Molecular Characterization of Mutant Mouse Strains Generated from the EUCOMM/KOMP-CSD ES Cell Resource

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Characterization of Mutant Mouse Strains Generated from the EUCOMM/KOMP-CSD ES Cell Resource Mamm Genome DOI 10.1007/s00335-013-9467-x Molecular Characterization of Mutant Mouse Strains Generated from the EUCOMM/KOMP-CSD ES Cell Resource Edward Ryder • Diane Gleeson • Debarati Sethi • Sapna Vyas • Evelina Miklejewska • Priya Dalvi • Bishoy Habib • Ross Cook • Matthew Hardy • Kalpesh Jhaveri • Joanna Bottomley • Hannah Wardle-Jones • James N. Bussell • Richard Houghton • Jennifer Salisbury • William C. Skarnes • Sanger Mouse Genetics Project • Ramiro Ramirez-Solis Received: 3 April 2013 / Accepted: 27 June 2013 Ó The Author(s) 2013. This article is published with open access at Springerlink.com Abstract The Sanger Mouse Genetics Project generates Introduction knockout mice strains using the EUCOMM/KOMP-CSD embryonic stem (ES) cell collection and characterizes the The extensive genetic resources available for the mouse, consequences of the mutations using a high-throughput including the sequencing and annotation of the genomes of primary phenotyping screen. Upon achieving germline multiple inbred laboratory strains (Church et al. 2009; transmission, new strains are subject to a panel of quality Keane et al. 2011; Flicek et al. 2012; Wong et al. 2012), control (QC) PCR- and qPCR-based assays to confirm the have facilitated comprehensive comparisons with the correct targeting, cassette structure, and the presence of the human genome (Guigo et al. 2003; Zheng-Bradley et al. 30 LoxP site (required for the potential conditionality of the 2010; Mouse ENCODE Consortium et al. 2012). This allele). We report that over 86 % of the 731 strains studied makes the mouse a powerful tool for both investigating showed the correct targeting and cassette structure, of gene function and modelling disease progression in mam- which 97 % retained the 30 LoxP site. We discuss the malian systems. This importance can be demonstrated by characteristics of the lines that failed QC and postulate that the wealth of resources available for researchers studying the majority of these may be due to mixed ES cell popu- human diseases and genetic disorders, including (but not lations which were not detectable with the original limited to) cancer (Frese and Tuveson 2007; Kim and Baek screening techniques employed when creating the ES cell 2010; Leystra et al. 2012), visual (Gao et al. 2002; van de resource. Pavert et al. 2007) and auditory dysfunctions (Leibovici et al. 2008; Spiden et al. 2008), neurodegenerative condi- tions (Games et al. 1995; Schilling 1999; Ravikumar et al. 2004; Wirths and Bayer 2010), and diabetes (Cho et al. 2001; Duan et al. 2004). There are over 1,100 human diseases with one or more mouse models, and over 3,600 mouse genotypes model human disease as reported at the Electronic supplementary material The online version of this article (doi:10.1007/s00335-013-9467-x) contains supplementary Mouse Genome Database (MGD) (http://www.informatics. material, which is available to authorized users. jax.org, December 2012). To facilitate these investigations, several large-scale efforts to create knockout mutations in & E. Ryder ( ) Á D. Gleeson Á D. Sethi Á S. Vyas Á mice have been established (Bradley et al. 2012) by the E. Miklejewska Á P. Dalvi Á B. Habib Á R. Cook Á M. Hardy Á K. Jhaveri Á J. Bottomley Á H. Wardle-Jones Á systematic construction of targeted mutations (Valenzuela J. N. Bussell Á R. Houghton Á J. Salisbury Á et al. 2003; Prosser et al. 2011; Skarnes et al. 2011). W. C. Skarnes Á Sanger Mouse Genetics Project Currently, the largest resource of targeted mutations is the & R. Ramirez-Solis ( ) EUCOMM/KOMP-CSD mouse embryonic stem cell (ESC) The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK collection (Skarnes et al. 2011), which is based on JM8 e-mail: [email protected] agouti or non-agouti C57BL/6N ES cells (Pettitt