Annotation of the Understudied Kinome and Preliminary Teseting of Kinase Inhibitor Combinations

Total Page:16

File Type:pdf, Size:1020Kb

Annotation of the Understudied Kinome and Preliminary Teseting of Kinase Inhibitor Combinations ANNOTATION OF THE UNDERSTUDIED KINOME AND PRELIMINARY TESETING OF KINASE INHIBITOR COMBINATIONS Claire Reisig Hall A thesis submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Master of Science in the Joint Program of Biomedical Engineering in the School of Medicine. Chapel Hill 2017 Approved by: Shawn Gomez Jeffrey Macdonald Glenn Walker © 2017 Claire Reisig Hall ALL RIGHTS RESERVED ii ABSTRACT Claire Reisig Hall: Annotation of the Understudied Kinome and Preliminary Testing of Kinase Inhibitor Combinations (Under the direction of Shawn Gomez) A technique utilizing multiplexed inhibitor beads and mass spectrometry (MIB/MS) detects functional protein kinases in breast cancer cell lines. Data from this technique was used to shed light on the understudied kinome, a portion of which is captured by the MIB/MS method. Regression analysis was performed to find correlations in kinase activity. The functional linkages were then used to annotate the understudied kinases. Annotations revealed new possible functions and disease relations for many understudied kinases. Kinase inhibitor combinations were suggested by principle components analysis (PCA) results performed on MIB/MS data from treated breast cancer cell lines. The combinations were preliminarily tested for signs of effectiveness. Dose curves and growth assays were performed to compare drug combinations in the SKBR3 cell line. The interpretation of in vitro experiment results was impeded because of poor accuracy and reproducibility. Possible designs for in vitro experiments producing interpretable results are presented. iii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................................................ vi LIST OF FIGURES .......................................................................................................................................... vii INTRODUCTION ............................................................................................................................................ 1 Cancer and treatment ....................................................................................................................1 Protein kinases and inhibitors ........................................................................................................2 Understudied kinases .....................................................................................................................3 Multiplexed inhibitor beads/mass spectrometry ...........................................................................4 Goals ...............................................................................................................................................5 CHAPTER 1: REGRESSION AND ANNOTATION .............................................................................................. 6 Introduction ....................................................................................................................................6 Regression .......................................................................................................................................7 Annotation ......................................................................................................................................9 Results and discussion ..................................................................................................................10 ADCK1 ..............................................................................................................................11 SG196 ...............................................................................................................................12 CSK23 ...............................................................................................................................13 M3KL4 ..............................................................................................................................14 Conclusions ...................................................................................................................................15 CHAPTER 2: KINASE INHIBITOR COMBINATIONS ........................................................................................ 16 Introduction ..................................................................................................................................16 iv Methods ........................................................................................................................................17 Results and discussion ..................................................................................................................18 Conclusions ...................................................................................................................................20 FIGURES AND TABLES .................................................................................................................................. 22 REFERENCES ................................................................................................................................................ 40 v LIST OF TABLES Table 1. Example of raw MIB/MS data ....................................................................................................... 38 Table 2. Gene name, classification and regression features of four Tdark kinases .................................... 39 vi LIST OF FIGURES Figure 1. Overlay of understudied kinases on phylogenetic kinome tree ................................................. 