Quasicrystalline 30 Twisted Bilayer Graphene As an Incommensurate

Total Page:16

File Type:pdf, Size:1020Kb

Quasicrystalline 30 Twisted Bilayer Graphene As an Incommensurate Quasicrystalline 30◦ twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling Wei Yaoa,b, Eryin Wanga,b, Changhua Baoa,b, Yiou Zhangc, Kenan Zhanga,b, Kejie Baoc, Chun Kai Chanc, Chaoyu Chend, Jose Avilad, Maria C. Asensiod,e, Junyi Zhuc,1, and Shuyun Zhoua,b,f,1 aState Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China; bDepartment of Physics, Tsinghua University, Beijing 100084, China; cDepartment of Physics, The Chinese University of Hong Kong, Hong Kong, China; dSynchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin-BP 48, 91192 Gif sur Yvette Cedex, France; eUniversite´ Paris-Saclay, L’Orme des Merisiers, Saint Aubin-BP 48, 91192 Gif sur Yvette Cedex, France; and fCollaborative Innovation Center of Quantum Matter, Beijing 100084, P. R. China Edited by Hongjie Dai, Department of Chemistry, Stanford University, Stanford, CA, and approved May 25, 2018 (received for review December 1, 2017) The interlayer coupling can be used to engineer the electronic Although the electronic structures of commensurate het- structure of van der Waals heterostructures (superlattices) to erostructures have been investigated in recent years (13–17), obtain properties that are not possible in a single material. So research on incommensurate heterostructures remains limited far research in heterostructures has been focused on commen- for two reasons. On one hand, incommensurate heterostruc- surate superlattices with a long-ranged Moire´ period. Incom- tures are difficult to be stabilized, and thus, they are quite mensurate heterostructures with rotational symmetry but not rare under natural growth conditions. On the other hand, translational symmetry (in analogy to quasicrystals) are not only it is usually assumed that the interlayer interaction is sup- rare in nature, but also the interlayer interaction has often been pressed due to the lack of phase coherence. For example, assumed to be negligible due to the lack of phase coherence. incommensurate tBLG has often been taken as a trivial com- Here we report the successful growth of quasicrystalline 30◦ bination of two noninteracting graphene layers (18–20). How ◦ twisted bilayer graphene (30 -tBLG), which is stabilized by the the electronic structure is modified in such incommensu- SCIENCES Pt(111) substrate, and reveal its electronic structure. The 30◦-tBLG rate heterostructures, with symmetry analogous to quasicrys- APPLIED PHYSICAL is confirmed by low energy electron diffraction and the interval- talline order, is a fundamental question. Here by growing ley double-resonance Raman mode at 1383 cm−1. Moreover, the epitaxial 30◦-tBLG successfully on Pt(111) substrate and reveal- emergence of mirrored Dirac cones inside the Brillouin zone of ing its electronic structure using angle-resolved photoemis- each graphene layer and a gap opening at the zone boundary sion spectroscopy (ARPES) and NanoARPES, we show that suggest that these two graphene layers are coupled via a gen- the interlayer coupling can modify the electronic structure eralized Umklapp scattering mechanism—that is, scattering of a significantly, leading to mirrored Dirac cones. Additionally, Dirac cone in one graphene layer by the reciprocal lattice vector to understand the intriguing stability that is against com- of the other graphene layer. Our work highlights the important mon belief on bilayer graphene, we performed first-principles role of interlayer coupling in incommensurate quasicrystalline calculations and found that such incommensurate 30◦-tBLG superlattices, thereby extending band structure engineering to incommensurate superstructures. Significance twisted bilayer graphene j NanoARPES j incommensurate Interlayer interaction in van der Waals heterostructures ◦ heterostructure j band structure engineering j quasicrystalline 30 -tBLG could induce many exotic phenomena. Unlike commensu- rate heterostructures, incommensurate ones have often been n van der Waals heterostructures (1), a