et al. R. Ramirez-Solis 2009). The structure and modification of the promoter- e-mail: [email protected] driven ‘‘knockout-first’’ EUCOMM/KOMP-CSD allele, 123 E. Ryder et al.: EUCOMM/KOMP-CSD Mouse QC which forms the majority of the collection, is shown in genes, 56 % of the 22,147 CCDS (Pruitt et al. 2009) gene Fig. 1. models present in Ensembl (Flicek et al. 2012). The The EUCOMM/KOMP-CSD collection, along with resource was generated by use of a high-throughput mod- those generated by Regeneron, and the Canadian Nor- ular gateway-based vector construction and positive–neg- Comm programme form the International Mouse Knockout ative selection for high-efficiency targeting in ES cells Consortium (IKMC) resource (Collins et al. 2007; Ring- (Skarnes et al. 2011). Clones were then screened by long- wald et al. 2011; Bradley et al. 2012) and are the main range PCR and sequencing to confirm targeting and the source of ES cells used for mouse production by the presence of the 30 loxP site that is required for the condi- International Mouse Phenotyping Consortium (IMPC) tionality of the mutant allele. Although this approach is (Brown and Moore 2012). appropriate for a high-throughput pipeline in terms of cost The goal of the IMPC is to generate knockout strains for and speed, it does have its limitations. For example, long- all protein-coding genes in the mouse on a pure C57BL/6N range PCR is likely to miss mutations within the cassette genetic background, and to elucidate gene function by use and is not able to detect mixed ESC populations. As the of a broad-spectrum high-throughput primary phenotyping resource is exploited to generate mouse lines, it will be screen. These phenotypes can then be studied in more important to ascertain the molecular structure of the alleles depth by the scientific community at large within special- transmitted to mice. ized areas of interest. Here we present a detailed and extensive molecular The aims of the IMPC overlap with the Wellcome Trust characterization of the mutant alleles in mouse strains Sanger Mouse Genetics Project (Sanger MGP) (White et al. generated from the resource. We demonstrate that although 2013) which was formed in 2006 to generate and phenotype the majority of the mouse lines produced by Sanger MGP 200 mutant mouse strains per year using a battery of tests from the EUCOMM/KOMP-CSD collection are correct, designed to detect changes in a variety of systems, including some problematic events were detected. We have devel- metabolism, dysmorphology, behaviour, cardiovascular, oped a set of quality control (QC) criteria and assays to immunity, visual and auditory response, viability, and screen out affected strains as early as possible following homozygous lethality (Ayadi et al. 2012). Strains are avail- germline transmission of the incorrect alleles. able to the scientific community directly from Sanger Insti- tute while colonies are actively breeding, and from the European Mutant Mouse Archive (Wilkinson et al. 2010)or KOMP Repository (Lloyd 2011) once archived. The primary Materials and Methods phenotypic data are also readily available at the Sanger Mouse Portal (http://www.sanger.ac.uk/mouseportal). The care and use of all mice in this study were in accor- At the time of writing, the EUCOMM/KOMP-CSD ES dance with the UK Home Office regulations, UK Animals clone collection consisted of targeted clones for 12,350 (Scientific Procedures) Act of 1986, and were approved by Fig. 1 EUCOMM/KOMP-CSD allele structure and conversion. The the ‘‘knockout-first’’ allele to a conditional allele (tm1c) and restores EUCOMM/KOMP-CSD allele ‘‘knockout-first’’ allele (tm1a) con- the gene’s activity. Subsequent exposure to Cre recombinase will then tains an IRES:lacZ trapping cassette and a floxed promoter-driven neo delete the floxed exon of the tm1c allele resulting in a frameshift and cassette inserted into the intron of the targeted gene. The presence of null mutation (tm1d). Cre recombinase can also be used to convert the an Engrailed (En2) splice acceptor disrupts gene function, resulting in tm1a allele to the tm1b form and generate a nonconditional lacZ- a lacZ fusion for studying gene expression localisation. Exposure to a tagged null allele without the promoter-driven neo cassette source of Flp recombinase removes the gene trap cassette, converts 123 E. Ryder et al.: EUCOMM/KOMP-CSD Mouse QC the Wellcome Trust Sanger Institute Ethical Review or, where no product was detected, a PCR using two gene- Committee. specific PCRs followed by sequencing. Further details of the tests used at the Sanger Institute, A Minimum Standard for Mouse QC including primer sequences and reaction conditions, can be found in Supplementary Information S1 and also in the The high-throughput nature of the Sanger MGP makes it IKMC knowledge base (http://www.knockoutmouse.org/ impractical to apply a QC strategy based on Southern blot kb/2). analysis. Thus, our QC strategy is centred on a set of PCR-based methods configured to detect abnormalities in the identity of the targeted gene, the presence/absence of Results the 30 loxP site, and the number of vector insertions. Our strategy complies with the IKMC guidelines to include at During the period between September 2006 and November least one test in each of the four different categories 2011, a total of 731 EUCOMM/KOMP ESC clones were (Table 1). microinjected (582 MGP, 94 EUMODIC, and 48 KOMP2- funded) and subsequently achieved germline transmission, High-Throughput Genotyping and QC Tests used of which 632 mouse colonies (86 %) passed QC. by the Sanger Institute MGP Details of the assays that have been performed on the released lines are shown in Fig. 3; not all assays were For rapid and universal detection of potential germline completed on all lines released to the community as the QC transmission of the mutant allele from the initial breeding methods evolved as the MGP has progressed and gained of chimeras (crossed to C57BL/6N Taconic), G1 carriers experience with the KOMP and EUCOMM ES cell are identified by a universal qPCR assay designed to the resource.
Recommended publications
  • Minireview Cilia and Flagella Revealed: from Flagellar Assembly
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Cell, Vol. 117, 693–697, June 11, 2004, Copyright 2004 by Cell Press Cilia and Flagella Revealed: From Minireview Flagellar Assembly in Chlamydomonas to Human Obesity Disorders William J. Snell,* Junmin Pan, and Qian Wang This flow of materials is driven by the IFT machinery. Department of Cell Biology Flagellar proteins synthesized in the cell body are car- University of Texas Southwestern Medical School ried to the tip of the flagellum (the site of assembly of 5323 Harry Hines Boulevard the axoneme) by IFT particles, which are composed of Dallas, Texas 75390 at least 17 highly conserved proteins that form A and B complexes. The plus end-directed microtubule motor protein kinesin II is essential for movement of particles The recent identification in Chlamydomonas of the in- and their cargo toward the tip (anterograde transport) traflagellar transport machinery that assembles cilia of the flagellum, and a cytoplasmic dynein carries IFT and flagella has triggered a renaissance of interest in particles back to the cell body (retrograde transport). these organelles that transcends studies on their well- Thus, IFT particles function as constantly moving molec- characterized ability to move. New studies on several ular trucks on a closed loop. The tracks they travel on fronts have revealed that the machinery for flagellar are the microtubule doublets of the ciliary/flagellar axo- assembly/disassembly is regulated by homologs of neme, microtubule motors power them, and the individ- mitotic proteins, that cilia play essential roles in sensory ual structural components (e.g., microtubule subunits, transduction, and that mutations in cilia/basal body pro- dynein arms, and radial spoke proteins) of the cilium/ teins are responsible for cilia-related human disorders flagellum are their cargo.