22 Figure 2. Heat map of normalized MIB/MS data ...................................................................................... 23 Figure 3. Flowchart of methods for lasso regression and annotations..................................................... 24 Figure 4. List of annotations occuring most frequently for understudied kinases ................................... 26 Figure 5. Subnetwork for ADCK1 ............................................................................................................... 27 Figure 6. Subnetwork for SG196 ............................................................................................................... 28 Figure 7. Subnetwork for CSK23 ................................................................................................................ 29 Figure 8. Subnetwork for M3KL4 ............................................................................................................... 30 Figure 8. PCA plot of kinome changes in MIB/MS data of treated breast cancer cell lines ...................... 31 Figure 10. Ideal dose curve and ideal growth assay .................................................................................. 32 Figure 11. Dose curves for calculating IC30’s used in initial growth assay ................................................ 33 Figure 12. First growth assay for Lapatinib, Dasatinib, Trametinib, and BEZ235 ...................................... 34 Figure 13. Compilation of dose curves for BEZ235, Dasatinib, and Trametinib ......................................... 35 Figure 14. Second growth assay for Lapatinib, Dasatinib, Trametinib, and BEZ235 .................................. 37 vii INTRODUCTION Cancer and treatment Cancer, a widespread and destructive disease with over 100 different types, is the second highest cause of death in the United States [1]. Breast cancer is the most common type of cancer, and is predicted to occur in over 250,000 new cases throughout the year 2017 [1]. For women, breast cancer has the second highest death rate behind lung cancer, meriting further research for understanding and treating the disease [1]. Breast cancer is separated into subgroups, emphasizing the heterogeneity of this type of cancer. Subsequently, treatment is also heterogeneous, depending on the subtype and progression of the disease. From a clinical standpoint the subtypes are divided into luminal (further subdivided into luminal A and luminal B), HER2-enriched, and triple-negative [2]. These three major subtypes are classified via the presence or absence of three receptors, estrogen (ER), progesterone (PR) and human epidermal growth factor receptor 2 (HER2) [2]. Localized treatments include surgery and radiation therapy. Systemic treatments are composed of drugs which circulate throughout the body via the bloodstream. These treatments include chemotherapy, hormone therapy, or targeted therapy, and are often dependent on subtype. Commonly, a combination of localized treatments and systemic treatments is used for combating breast cancer. Chemotherapy consists of drugs which cause apoptosis by damaging DNA or inhibiting cell division. Chemotherapy drugs generally target quickly dividing cells, a characteristic of cancer cells, thus enhancing the effectiveness of these drugs against cancer. However, as these drugs are not selective to only cancer cells, they also may target quickly dividing non-cancerous cells, causing degenerative and severe side effects associated with current cancer treatment. Drugs that can be targeted specifically to 1 the cancer cells thus minimize the side effects, but the available targets are dependent on the presence of receptors, and consequently, the subtype of breast cancer. The luminal subgroup of cancer has at least one of the ER or PR receptors present and therefore hormone therapy is an effective
Recommended publications
  • A Genome-Wide Association Study of Bisphosphonate-Associated
    Calcifed Tissue International (2019) 105:51–67 https://doi.org/10.1007/s00223-019-00546-9 ORIGINAL RESEARCH A Genome‑Wide Association Study of Bisphosphonate‑Associated Atypical Femoral Fracture Mohammad Kharazmi1 · Karl Michaëlsson1 · Jörg Schilcher2 · Niclas Eriksson3,4 · Håkan Melhus3 · Mia Wadelius3 · Pär Hallberg3 Received: 8 January 2019 / Accepted: 8 April 2019 / Published online: 20 April 2019 © The Author(s) 2019 Abstract Atypical femoral fracture is a well-documented adverse reaction to bisphosphonates. It is strongly related to duration of bisphosphonate use, and the risk declines rapidly after drug withdrawal. The mechanism behind bisphosphonate-associated atypical femoral fracture is unclear, but a genetic predisposition has been suggested. With the aim to identify common genetic variants that could be used for preemptive genetic testing, we performed a genome-wide association study. Cases were recruited mainly through reports of adverse drug reactions sent to the Swedish Medical Products Agency on a nation- wide basis. We compared atypical femoral fracture cases (n = 51) with population-based controls (n = 4891), and to reduce the possibility of confounding by indication, we also compared with bisphosphonate-treated controls without a current diagnosis of cancer (n = 324). The total number of single-nucleotide polymorphisms after imputation was 7,585,874. A genome-wide signifcance threshold of p < 5 × 10−8 was used to correct for multiple testing. In addition, we performed candidate gene analyses for a panel of 29 genes previously implicated in atypical femoral fractures (signifcance threshold of p < 5.7 × 10−6). Compared with population controls, bisphosphonate-associated atypical femoral fracture was associated with four isolated, uncommon single-nucleotide polymorphisms.