long-ranged commen- neglected, due to the rarity in nature and the assumption of Isurate Moir´e superlattice (2–7) forms only when satisfying suppressed coherent interlayer movement of electrons. How top top 0 bottom 0 bottom top ma1 + na2 = m a1 + n a2 (8), where a1,2 and the interlayer interaction affects the electronic structure of abottom such a nonperiodic heterostructure is a fundamental ques- 1,2 are primitive lattice vectors for the top and bottom lay- ◦ ers, respectively, and m, n, m0, and n0 are integers. Twisted tion. In this work, by successfully growing 30 -twisted bilayer bilayer graphene (tBLG) can be viewed as a simple version of graphene (tBLG) as an example for incommensurate “het- top erostructure” with quasicrystalline order, we report the emer- “hetero”-structure, with a1,2 rotated by a twisting angle θt with bottom gence of mirrored Dirac cones. We identify that these mirrored respect to a1,2 . In tBLG, commensuration occurs when θt Dirac cones are a consequence of the interlayer interaction, satisfies (9, 10) showing its importance in the incommensurate structure, which has been overlooked before. These results broaden the 3p2 + 3pq + q 2=2 application range of van der Waals heterostructure for future cos θ = , [1] t 3p2 + 3pq + q 2 electronic devices. Author contributions: S.Z. designed research; W.Y., E.W., C.B., Y.Z., K.Z., K.B., C.K.C., C.C., where p and q are two coprime positive integers. Fig. 1A plots J.A., M.C.A., and J.Z. performed research; W.Y. and S.Z. analyzed data; and W.Y., J.Z., and the possible twisting angles for forming commensurate tBLG S.Z. wrote the paper. for q = 1. It is clear that commensuration easily forms around The authors declare no conflict of interest. ◦ ◦ 0 , while for larger twist angles, especially around 30 , incom- This article is a PNAS Direct Submission. mensurate superlattice is more common (11). In contrast to Published under the PNAS license. commensurate superlattice with a long-ranged period (see exam- 1 To whom correspondence may be addressed. Email: [email protected] or ple in Fig. 1B), incommensurate superlattice lacks a long-ranged [email protected] translational symmetry in real space while preserving the rota- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. tional symmetry; for example, 30◦-tBLG (Fig. 1C) is similar to 1073/pnas.1720865115/-/DCSupplemental. quasicrystals with a classic dodecagonal pattern (12). www.pnas.org/cgi/doi/10.1073/pnas.1720865115 PNAS Latest Articles j 1 of 6 Downloaded by guest on October 1, 2021 A incommensurate C incommensurate heterostructure work shows that distinguished from other graphene/Pt with com- commensurate (Quasicrystalline) mensurate (e.g., 2 × 2, 3 × 3) Moir´e superstructures (21), the ◦ 0 60 interface between the 30 monolayer graphene and the Pt(111) substrate is incommensurate without forming any Moir´e pattern, leading to nearly free-standing monolayer graphene (22). Fur- ther increasing the annealing temperature and time can lead to a thicker graphene sample with a new set of diffraction peaks emerging at 0◦ orientation (red arrow in Fig. 2B) coexisting with those at 30◦, and such a graphene sample is the focus of the cur- B rent work. The lattice constants extracted from LEED show that commensurate superlattice there is negligible strain (<0.2%; see SI Appendix, Fig. S1 for details) between the 30◦ and 0◦ graphene layers, and the absence of additional reconstructed diffraction spots in the LEED pat- tern further supports that they do not form commensurate super- lattice. If these diffraction peaks come from the same graphene domains, this would imply that 0◦ graphene is stacked on top of the bottom 30◦ graphene layer—namely, a 30◦-tBLG is formed. In the following, we will provide direct experimental evidence Fig. 1. Commensurate and incommensurate tBLG. (A) The distribution of for the conjectured incommensurate 30◦-tBLG from Raman all possible twisting angles θt for forming commensurate tBLG when q = 1 spectroscopy and reveal its electronic structure from ARPES in Eq. 1. The Moire´ period at corresponding twisting angles is represented measurements. by the