Transposon Mutagenesis Identifies Genes Driving Hepatocellular Carcinoma in a Chronic Hepatitis B Mouse Model

Total Page:16

File Type:pdf, Size:1020Kb

Transposon Mutagenesis Identifies Genes Driving Hepatocellular Carcinoma in a Chronic Hepatitis B Mouse Model ARTICLES Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model Emilie A Bard-Chapeau1, Anh-Tuan Nguyen1, Alistair G Rust2, Ahmed Sayadi1, Philip Lee3, Belinda Q Chua1, Lee-Sun New4, Johann de Jong5, Jerrold M Ward1, Christopher K Y Chin1, Valerie Chew6, Han Chong Toh7, Jean-Pierre Abastado6, Touati Benoukraf 8, Richie Soong8, Frederic A Bard1, Adam J Dupuy9, Randy L Johnson10, George K Radda3, Eric Chun Yong Chan4, Lodewyk F A Wessels5, David J Adams2, Nancy A Jenkins1,11,12 & Neal G Copeland1,11,12 The most common risk factor for developing hepatocellular carcinoma (HCC) is chronic infection with hepatitis B virus (HBV). To better understand the evolutionary forces driving HCC, we performed a near-saturating transposon mutagenesis screen in a mouse HBV model of HCC. This screen identified 21 candidate early stage drivers and a very large number (2,860) of candidate later stage drivers that were enriched for genes that are mutated, deregulated or functioning in signaling pathways important for human HCC, with a striking 1,199 genes being linked to cellular metabolic processes. Our study provides a comprehensive overview of the genetic landscape of HCC. Nearly 500,000 people are diagnosed with HCC each year, and their genome-wide association studies map to these distal enhancers9, rais- overall 5-year survival rate is below 12%. The highest incidence of ing the possibility that noncoding mutations in these distal elements HCC is in regions in which infection with HBV is endemic, and men might also substantially contribute to cancer and potentially explain- Nature America, Inc. All rights reserved. America, Inc. Nature 10,11 4 are two to four times more likely to develop HCC than women. HCC ing why some tumors have few or no mutated cancer genes , even related to infection with HBV has also become the fastest-rising cause after extensive genome characterization. Tumors with a paucity of © 201 of cancer-related death in the United States during the past two dec- mutated genes might also have mutations in very infrequently mutated ades. Although the use of emerging sequencing and genomics tech- genes that we do not yet have the statistical power to detect. nologies has identified many mutated and/or differentially expressed One method for identifying these missing cancer genes, as well as genes in HCC, these techniques have also uncovered a surprising to validate the hundreds of candidate cancer genes already described, npg amount of intratumor and intertumor heterogeneity1–5. For these rea- is through comparative genomics involving transposon-based inser- sons, and because important DNA mutations can be concealed among tional mutagenesis12. It has recently become possible to mobilize the the large number of passenger mutations present in these tumors, Sleeping Beauty (SB) transposon in essentially any mouse tissue at it has been difficult to identify the complete complement of driver high enough frequencies to induce virtually any kind of cancer13–15. genes for HCC. Epigenetic silencing of tumor suppressor genes also Mutagenic SB transposons carry a strong promoter for activating frequently occurs in tumors6,7. This fact, combined with recent stud- proto-oncogenes and transcriptional stop cassettes for inactivating ies showing that there may be thousands of haploinsufficient tumor tumor suppressor genes, and the transposons therefore tag cancer genes suppressor genes8, makes the identification of all driver genes for in tumor cells. Human tumor genomes are complex, with multiple HCC even more difficult. Published reports from the Encyclopedia operative mutagenic processes. By contrast, transposons tag cancer of DNA Elements (ENCODE) project have also identified millions of genes directly, thus facilitating their identification. functional elements, many of which are transcription factor binding Here we sought to obtain a comprehensive list of genes that are sites that regulate the expression of genes often located hundreds of functionally necessary to trigger HCC by performing a large-scale kilobases away9. Nearly 70% of disease-associated SNPs identified in SB transposon mutagenesis screen13,14. Because the major etiology of 1Institute Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore. 2Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK. 3Clinical Imaging Research Centre, National University of Singapore, Centre for Translation Medicine, Singapore Bioimaging Consortium, Singapore. 4Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore. 5Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands. 6Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore. 7National Cancer Centre, Singapore. 8Cancer Science Institute of Singapore, National University of Singapore, Singapore. 9Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA. 10Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. 11Present address: The Methodist Hospital Research Institute, Houston, Texas, USA. 12These authors contributed equally to this work. Correspondence should be addressed to N.G.C. ([email protected]). Received 21 May; accepted 8 November; published online 8 December 2013; doi:10.1038/ng.2847 24 VOLUME 46 | NUMBER 1 | JANUARY 2014 NATURE GENETICS ARTICLES human HCC is chronic infection with HBV16, we mobilized SB in the identified because of local transposon hopping, and we therefore livers (liver-SB)17 of transgenic mice predisposed to develop HCC as a excluded CISs on this chromosome). A gene-centric CIS-calling result of expression of the toxic HBV surface antigen (HBsAg) in their method (gCIS) that looks for a higher density of transposon inser- livers (called liver-SB/HBsAg mice)18. By using this mouse model, tions within the coding regions of all RefSeq genes than predicted we aimed to identify genes that could cooperate with HBV-induced by chance20 identified 2,525 gCIS genes (Supplementary Table 1a), liver inflammation in the induction of HCC, which is similar to that whereas a non–gene centric Gaussian kernel convolution (GKC) occurring in most human HCC. method21 that looks for a higher density of insertions within fixed kernel widths of 15–240 kb (ref. 22) identified 2,041 CISs containing RESULTS 2,103 genes (Supplementary Table 1b). There was an 83% overlap HBV-associated HCC mouse model for mutagenesis screening between the CISs identified by these two methods (P < 2 × 10−16, χ2 Liver-SB/HBsAg transgenic mice develop chronic liver inflamma- with Yates correction), and together they identified 2,871 CIS loci tion with associated reactive hyperplasia (Fig. 1a and Supplementary containing 2,881 genes (Supplementary Table 1c and Supplementary Fig. 1), hepatocytomegaly and ground glass hepatocytes (Fig. 1b), Fig. 5a). In vitro transposition cell culture assays have suggested that similarly to human chronic hepatitis B and the previously charac- SB is a random insertional mutagen and that the only requirement for terized HBsAg mice18. Liver-SB/HBsAg modifications lead to the insertion is a TA dinucleotide12. Although the GKC method scans the appearance of preneoplastic foci, which are visible from 19.7 weeks entire cancer genome for CISs, most CISs were located within or in of age, followed by hepatocellular adenoma and trabecular HCC close proximity to genes, providing additional evidence that SB tar- (Supplementary Fig. 2). SB induced a cooperative tumorigenic gets the coding regions of genes that confer a selective advantage for effect with HBsAg, as liver-SB/HBsAg mice displayed reduced sur- tumor growth. gCISs not identified by GKC often contained very large vival (Fig. 1c). We also noted a tendency toward larger numbers of (>300 kb) or small (<10 kb) genes and were probably missed in part tumors (Supplementary Fig. 2) and more advanced-stage disease because of the use of fixed kernel widths (Supplementary Fig. 5b,c). compared to HBsAg mice alone (Fig. 1d). To estimate the genetic coverage of this screen, we randomly To identify the genes mutated by SB that cooperate with HBsAg- selected subgroups of 10–220 tumors from the 228 total tumors and associated inflammation in tumor induction, we PCR amplified and then used GKC to identify the CISs for each subgroup. We then plot- sequenced the transposon insertion sites from 250 tumors harvested ted the number of tumors in each subgroup against the genomic base from 34 mice19, which yielded 328,687 sequence reads and identified pairs covered by all the CISs identified for each subgroup. The curve an average of 1,315 unique transposon