    [Show full text]
  • Deficiency of the Zinc Finger Protein ZFP106 Causes Motor and Sensory
    Human Molecular Genetics, 2016, Vol. 25, No. 2 291–307 doi: 10.1093/hmg/ddv471 Advance Access Publication Date: 24 November 2015 Original Article ORIGINAL ARTICLE Deficiency of the zinc finger protein ZFP106 causes Downloaded from https://academic.oup.com/hmg/article/25/2/291/2384594 by guest on 23 September 2021 motor and sensory neurodegeneration Peter I. Joyce1, Pietro Fratta2,†, Allison S. Landman1,†, Philip Mcgoldrick2,†, Henning Wackerhage3, Michael Groves2, Bharani Shiva Busam3, Jorge Galino4, Silvia Corrochano1, Olga A. Beskina2, Christopher Esapa1, Edward Ryder4, Sarah Carter1, Michelle Stewart1, Gemma Codner1, Helen Hilton1, Lydia Teboul1, Jennifer Tucker1, Arimantas Lionikas3, Jeanne Estabel5, Ramiro Ramirez-Solis5, Jacqueline K. White5, Sebastian Brandner2, Vincent Plagnol6, David L. H. Bennet4,AndreyY.Abramov2,LindaGreensmith2,*, Elizabeth M. C. Fisher2,* and Abraham Acevedo-Arozena1,* 1MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK, 2UCL Institute of Neurology and MRC Centre for Neuromuscular Disease, Queen Square, London WC1N 3BG, UK, 3Health Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK, 4Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK, 5Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK and 6UCL Genetics Institute, London WC1E 6BT, UK *To whom correspondence should be addressed. Email: [email protected] (A.A.)/e.fi[email protected] (E.M.C.F.)/[email protected] (L.G.) Abstract Zinc finger motifs are distributed amongst many eukaryotic protein families, directing nucleic acid–protein and protein–protein interactions. Zinc finger protein 106 (ZFP106) has previously been associated with roles in immune response, muscle differentiation, testes development and DNA damage, although little is known about its specific function.
    [Show full text]
  • Reconstructability Analysis As a Tool for Identifying Gene-Gene Interactions in Studies of Human Diseases
    Portland State University PDXScholar Systems Science Faculty Publications and Presentations Systems Science 3-2010 Reconstructability Analysis As A Tool For Identifying Gene-Gene Interactions In Studies Of Human Diseases Stephen Shervais Eastern Washington University Patricia L. Kramer Oregon Health & Science University Shawn K. Westaway Oregon Health & Science University Nancy J. Cox University of Chicago Martin Zwick Portland State University, [email protected] Follow this and additional works at: https://pdxscholar.library.pdx.edu/sysc_fac Part of the Bioinformatics Commons, Diseases Commons, and the Genomics Commons Let us know how access to this document benefits ou.y Citation Details Shervais, S., Kramer, P. L., Westaway, S. K., Cox, N. J., & Zwick, M. (2010). Reconstructability Analysis as a Tool for Identifying Gene-Gene Interactions in Studies of Human Diseases. Statistical Applications In Genetics & Molecular Biology, 9(1), 1-25. This Article is brought to you for free and open access. It has been accepted for inclusion in Systems Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Statistical Applications in Genetics and Molecular Biology Volume 9, Issue 1 2010 Article 18 Reconstructability Analysis as a Tool for Identifying Gene-Gene Interactions in Studies of Human Diseases Stephen Shervais∗ Patricia L. Kramery Shawn K. Westawayz Nancy J. Cox∗∗ Martin Zwickyy ∗Eastern Washington University, [email protected] yOregon Health & Science University, [email protected] zOregon Health & Science University, [email protected] ∗∗University of Chicago, [email protected] yyPortland State University, [email protected] Copyright c 2010 The Berkeley Electronic Press.