    [Show full text]
  • Novel Gene Fusions in Glioblastoma Tumor Tissue and Matched Patient Plasma
    cancers Article Novel Gene Fusions in Glioblastoma Tumor Tissue and Matched Patient Plasma 1, 1, 1 1 1 Lan Wang y, Anudeep Yekula y, Koushik Muralidharan , Julia L. Small , Zachary S. Rosh , Keiko M. Kang 1,2, Bob S. Carter 1,* and Leonora Balaj 1,* 1 Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; [email protected] (L.W.); [email protected] (A.Y.); [email protected] (K.M.); [email protected] (J.L.S.); [email protected] (Z.S.R.); [email protected] (K.M.K.) 2 School of Medicine, University of California San Diego, San Diego, CA 92092, USA * Correspondence: [email protected] (B.S.C.); [email protected] (L.B.) These authors contributed equally. y Received: 11 March 2020; Accepted: 7 May 2020; Published: 13 May 2020 Abstract: Sequencing studies have provided novel insights into the heterogeneous molecular landscape of glioblastoma (GBM), unveiling a subset of patients with gene fusions. Tissue biopsy is highly invasive, limited by sampling frequency and incompletely representative of intra-tumor heterogeneity. Extracellular vesicle-based liquid biopsy provides a minimally invasive alternative to diagnose and monitor tumor-specific molecular aberrations in patient biofluids. Here, we used targeted RNA sequencing to screen GBM tissue and the matched plasma of patients (n = 9) for RNA fusion transcripts. We identified two novel fusion transcripts in GBM tissue and five novel fusions in the matched plasma of GBM patients. The fusion transcripts FGFR3-TACC3 and VTI1A-TCF7L2 were detected in both tissue and matched plasma.
    [Show full text]
  • AVILA-DISSERTATION.Pdf
    LOGOS EX MACHINA: A REASONED APPROACH TOWARD CANCER by Andrew Avila, B. S., M. S. A Dissertation In Biological Sciences Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved Lauren Gollahon Chairperson of the Committee Rich Strauss Sean Rice Boyd Butler Richard Watson Peggy Gordon Miller Dean of the Graduate School May, 2012 c 2012, Andrew Avila Texas Tech University, Andrew Avila, May 2012 ACKNOWLEDGEMENTS I wish to acknowledge the incredible support given to me by my major adviser, Dr. Lauren Gollahon. Without your guidance surely I would not have made it as far as I have. Furthermore, the intellectual exchange I have shared with my advisory committee these long years have propelled me to new heights of inquiry I had not dreamed of even in the most lucid of my imaginings. That their continual intellectual challenges have provoked and evoked a subtle sense of natural wisdom is an ode to their efficacy in guiding the aspirant to the well of knowledge. For this initiation into the mysteries of nature I cannot thank my advisory committee enough. I also wish to thank the Vice President of Research for the fellowship which sustained the initial couple years of my residency at Texas Tech. Furthermore, my appreciation of the support provided to me by the Biology Department, financial and otherwise, cannot be understated. Finally, I also wish to acknowledge the individuals working at the High Performance Computing Center, without your tireless support in maintaining the cluster I would have not have completed the sheer amount of research that I have.
    [Show full text]
  • CLK3 Monoclonal Antibody (M04), Clone 5B2
    CLK3 monoclonal antibody (M04), clone 5B2 Catalog # : H00001198-M04 規格 : [ 100 ug ] List All Specification Application Image Product Mouse monoclonal antibody raised against a partial recombinant CLK3. Western Blot (Cell lysate) Description: Immunogen: CLK3 (AAH02555, 36 a.a. ~ 136 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Sequence: YPSRREPPPRRSRSRSHDRLPYQRRYRERRDSDTYRCEERSPSFGED YYGPSRSRHRRRSRERGPYRTRKHAHHCHKRRTRSCSSASSRSQQSS enlarge KRSSRSV Western Blot (Recombinant protein) Host: Mouse Immunohistochemistry Reactivity: Human (Formalin/PFA-fixed paraffin- embedded sections) Isotype: IgG2b Kappa Quality Control Antibody Reactive Against Recombinant Protein. Testing: enlarge Immunofluorescence enlarge Western Blot detection against Immunogen (36.74 KDa) . ELISA Storage Buffer: In 1x PBS, pH 7.4 Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Instruction: MSDS: Download Datasheet: Download Applications Western Blot (Cell lysate) Page 1 of 3 2016/5/20 CLK3 monoclonal antibody (M04), clone 5B2 Western Blot analysis of CLK3 expression in MCF-7 ( Cat # L046V1 ). Protocol Download Western Blot (Recombinant protein) Protocol Download Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) enlarge this image Immunoperoxidase of monoclonal antibody to CLK3 on formalin-fixed paraffin-embedded human testis. [antibody concentration 1.5 ug/ml] Protocol Download Immunofluorescence enlarge this image Immunofluorescence of monoclonal antibody to CLK3 on HeLa cell. [antibody concentration 10 ug/ml] Protocol Download ELISA Gene Information Entrez GeneID: 1198 GeneBank BC002555 Accession#: Protein AAH02555 Accession#: Page 2 of 3 2016/5/20 Gene Name: CLK3 Gene Alias: FLJ22858,PHCLK3,PHCLK3/152 Gene CDC-like kinase 3 Description: Omim ID: 602990 Gene Ontology: Hyperlink Gene Summary: This gene encodes a protein belonging to the serine/threonine type protein kinase family.