insertion sites per tumor. By plateaued before reaching 100 tumors, indicating that the screen comparing the location of the transposon insertions in all tumors, was approaching saturation with as few as a 100 tumors (Fig. 2a,b). we found a few tumors that were genetically related. We removed Adding more tumors merely identified additional CISs of lower these tumors, leaving 228 genetically unrelated tumors, which frequency (Supplementary Figs. 6 and 7). Consistent with this notion we subsequently used for downstream analysis (Supplementary of saturation, this screen identified most of the CIS genes found pre- Figs. 3 and 4). viously in much smaller-scale HCC transposon screens performed in p53 mutant17 and Sav1-deficient
Recommended publications
  • Deficiency of the Zinc Finger Protein ZFP106 Causes Motor and Sensory
    Human Molecular Genetics, 2016, Vol. 25, No. 2 291–307 doi: 10.1093/hmg/ddv471 Advance Access Publication Date: 24 November 2015 Original Article ORIGINAL ARTICLE Deficiency of the zinc finger protein ZFP106 causes Downloaded from https://academic.oup.com/hmg/article/25/2/291/2384594 by guest on 23 September 2021 motor and sensory neurodegeneration Peter I. Joyce1, Pietro Fratta2,†, Allison S. Landman1,†, Philip Mcgoldrick2,†, Henning Wackerhage3, Michael Groves2, Bharani Shiva Busam3, Jorge Galino4, Silvia Corrochano1, Olga A. Beskina2, Christopher Esapa1, Edward Ryder4, Sarah Carter1, Michelle Stewart1, Gemma Codner1, Helen Hilton1, Lydia Teboul1, Jennifer Tucker1, Arimantas Lionikas3, Jeanne Estabel5, Ramiro Ramirez-Solis5, Jacqueline K. White5, Sebastian Brandner2, Vincent Plagnol6, David L. H. Bennet4,AndreyY.Abramov2,LindaGreensmith2,*, Elizabeth M. C. Fisher2,* and Abraham Acevedo-Arozena1,* 1MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK, 2UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK, 3Health Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK, 4Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK, 5Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK and 6UCL Genetics Institute, London WC1E 6BT, UK *To whom correspondence should be addressed. Email: [email protected] (A.A.)/e.fi[email protected] (E.M.C.F.)/[email protected] (L.G.) Abstract Zinc finger motifs are distributed amongst many eukaryotic protein families, directing nucleic acid–protein and protein–protein interactions. Zinc finger protein 106 (ZFP106) has previously been associated with roles in immune response, muscle differentiation, testes development and DNA damage, although little is known about its specific function.
    [Show full text]
  • Reconstructability Analysis As a Tool for Identifying Gene-Gene Interactions in Studies of Human Diseases
    Portland State University PDXScholar Systems Science Faculty Publications and Presentations Systems Science 3-2010 Reconstructability Analysis As A Tool For Identifying Gene-Gene Interactions In Studies Of Human Diseases Stephen Shervais Eastern Washington University Patricia L. Kramer Oregon Health & Science University Shawn K. Westaway Oregon Health & Science University Nancy J. Cox University of Chicago Martin Zwick Portland State University, [email protected] Follow this and additional works at: https://pdxscholar.library.pdx.edu/sysc_fac Part of the Bioinformatics Commons, Diseases Commons, and the Genomics Commons Let us know how access to this document benefits ou.y Citation Details Shervais, S., Kramer, P. L., Westaway, S. K., Cox, N. J., & Zwick, M. (2010). Reconstructability Analysis as a Tool for Identifying Gene-Gene Interactions in Studies of Human Diseases. Statistical Applications In Genetics & Molecular Biology, 9(1), 1-25. This Article is brought to you for free and open access. It has been accepted for inclusion in Systems Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Statistical Applications in Genetics and Molecular Biology Volume 9, Issue 1 2010 Article 18 Reconstructability Analysis as a Tool for Identifying Gene-Gene Interactions in Studies of Human Diseases Stephen Shervais∗ Patricia L. Kramery Shawn K. Westawayz Nancy J. Cox∗∗ Martin Zwickyy ∗Eastern Washington University, [email protected] yOregon Health & Science University, [email protected] zOregon Health & Science University, [email protected] ∗∗University of Chicago, [email protected] yyPortland State University, [email protected] Copyright c 2010 The Berkeley Electronic Press.