    [Show full text]
  • Targeting MYCN in Neuroblastoma by BET Bromodomain Inhibition
    Published OnlineFirst February 21, 2013; DOI: 10.1158/2159-8290.CD-12-0418 RESEARCH ARTICLE Targeting MYCN in Neuroblastoma by BET Bromodomain Inhibition Alexandre Puissant1,3, Stacey M. Frumm1,3, Gabriela Alexe1,3,5,6, Christopher F. Bassil1,3, Jun Qi2, Yvan H. Chanthery8, Erin A. Nekritz8, Rhamy Zeid2, William Clay Gustafson8, Patricia Greninger7, Matthew J. Garnett10, Ultan McDermott10, Cyril H. Benes7, Andrew L. Kung1,3, William A. Weiss8,9, James E. Bradner2,4, and Kimberly Stegmaier1,3,6 Downloaded from cancerdiscovery.aacrjournals.org on October 2, 2021. © 2013 American Association for Cancer Research. 15-CD-12-0418_p308-323.indd 1 22/02/13 12:15 AM Published OnlineFirst February 21, 2013; DOI: 10.1158/2159-8290.CD-12-0418 A BSTRACT Bromodomain inhibition comprises a promising therapeutic strategy in cancer, particularly for hematologic malignancies. To date, however, genomic biomarkers to direct clinical translation have been lacking. We conducted a cell-based screen of genetically defined cancer cell lines using a prototypical inhibitor of BET bromodomains. Integration of genetic features with chemosensitivity data revealed a robust correlation between MYCN amplification and sensitivity to bromodomain inhibition. We characterized the mechanistic and translational significance of this finding in neuroblastoma, a childhood cancer with frequent amplification of MYCN. Genome-wide expression analysis showed downregulation of the MYCN transcriptional program accompanied by suppression of MYCN transcription. Functionally, bromodomain-mediated inhibition of MYCN impaired growth and induced apoptosis in neuroblastoma. BRD4 knockdown phenocopied these effects, establishing BET bromodomains as transcriptional regulators of MYCN. BET inhibition conferred a significant survival advantage in 3 in vivo neuroblastoma models, providing a compelling rationale for developing BET bro- modomain inhibitors in patients with neuroblastoma.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Literature Mining Sustains and Enhances Knowledge Discovery from Omic Studies
    LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES by Rick Matthew Jordan B.S. Biology, University of Pittsburgh, 1996 M.S. Molecular Biology/Biotechnology, East Carolina University, 2001 M.S. Biomedical Informatics, University of Pittsburgh, 2005 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2016 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Rick Matthew Jordan It was defended on December 2, 2015 and approved by Shyam Visweswaran, M.D., Ph.D., Associate Professor Rebecca Jacobson, M.D., M.S., Professor Songjian Lu, Ph.D., Assistant Professor Dissertation Advisor: Vanathi Gopalakrishnan, Ph.D., Associate Professor ii Copyright © by Rick Matthew Jordan 2016 iii LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES Rick Matthew Jordan, M.S. University of Pittsburgh, 2016 Genomic, proteomic and other experimentally generated data from studies of biological systems aiming to discover disease biomarkers are currently analyzed without sufficient supporting evidence from the literature due to complexities associated with automated processing. Extracting prior knowledge about markers associated with biological sample types and disease states from the literature is tedious, and little research has been performed to understand how to use this knowledge to inform the generation of classification models from ‘omic’ data. Using pathway analysis methods to better understand the underlying biology of complex diseases such as breast and lung cancers is state-of-the-art. However, the problem of how to combine literature- mining evidence with pathway analysis evidence is an open problem in biomedical informatics research.