    [Show full text]
  • Extending the Phenotypic Spectrum of Sengers Syndrome: Congenital Lactic Acidosis with Synthetic Liver Dysfunction
    Himmelfarb Health Sciences Library, The George Washington University Health Sciences Research Commons Pathology Faculty Publications Pathology 4-13-2018 Extending the phenotypic spectrum of Sengers syndrome: Congenital lactic acidosis with synthetic liver dysfunction. David B Beck Kristina Cusmano-Ozog George Washington University Nickie Andescavage George Washington University Eyby Leon George Washington University Follow this and additional works at: https://hsrc.himmelfarb.gwu.edu/smhs_path_facpubs Part of the Medical Pathology Commons, Pathology Commons, and the Translational Medical Research Commons APA Citation Beck, D., Cusmano-Ozog, K., Andescavage, N., & Leon, E. (2018). Extending the phenotypic spectrum of Sengers syndrome: Congenital lactic acidosis with synthetic liver dysfunction.. Translational Science of Rare Diseases, 3 (1). http://dx.doi.org/10.3233/ TRD-180020 This Journal Article is brought to you for free and open access by the Pathology at Health Sciences Research Commons. It has been accepted for inclusion in Pathology Faculty Publications by an authorized administrator of Health Sciences Research Commons. For more information, please contact [email protected]. Translational Science of Rare Diseases 3 (2018) 45–48 45 DOI 10.3233/TRD-180020 IOS Press Original Research Extending the phenotypic spectrum of Sengers syndrome: Congenital lactic acidosis with synthetic liver dysfunction David B. Becka, Kristina Cusmano-Ozogb, Nickie Andescavagec and Eyby Leonb,∗ aNational Human Genome Research Institute, National Institute of Health, Bethesda, MD, USA bChildren’s National Health System, Rare Disease Institute, Genetics and Metabolism, Washington, DC, USA cChildren’s National Health System, Pediatrics, Neonatology, Washington, DC, USA Abstract. Sengers syndrome is a rare autosomal recessive mitochondrial disease characterized by lactic acidosis, hypertrophic cardiomyopathy and bilateral cataracts.
    [Show full text]
  • Two Novel Mutations in the AGK Gene: Two Case Reports with Sengers
    Techno e lo Kor et al., Gene Technol 2016, 5:1 n g e y G Gene Technology DOI: 10.4172/2329-6682.1000140 ISSN: 2329-6682 Case Report Open Access Two Novel Mutations in the AGK Gene: Two Case Reports with Sengers Syndrome Deniz Kor1*, Berna Seker Yılmaz1, Ozden Ozgur Horoz2, Gulay Ceylaner3, Selcuk Sızmaz4, Fadli Demir2 and Neslihan Onenli Mungan1 1Department of Pediatric Metabolism and Nutrition, Faculty of Medicine, Cukurova University, Adana, Turkey 2Department of Pediatrics, Faculty of Medicine, Cukurova University, Adana, Turkey 3Intergen Genetic Laboratory, Ankara, Turkey 4Department of Ophthalmology, Cukurova University Faculty of Medicine, Adana, Turkey Abstract Mutations in the AGK gene are known to cause Sengers Syndrome, a rare recessive disorder characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance and lactic acidosis with normal mental development. Since the first report in 1975 by Sengers et al. about 50 individuals have been described as having this syndrome. Here we report two novel mutations in the AGK gene in two patients with neonatal Sengers syndrome. Keywords: AGK gene; Sengers syndrome; Cardiomyopathy; acylcarnitine levels, plasma amino acids and urine organic acids) Myopathy; Cataract were within normal limits except elevated levels of creatine kinases and lactate. Echocardiographic evaluation documented hypertrophic Introduction cardiomyopathy with an ejection fraction of 30%. Electromyography Sengers Syndrome (OMIM 212350), also known as cardiomyopathic and cerebral MRI showed no abnormality. A quadriceps muscle biopsy mitochondrial DNA depletion syndrome-10 (MTDPS10) is a rare revealed fatty infiltrations in the muscle fibers and myopathic changes. autosomal-recessive disorder characterized by congenital cataracts, Based on these observations a clinical diagnosis of Sengers Syndrome hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance was made.