    [Show full text]
  • Meta-Analysis of Nasopharyngeal Carcinoma
    BMC Genomics BioMed Central Research article Open Access Meta-analysis of nasopharyngeal carcinoma microarray data explores mechanism of EBV-regulated neoplastic transformation Xia Chen†1,2, Shuang Liang†1, WenLing Zheng1,3, ZhiJun Liao1, Tao Shang1 and WenLi Ma*1 Address: 1Institute of Genetic Engineering, Southern Medical University, Guangzhou, PR China, 2Xiangya Pingkuang associated hospital, Pingxiang, Jiangxi, PR China and 3Southern Genomics Research Center, Guangzhou, Guangdong, PR China Email: Xia Chen - [email protected]; Shuang Liang - [email protected]; WenLing Zheng - [email protected]; ZhiJun Liao - [email protected]; Tao Shang - [email protected]; WenLi Ma* - [email protected] * Corresponding author †Equal contributors Published: 7 July 2008 Received: 16 February 2008 Accepted: 7 July 2008 BMC Genomics 2008, 9:322 doi:10.1186/1471-2164-9-322 This article is available from: http://www.biomedcentral.com/1471-2164/9/322 © 2008 Chen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Epstein-Barr virus (EBV) presumably plays an important role in the pathogenesis of nasopharyngeal carcinoma (NPC), but the molecular mechanism of EBV-dependent neoplastic transformation is not well understood. The combination of bioinformatics with evidences from biological experiments paved a new way to gain more insights into the molecular mechanism of cancer. Results: We profiled gene expression using a meta-analysis approach. Two sets of meta-genes were obtained. Meta-A genes were identified by finding those commonly activated/deactivated upon EBV infection/reactivation.
    [Show full text]
  • Supplemental Figure and Table Legends
    Supplemental figure and table legends Supplementary Figure 1: KIAA1841 is well conserved among vertebrates. NCBI HomoloGene pairwise alignment scores of human KIAA1841 sequence compared to other vertebrate orthologs. Supplementary Figure 2: µ-germline transcripts (GLT) and AID mRNA expression are not affected by overexpression of KIAA1841. Splenic B cells were isolated from wild-type mice, and transduced with retroviral vector control (pMIG) or a vector expressing KIAA1841. Levels of µ-GLT and AID mRNA were determined at 72h post-infection by RT-qPCR, and normalized to -actin mRNA and the pMIG control. The mean of three independent experiments +/- SD is shown. NS, p = not significant, p 0.05, two-tailed paired student’s t-test. Supplementary Figure 3: Overexpression of untagged and Xpress-tagged KIAA1841 does not affect cell proliferation. Splenic B cells were isolated from wild-type mice, stimulated with LPS+IL4, and transduced with retroviral vector control (pMIG) or a vector expressing KIAA1841 or Xpress (Xp)-tagged KIAA1841. Cells are labeled with seminaphthorhodafluor (SNARF) cell tracking dye and SNARF intensity was measured at 0h, 24h, and 48h after retroviral infection. Histograms of transduced cells (GFP+) for pMIG control, KIAA1841 and Xp-KIAA1841 were superimposed at each time point. Three independent retroviral infection experiments are shown. Supplementary Figure 4: Sequence alignment of the putative SANT domain of KIAA1841 with the SANT domain of SWI3. Alignment was performed using ClustalOmega; *, conserved residue, :, strongly similar residues, ., weakly similar residues. Numbers indicate amino acid residues in each sequence. Helix 3, which has been reported to be important for the chromatin remodeling function of SWI3 (Boyer et.