    [Show full text]
  • The Retinitis Pigmentosa 1 Protein Is a Photoreceptor Microtubule-Associated Protein
    The Journal of Neuroscience, July 21, 2004 • 24(29):6427–6436 • 6427 Neurobiology of Disease The Retinitis Pigmentosa 1 Protein Is a Photoreceptor Microtubule-Associated Protein Qin Liu,1 Jian Zuo,2 and Eric A. Pierce1 1F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and 2Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105 The outer segments of rod and cone photoreceptor cells are highly specialized sensory cilia made up of hundreds of membrane discs stacked into an orderly array along the photoreceptor axoneme. It is not known how the alignment of the outer segment discs is controlled, although it has been suggested that the axoneme may play a role in this process. Mutations in the retinitis pigmentosa 1 (RP1) gene are a common cause of retinitis pigmentosa (RP). Disruption of the Rp1 gene in mice causes misorientation of outer segment discs, suggesting a role for RP1 in outer segment organization. Here, we show that the RP1 protein is part of the photoreceptor axoneme. Amino acids 28–228 of RP1, which share limited homology with the microtubule-binding domains of the neuronal microtubule-associated protein (MAP) doublecortin, mediate the interaction between RP1 and microtubules, indicating that the putative doublecortin (DCX) domains in RP1 are functional. The N-terminal portion of RP1 stimulates the formation of microtubules in vitro and stabilizes cytoplas- mic microtubules in heterologous cells. Evaluation of photoreceptor axonemes from mice with targeted disruptions of the Rp1 gene shows that Rp1 proteins that contain the DCX domains also help control axoneme length and stability in vivo.
    [Show full text]
  • Pan-Proteomic Approaches to Diseases
    ANNUAL MEETING ABSTRACTS 433A were Grade 2. The CD45 labeling indices for Grade 1 and 2 tumors were 7.4 ± 19.7% of cyst fluid tumor marker is variable. Recently, molecular tests of cyst fluid have been and 4.7 ± 11.1% (p=0.47). The Ki-67+/CD45+ labeling indices for Grade 1 and 2 tumors applied and show high specificity in the differentiation of the pancreatic cystic lesions. were 0.0029 ± 0.10% and 0.60 ± 3.6% (p=0.45). In this study, we investigated the usefulness of molecular analysis of pancreatic cyst Conclusions: These results suggest that tumor-infiltrating lymphocytes did not affect fluid in the setting of inconclusive cytology and non-contributory tumor markers test. the Ki-67 labeling index in this series of PanNETs, and will require validation with a Design: We retrospectively reviewed pancreatic cystic lesions with EUS-FNA cytology, larger patient population. cyst fluid tumor markers (CEA and amylase) and molecular tests (K-ras mutation and loss of heterozygocity) from 2009-2011. The inconclusive cytology diagnosis was 1802 MicroRNAs as Diagnostic Markers for Pancreatic Ductal defined as “non-diagnostic” or “atypical cytology”. Non-contributory cyst fluid chemical Adenocarcinoma and Pancreatic Intraepithelial Neoplasm analysis includes 2 situations: 1) amylase<250U/L and CEA <192 ng/ml or 2) amylase >250 U/L and CEA >192ng/ml. The molecular tests and the histopathologic results of Y Xue, AN Abou Tayoun, KM Abo, JM Pipas, SR Gordon, TB Gardner, RJ Barth, AA the resection specimens were analyzed. Suriawinata, GJ Tsongalis. Dartmouth-Hitchcock Medical Center, Lebanon, NH.