    [Show full text]
  • Mouse Tnik Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Tnik Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Tnik conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Tnik gene (NCBI Reference Sequence: NM_026910 ; Ensembl: ENSMUSG00000027692 ) is located on Mouse chromosome 3. 33 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 33 (Transcript: ENSMUST00000160307). Exon 7 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Tnik gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-433L13 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knock-out allele exhibit impaired postsynaptic signaling and cognitive function. Exon 7 starts from about 12.48% of the coding region. The knockout of Exon 7 will result in frameshift of the gene. The size of intron 6 for 5'-loxP site insertion: 2463 bp, and the size of intron 7 for 3'-loxP site insertion: 12829 bp. The size of effective cKO region: ~631 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 7 33 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Tnik Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Single-Cell Expression Profiling Of
    Edinburgh Research Explorer Single-cell expression profiling of dopaminergic neurons combined with association analysis identifies pyridoxal kinase as Parkinson's disease gene Citation for published version: Elstner, M, Morris, CM, Heim, K, Lichtner, P, Bender, A, Mehta, D, Schulte, C, Sharma, M, Hudson, G, Goldwurm, S, Giovanetti, A, Zeviani, M, Burn, DJ, McKeith, IG, Perry, RH, Jaros, E, Krueger, R, Wichmann, H-E, Schreiber, S, Campbell, H, Wilson, JF, Wright, AF, Dunlop, M, Pistis, G, Toniolo, D, Chinnery, PF, Gasser, T, Klopstock, T, Meitinger, T, Prokisch, H & Turnbull, DM 2009, 'Single-cell expression profiling of dopaminergic neurons combined with association analysis identifies pyridoxal kinase as Parkinson's disease gene', Annals of Neurology, vol. 66, no. 6, pp. 792-798. https://doi.org/10.1002/ana.21780 Digital Object Identifier (DOI): 10.1002/ana.21780 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Annals of Neurology Publisher Rights Statement: Published in final edited form as: Ann Neurol. 2009 December ; 66(6): 792–798. doi:10.1002/ana.21780. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • The Essential Role of TNIK Gene Amplification in Gastric Cancer Growth
    OPEN Citation: Oncogenesis (2014) 3, e89; doi:10.1038/oncsis.2014.2 & 2014 Macmillan Publishers Limited All rights reserved 2157-9024/14 www.nature.com/oncsis ORIGINAL ARTICLE The essential role of TNIK gene amplification in gastric cancer growth This article has been corrected since Online Publication and an erratum has also been published D-H Yu1,5, X Zhang1,5, H Wang1,2,5, L Zhang3, H Chen4,MHu1, Z Dong1, G Zhu1, Z Qian1,JFan1,XSu1,YXu1, L Zheng1, H Dong1, X Yin1,QJi1 and J Ji3 Traf2- and Nck-interacting kinase (TNIK) is one of the germinal center kinase family members involved in cytoskeleton organization and neuronal dendrite extension. Emerging evidence supports that TNIK is essential for activation of WNT signaling pathway in colon cancer growth. To search for novel genetic aberrations that drive carcinogenesis, we performed microarray-based comparative hybridization assay for gene copy number variations in primary tumor samples. Our data showed that TNIK gene was amplified in 7% (8/106) of Chinese gastric cancer patients. Theses amplifications were confirmed by fluorescence in situ hybridization analysis. PAMC82 human gastric cancer and T47D human breast cancer cell lines with TNIK amplification were identified to further understand the function of TNIK gene amplification. RNA-interference-mediated silencing of TNIK resulted in significant inhibition of cell growth and induction of cell death in TNIK-amplified, but not in TNIK-non-amplified, cell lines tested. This selective sensitivity to the TNIK inhibition was also observed under the effect of a small-molecule TNIK inhibitor. Furthermore, our data indicated that TNIK’s role in gastric cancer growth was not dependent on Wnt signaling but rather was involved in AKT activation and cell autophagy.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Brain-Specific Knock-Out of Hypoxia-Inducible Factor-1Α