    [Show full text]
  • Viral Integration Transforms Chromatin to Drive Oncogenesis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.12.942755; this version posted February 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Viral integration transforms chromatin to drive oncogenesis Mehran Karimzadeh (ORCID: 0000-0002-7324-6074)1,2,3, Christopher Arlidge (ORCID: 0000-0001-9454-8541)2, Ariana Rostami (ORCID: 0000-0002-3423-8303)1,2, Mathieu Lupien (ORCID: 0000-0003-0929-9478)1,2,5, Scott V. Bratman (ORCID: 0000-0001-8610-4908)1,2,5, and Michael M. Hoffman (ORCID: 0000-0002-4517-1562)1,2,3,4,5 1Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada 2Princess Margaret Cancer Centre, Toronto, ON, Canada 3Vector Institute, Toronto, ON, Canada 4Department of Computer Science, University of Toronto, Toronto, ON, Canada 5Lead contact: michael.hoff[email protected], [email protected], [email protected] February 12, 2020 Abstract Human papillomavirus (HPV) drives almost all cervical cancers and up to ∼70% of head and neck cancers. Frequent integration into the host genome occurs only for tumourigenic strains of HPV. We hypothesized that changes in the epigenome and transcriptome contribute to the tumourigenicity of HPV. We found that viral integration events often occurred along with changes in chromatin state and expression of genes near the integration site. We investigated whether introduction of new transcription factor binding sites due to HPV integration could invoke these changes. Some regions within the HPV genome, particularly the position of a conserved CTCF sequence motif, showed enriched chromatin accessibility signal.
    [Show full text]
  • Comprehensive Transcriptome Analysis of Mouse Embryonic Stem Cell Adipogenesis Unravels New Processes of Adipocyte Development
    Billon et al. Genome Biology 2010, 11:R80 http://genomebiology.com/2010/11/8/R80 RESEARCH Open Access Comprehensive transcriptome analysis of mouse embryonic stem cell adipogenesis unravels new processes of adipocyte development Nathalie Billon1*, Raivo Kolde2,3†, Jüri Reimand2†, Miguel C Monteiro1†, Meelis Kull2,3, Hedi Peterson3,4, Konstantin Tretyakov2, Priit Adler4, Brigitte Wdziekonski1, Jaak Vilo2,3, Christian Dani1 Abstract Background: The current epidemic of obesity has caused a surge of interest in the study of adipose tissue formation. While major progress has been made in defining the molecular networks that control adipocyte terminal differentiation, the early steps of adipocyte development and the embryonic origin of this lineage remain largely unknown. Results: Here we performed genome-wide analysis of gene expression during adipogenesis of mouse embryonic stem cells (ESCs). We then pursued comprehensive bioinformatic analyses, including de novo functional annotation and curation of the generated data within the context of biological pathways, to uncover novel biological functions associated with the early steps of adipocyte development. By combining in-depth gene regulation studies and in silico analysis of transcription factor binding site enrichment, we also provide insights into the transcriptional networks that might govern these early steps. Conclusions: This study supports several biological findings: firstly, adipocyte development in mouse ESCs is coupled to blood vessel morphogenesis and neural development, just as it is during mouse development. Secondly, the early steps of adipocyte formation involve major changes in signaling and transcriptional networks. A large proportion of the transcription factors that we uncovered in mouse ESCs are also expressed in the mouse embryonic mesenchyme and in adipose tissues, demonstrating the power of our approach to probe for genes associated with early developmental processes on a genome-wide scale.