    [Show full text]
  • Perkinelmer Genomics to Request the Saliva Swab Collection Kit for Patients That Cannot Provide a Blood Sample As Whole Blood Is the Preferred Sample
    Eye Disorders Comprehensive Panel Test Code D4306 Test Summary This test analyzes 211 genes that have been associated with ocular disorders. Turn-Around-Time (TAT)* 3 - 5 weeks Acceptable Sample Types Whole Blood (EDTA) (Preferred sample type) DNA, Isolated Dried Blood Spots Saliva Acceptable Billing Types Self (patient) Payment Institutional Billing Commercial Insurance Indications for Testing Individuals with an eye disease suspected to be genetic in origin Individuals with a family history of eye disease Individuals suspected to have a syndrome associated with an eye disease Test Description This panel analyzes 211 genes that have been associated with ocular disorders. Both sequencing and deletion/duplication (CNV) analysis will be performed on the coding regions of all genes included (unless otherwise marked). All analysis is performed utilizing Next Generation Sequencing (NGS) technology. CNV analysis is designed to detect the majority of deletions and duplications of three exons or greater in size. Smaller CNV events may also be detected and reported, but additional follow-up testing is recommended if a smaller CNV is suspected. All variants are classified according to ACMG guidelines. Condition Description Diseases associated with this panel include microphtalmia, anophthalmia, coloboma, progressive external ophthalmoplegia, optic nerve atrophy, retinal dystrophies, retinitis pigementosa, macular degeneration, flecked-retinal disorders, Usher syndrome, albinsm, Aloprt syndrome, Bardet Biedl syndrome, pulmonary fibrosis, and Hermansky-Pudlak
    [Show full text]
  • Mitochondrial Genetics
    Mitochondrial genetics Patrick Francis Chinnery and Gavin Hudson* Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK Introduction: In the last 10 years the field of mitochondrial genetics has widened, shifting the focus from rare sporadic, metabolic disease to the effects of mitochondrial DNA (mtDNA) variation in a growing spectrum of human disease. The aim of this review is to guide the reader through some key concepts regarding mitochondria before introducing both classic and emerging mitochondrial disorders. Sources of data: In this article, a review of the current mitochondrial genetics literature was conducted using PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). In addition, this review makes use of a growing number of publically available databases including MITOMAP, a human mitochondrial genome database (www.mitomap.org), the Human DNA polymerase Gamma Mutation Database (http://tools.niehs.nih.gov/polg/) and PhyloTree.org (www.phylotree.org), a repository of global mtDNA variation. Areas of agreement: The disruption in cellular energy, resulting from defects in mtDNA or defects in the nuclear-encoded genes responsible for mitochondrial maintenance, manifests in a growing number of human diseases. Areas of controversy: The exact mechanisms which govern the inheritance of mtDNA are hotly debated. Growing points: Although still in the early stages, the development of in vitro genetic manipulation could see an end to the inheritance of the most severe mtDNA disease. Keywords: mitochondria/genetics/mitochondrial DNA/mitochondrial disease/ mtDNA Accepted: April 16, 2013 Mitochondria *Correspondence address. The mitochondrion is a highly specialized organelle, present in almost all Institute of Genetic Medicine, International eukaryotic cells and principally charged with the production of cellular Centre for Life, Newcastle energy through oxidative phosphorylation (OXPHOS).
    [Show full text]
  • Primepcr™Assay Validation Report
    PrimePCR™Assay Validation Report Gene Information Gene Name transmembrane protein 126A Gene Symbol TMEM126A Organism Human Gene Summary The protein encoded by this gene is a mitochondrial membrane protein of unknown function. Defects in this gene are a cause of optic atrophy type 7 (OPA7). Two transcript variants encoding different isoforms have been found for this gene. Gene Aliases DKFZp586C1924, OPA7 RefSeq Accession No. NC_000011.9, NG_017157.1, NT_167190.1 UniGene ID Hs.533725 Ensembl Gene ID ENSG00000171202 Entrez Gene ID 84233 Assay Information Unique Assay ID qHsaCID0014621 Assay Type SYBR® Green Detected Coding Transcript(s) ENST00000528105, ENST00000304511, ENST00000532180 Amplicon Context Sequence ACTGGTCTTGTTATTGGTGGTCTATACCCTGTTTTCTTGGCTATACCTGTAAATGG TGGTCTAGCAGCCAGGTATCAATCAGCTCTGTTACCACACAAAGGGAACATCTTA AGTTACTGGA Amplicon Length (bp) 91 Chromosome Location 11:85366682-85367402 Assay Design Intron-spanning Purification Desalted Validation Results Efficiency (%) 99 R2 0.9997 cDNA Cq 21.12 cDNA Tm (Celsius) 80 gDNA Cq 35.93 Specificity (%) 100 Information to assist with data interpretation is provided at the end of this report. Page 1/4 PrimePCR™Assay Validation Report TMEM126A, Human Amplification Plot Amplification of cDNA generated from 25 ng of universal reference RNA Melt Peak Melt curve analysis of above amplification Standard Curve Standard curve generated using 20 million copies of template diluted 10-fold to 20 copies Page 2/4 PrimePCR™Assay Validation Report Products used to generate validation data Real-Time PCR Instrument CFX384 Real-Time PCR Detection System Reverse Transcription Reagent iScript™ Advanced cDNA Synthesis Kit for RT-qPCR Real-Time PCR Supermix SsoAdvanced™ SYBR® Green Supermix Experimental Sample qPCR Human Reference Total RNA Data Interpretation Unique Assay ID This is a unique identifier that can be used to identify the assay in the literature and online.
