperback) ISBN 978-951-51-3960-3 (PDF) ISSN 2342-3161 (print) ISSN 2342-317X (online) Unigrafia Oy, Helsinki 2018 2 Table of contents ABBREVIATIONS ...................................................................................................................................... -
1 Supplemental Table 1. Comparison Among Q-RT-PCR, ISH-TMA And
Supplemental Table 1. Comparison among Q-RT-PCR, ISH-TMA and IHC for the detection of ErbB-2 in breast cancers. IHC ISH-TMA Q-RT-PCR Q-RT-PCR range Q-RT-PCR score 0 0 0* 0 0 0 0* 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 2 0 1 1 2 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 x<10 0 1 1 3 0 0 0 4 0 0 0 5 0 0 0 5 0 0 0 5 0 1 1 5 0 0 0 6 0 0 0 8 0 0 0 8 0 1 1 8 0 0 1 8 0 1 1 11 1 1 1 11 1 1 1 11 1 1 0 12 1 1 1 13 10<x<20 1 0 1 13 1 1 1 16 1 1 1 17 1 2 1 17 1 2 2 22 2 2 2 43 2 20<x<100 3 2 74 2 3 2 86 2 3 3 213 3 3 3 259 x>100 3 3 3 362 3 Legend to Supplemental Table 1. This experiment was set up to demonstrate that there is good semi-quantitative correlation between the levels of expression detected by ISH-TMA, IHC and Q-RT-PCR. We compared the three methods on levels of ErbB-2 expression in breast cancer, since ErbB-2 is overexpressed in breast cancers, over a wide range of levels.