    [Show full text]
  • Universidad Autónoma De Madrid Programa De
    UNIVERSIDAD AUTÓNOMA DE MADRID PROGRAMA DE DOCTORADO EN BIOCIENCIAS MOLECULARES FUNCTIONAL RELEVANCE OF PP2A-B55 PHOSPHATASES IN THE MAMMALIAN CELL CYCLE TESIS DOCTORAL María Sanz Flores Madrid, 2017 DEPARTAMENTO DE BIOLOGÍA MOLECULAR FACULTAD DE CIENCIAS UNIVERSIDAD AUTÓNOMA DE MADRID FUNCTIONAL RELEVANCE OF PP2A-B55 PHOSPHATASES IN THE MAMMALIAN CELL CYCLE María Sanz Flores Licenciada en Biología Director: Marcos Malumbres Martínez Codirectora: Mónica Álvarez Fernández Centro Nacional de Investigaciones Oncológicas (CNIO) Madrid, 2017 Mónica Álvarez Fernández, Investigadora del Grupo de División Celular y Cáncer del Centro Nacional de Investigaciones Oncológicas (CNIO) y, Marcos Malumbres Martínez, Jefe del Grupo de División Celular y Cáncer del Centro Nacional de Investigaciones Oncológicas (CNIO) Certifican: que María Sanz Flores ha realizado bajo su dirección el trabajo de Tesis Doctoral titulado: FUNCTIONAL RELEVANCE OF PP2A-B55 PHOSPHATASES IN THE MAMMALIAN CELL CYCLE Revisado el presente trabajo, consideran que reúne todos los méritos necesarios para su presentación y defensa con el fin de optar al grado de Doctor por la Universidad Autónoma de Madrid. Mónica Álvarez Fernández Marcos Malumbres RESUMEN/SUMMARY Resumen RESUMEN La fosforilación reversible de proteínas es un mecanismo esencial en la regulación del ciclo celular. Mientras que el papel llevado a cabo en mitosis por las proteínas quinasa ha sido profundamente caracterizado, la identidad y la función específica de las fosfatasas en la mitosis de mamíferos está aún por determinar. La proteína fosfatasa 2A (PP2A) es una fosfatasa de residuos serina y treonina de gran importancia en células eucarióticas. Existen evidencias de que los complejos formados por PP2A con subunidades reguladoras de la familia B55 juegan un importante papel en la desfosforilación de sustratos de quinasas dependiente de ciclina (CDKs) durante mitosis en diferentes organismos.
    [Show full text]
  • NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-7-2018 Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer Jairo Ramos [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Clinical Epidemiology Commons Recommended Citation Ramos, Jairo, "Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer" (2018). FIU Electronic Theses and Dissertations. 3872. https://digitalcommons.fiu.edu/etd/3872 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida DECIPHER MECHANISMS BY WHICH NUCLEAR RESPIRATORY FACTOR ONE (NRF1) COORDINATES CHANGES IN THE TRANSCRIPTIONAL AND CHROMATIN LANDSCAPE AFFECTING DEVELOPMENT AND PROGRESSION OF INVASIVE BREAST CANCER A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in PUBLIC HEALTH by Jairo Ramos 2018 To: Dean Tomás R. Guilarte Robert Stempel College of Public Health and Social Work This dissertation, Written by Jairo Ramos, and entitled Decipher Mechanisms by Which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer, having been approved in respect to style and intellectual content, is referred to you for judgment.
    [Show full text]
  • Primepcr™Assay Validation Report
    PrimePCR™Assay Validation Report Gene Information Gene Name Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B delta isoform Gene Symbol Ppp2r2d Organism Rat Gene Summary cytosolic regulatory subunit that modifies protein phosphatase type 2A activity and subcellular localization Gene Aliases Not Available RefSeq Accession No. Not Available UniGene ID Rn.116122 Ensembl Gene ID ENSRNOG00000016940 Entrez Gene ID 246255 Assay Information Unique Assay ID qRnoCID0008377 Assay Type SYBR® Green Detected Coding Transcript(s) ENSRNOT00000023139 Amplicon Context Sequence AGACCTTCTTGCAACAGGAGACAAAGGTGGCAGAGTTGTTATTTTCCAACGGGA ACAAGAGAATAAAGGCCGCGCTCACTCTAGGGGAGAGTACAATGTTTACAGTAC CTTTCAGAGTCATGAGCCAGAGTTTGACTAT Amplicon Length (bp) 109 Chromosome Location 1:218152187-218153346 Assay Design Intron-spanning Purification Desalted Validation Results Efficiency (%) 101 R2 0.9995 cDNA Cq 22.29 cDNA Tm (Celsius) 81.5 gDNA Cq 36.36 Specificity (%) 100 Information to assist with data interpretation is provided at the end of this report. Page 1/4 PrimePCR™Assay Validation Report Ppp2r2d, Rat Amplification Plot Amplification of cDNA generated from 25 ng of universal reference RNA Melt Peak Melt curve analysis of above amplification Standard Curve Standard curve generated using 20 million copies of template diluted 10-fold to 20 copies Page 2/4 PrimePCR™Assay Validation Report Products used to generate validation data Real-Time PCR Instrument CFX384 Real-Time PCR Detection System Reverse Transcription Reagent iScript™ Advanced cDNA Synthesis Kit for RT-qPCR Real-Time PCR Supermix SsoAdvanced™ SYBR® Green Supermix Experimental Sample qPCR Reference Total RNA Data Interpretation Unique Assay ID This is a unique identifier that can be used to identify the assay in the literature and online. Detected Coding Transcript(s) This is a list of the Ensembl transcript ID(s) that this assay will detect.