    [Show full text]
  • Eye Disorders Requisition
    BAYLOR MIRACA GENETICS LABORATORIES SHIP TO: Baylor Miraca Genetics Laboratories 2450 Holcombe, Grand Blvd. -Receiving Dock PHONE: 800-411-GENE | FAX: 713-798-2787 | www.bmgl.com Houston, TX 77021-2024 Phone: 713-798-6555 INHERITED EYE DISORDERS REQUISITION PATIENT INFORMATION SAMPLE INFORMATION NAME: DATE OF COLLECTION: / / LAST NAME FIRST NAME MI MM DD YY HOSPITAL#: ACCESSION#: DATE OF BIRTH: / / GENDER (Please select one): FEMALE MALE MM DD YY SAMPLE TYPE (Please select one): ETHNIC BACKGROUND (Select all that apply): UNKNOWN BLOOD AFRICAN AMERICAN CORD BLOOD ASIAN SKELETAL MUSCLE ASHKENAZIC JEWISH MUSCLE EUROPEAN CAUCASIAN -OR- DNA (Specify Source): HISPANIC NATIVE AMERICAN INDIAN PLACE PATIENT STICKER HERE OTHER JEWISH OTHER (Specify): OTHER (Please specify): REPORTING INFORMATION ADDITIONAL PROFESSIONAL REPORT RECIPIENTS PHYSICIAN: NAME: INSTITUTION: PHONE: FAX: PHONE: FAX: NAME: EMAIL (INTERNATIONAL CLIENT REQUIREMENT): PHONE: FAX: INDICATION FOR STUDY SYMPTOMATIC (Summarize below.): *FAMILIAL MUTATION/VARIANT ANALYSIS: COMPLETE ALL FIELDS BELOW AND ATTACH THE PROBAND'S REPORT. GENE NAME: ASYMPTOMATIC/POSITIVE FAMILY HISTORY: (ATTACH FAMILY HISTORY) MUTATION/UNCLASSIFIED VARIANT: RELATIONSHIP TO PROBAND: THIS INDIVIDUAL IS CURRENTLY: SYMPTOMATIC ASYMPTOMATIC *If family mutation is known, complete the FAMILIAL MUTATION/ VARIANT ANALYSIS section. NAME OF PROBAND: ASYMPTOMATIC/POPULATION SCREENING RELATIONSHIP TO PROBAND: OTHER (Specify clinical findings below): BMGL LAB#: A COPY OF ORIGINAL RESULTS ATTACHED IF PROBAND TESTING WAS PERFORMED AT ANOTHER LAB, CALL TO DISCUSS PRIOR TO SENDING SAMPLE. A POSITIVE CONTROL MAY BE REQUIRED IN SOME CASES. REQUIRED: NEW YORK STATE PHYSICIAN SIGNATURE OF CONSENT I certify that the patient specified above and/or their legal guardian has been informed of the benefits, risks, and limitations of the laboratory test(s) requested.
    [Show full text]