    The Journal of Neuroscience, April 20, 2005 • 25(16):4099–4107 • 4099 Neurobiology of Disease Brain-Specific Knock-Out of Hypoxia-Inducible Factor-1␣ Reduces Rather Than Increases Hypoxic–Ischemic Damage Rob Helton,1* Jiankun Cui,2* John R. Scheel,1* Julie A. Ellison,1 Chris Ames,1 Claire Gibson,2 Barbara Blouw,3 Ling Ouyang,1 Ioannis Dragatsis,4 Scott Zeitlin,5 Randall S. Johnson,3 Stuart A. Lipton,2 and Carrolee Barlow1 1Laboratory of Genetics, The Salk Institute for Biological Studies, and 2Center for Neuroscience and Aging, The Burnham Institute, La Jolla, California 92037, 3Molecular Biology Section, Division of Biology, University of California, San Diego, La Jolla, California 92093, 4Department of Physiology, The University of Tennessee, Health Science Center, Memphis, Tennessee 38163, and 5Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908 ␣ ␣ Hypoxia-inducible factor-1 (HIF-1 ) plays an essential role in cellular and systemic O2 homeostasis by regulating the expression of genes important in glycolysis, erythropoiesis, angiogenesis, and catecholamine metabolism. It is also believed to be a key component of the cellular response to hypoxia and ischemia under pathophysiological conditions, such as stroke. To clarify the function of HIF-1␣ in the brain, we exposed adult mice with late-stage brain deletion of HIF-1␣ to hypoxic injuries. Contrary to expectations, the brains from the HIF-1␣-deficient mice were protected from hypoxia-induced cell death. These surprising findings suggest that decreas- ing the level of HIF-1␣ can be neuroprotective. Gene chip expression analysis revealed that, contrary to expectations, the majority of hypoxia-dependent gene-expression changes were unaltered, whereas a specific downregulation of apoptotic genes was observed in the HIF-1␣-deficient mice.
    [Show full text]
  • MOCHI Enables Discovery of Heterogeneous Interactome Modules in 3D Nucleome
    Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press MOCHI enables discovery of heterogeneous interactome modules in 3D nucleome Dechao Tian1,# , Ruochi Zhang1,# , Yang Zhang1, Xiaopeng Zhu1, and Jian Ma1,* 1Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA #These two authors contributed equally *Correspondence: [email protected] Contact To whom correspondence should be addressed: Jian Ma School of Computer Science Carnegie Mellon University 7705 Gates-Hillman Complex 5000 Forbes Avenue Pittsburgh, PA 15213 Phone: +1 (412) 268-2776 Email: [email protected] 1 Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract The composition of the cell nucleus is highly heterogeneous, with different constituents forming complex interactomes. However, the global patterns of these interwoven heterogeneous interactomes remain poorly understood. Here we focus on two different interactomes, chromatin interaction network and gene regulatory network, as a proof-of-principle, to identify heterogeneous interactome modules (HIMs), each of which represents a cluster of gene loci that are in spatial contact more frequently than expected and that are regulated by the same group of transcription factors. HIM integrates transcription factor binding and 3D genome structure to reflect “transcriptional niche” in the nucleus. We develop a new algorithm MOCHI to facilitate the discovery of HIMs based on network motif clustering in heterogeneous interactomes. By applying MOCHI to five different cell types, we found that HIMs have strong spatial preference within the nucleus and exhibit distinct functional properties. Through integrative analysis, this work demonstrates the utility of MOCHI to identify HIMs, which may provide new perspectives on the interplay between transcriptional regulation and 3D genome organization.
    [Show full text]