    [Show full text]
  • The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
    The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem.
    [Show full text]
  • Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis
    Getting “Under the Skin”: Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis by Kristen Monét Brown A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Epidemiological Science) in the University of Michigan 2017 Doctoral Committee: Professor Ana V. Diez-Roux, Co-Chair, Drexel University Professor Sharon R. Kardia, Co-Chair Professor Bhramar Mukherjee Assistant Professor Belinda Needham Assistant Professor Jennifer A. Smith © Kristen Monét Brown, 2017 [email protected] ORCID iD: 0000-0002-9955-0568 Dedication I dedicate this dissertation to my grandmother, Gertrude Delores Hampton. Nanny, no one wanted to see me become “Dr. Brown” more than you. I know that you are standing over the bannister of heaven smiling and beaming with pride. I love you more than my words could ever fully express. ii Acknowledgements First, I give honor to God, who is the head of my life. Truly, without Him, none of this would be possible. Countless times throughout this doctoral journey I have relied my favorite scripture, “And we know that all things work together for good, to them that love God, to them who are called according to His purpose (Romans 8:28).” Secondly, I acknowledge my parents, James and Marilyn Brown. From an early age, you two instilled in me the value of education and have been my biggest cheerleaders throughout my entire life. I thank you for your unconditional love, encouragement, sacrifices, and support. I would not be here today without you. I truly thank God that out of the all of the people in the world that He could have chosen to be my parents, that He chose the two of you.
    [Show full text]
  • Integrative Computational Biology for Cancer Research
    Hum Genet (2011) 130:465–481 DOI 10.1007/s00439-011-0983-z REVIEW PAPER Integrative computational biology for cancer research Kristen Fortney · Igor Jurisica Received: 3 February 2011 / Accepted: 2 April 2011 / Published online: 22 April 2011 © The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Over the past two decades, high-throughput Introduction (HTP) technologies such as microarrays and mass spec- trometry have fundamentally changed clinical cancer Since the commercialization of DNA microarray technol- research. They have revealed novel molecular markers of ogy in the late 1990s, high-throughput (HTP) data relevant cancer subtypes, metastasis, and drug sensitivity and resis- to cancer research have been accumulating at an ever- tance. Some have been translated into the clinic as tools for increasing rate. These data have led to crucial insights into early disease diagnosis, prognosis, and individualized treat- fundamental cancer biology, including the mechanisms of ment and response monitoring. Despite these successes, tumorigenesis, metastasis, and drug resistance (Rhodes and many challenges remain: HTP platforms are often noisy Chinnaiyan 2005). They have also had enormous clinical and suVer from false positives and false negatives; optimal impact, e.g., several cancers can now be fractionated into analysis and successful validation require complex work- therapeutic subsets with unique prognostic outcomes Xows; and great volumes of data are accumulating at a based on their molecular phenotypes (Buyse et al. 2006; rapid pace. Here we discuss these challenges, and show Dhanasekaran et al. 2001; Lowe et al. 2010; Pegram et al. how integrative computational biology can help diminish 1998; Slamon and Press 2009; Spentzos et al.
    [Show full text]