length of the solid line (with logarithmic scale). (B) Commensurate tBLG with 7.34◦ twisting angle (indicated by the blue arrow in A), show- ing Moire´ pattern with periodic translational symmetry. Green arrows are Intervalley Double-Resonance (DR) Raman Mode. Raman spec- the Moire´ reciprocal lattice vectors. (C) Incommensurate 30◦-tBLG without troscopy is a powerful tool for characterizing the vibrational any long-ranged period (indicated by red arrow in A), showing patterns of mode in graphene (23) and can provide direct information about dodecagonal quasicrystal. the sample thickness and stacking. Fig. 2G shows a typical optical image of the as-grown sample. The optical image shows strong intensity contrast, with a darker region of ≈10 µm overlapping heterostructure is stabilized under appropriate substrate with the brighter region. The Raman spectra in Fig. 2C show conditions. stronger intensity for the darker region (red curve) than the brighter region (blue curve), suggesting that the darker region Results is thicker. The spectra for both regions show characteristic fea- Growth of 30◦-tBLG. The 30◦-tBLG sample was grown on the tures of monolayer graphene (23), in which the 2D mode shows a Pt(111) substrate by carbon segregation from the bulk sub- single Lorentzian peak with stronger intensity than the G mode. strate (21, 22). Fig. 2A shows
Recommended publications
  • Allan Hugh Macdonald Date and Place of Birth
    10/31/2014 CURRICULUM VITAE ALLAN H. MACDONALD Full name: Allan Hugh MacDonald Date and place of birth: December 1, 1951 Antigonish, Nova Scotia, Canada Citizenships: Canadian and American Present address: 2519 Harris Boulevard Austin, Texas 78703 USA Phone (512) 495-9192 Institutional affiliation: The University of Texas at Austin Austin, Texas 78712 Phone (512) 232-9113 FAX (512) 471-9621 e-mail: [email protected] Title: Sid W. Richardson Foundation Regents Chair Field of Specialization: Condensed Matter Theory Employment: September 1973 -- April 1978 Ph.D. Student University of Toronto May 1978 -- October 1980 Research Associate --- National Research Council November 1980 -- June 1982 Assistant Research Officer -- National Research Council of Canada August 1982 -- August 1987 Associate Research Officer --- National Research Council of Canada September 1987 -- August 1992 Professor of Physics --- Indiana University September 1992 -- August 2000 Distinguished Professor of Physics --- Indiana University September 2000 -- present Sid W. Richardson Foundation Regents Chair --- The University of Texas at Austin 1 10/31/2014 Scholarships and Honors: President's Scholarship, St. Francis Xavier University, 1969–1973 Governor-General's Medal, St. Francis Xavier University, 1973 (Highest academic standing in graduating class) NSERC 1967 Science Scholarship, University of Toronto, 1973–1977 Herzberg Medal, 1987 (Awarded by the Canadian Association of Physicists) Fellow of the American Physical Society, 1989 Sid W. Richardson Foundation Regents
    [Show full text]
  • Moiré Band Topology in Twisted Bilayer Graphene
    Moiré Band Topology in Twisted Bilayer Graphene Chao Ma, † Qiyue Wang, ‡ Scott Mills,§ Xiaolong Chen, †# Bingchen Deng, † Shaofan Yuan, † Cheng Li, † Kenji Watanabe, || Takashi Taniguchi, || Du Xu, *§ Fan Zhang, *‡ and Fengnian Xia*† †Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA ‡Department of Physics, The University of Texas at Dallas, Richardson, TX 7508, USA §Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY11794, USA ||National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan 1 ABSTRACT Recently twisted bilayer graphene (t-BLG) emerges as a new strongly correlated physical platform near a magic twist angle, which hosts many exciting phenomena such as the Mott-like insulating phases, unconventional superconducting behavior and emergent ferromagnetism. Besides the apparent significance of band flatness, band topology may be another critical element in determining strongly correlated twistronics yet receives much less attention. Here we report compelling evidence for nontrivial noninteracting band topology of t-BLG moiré Dirac bands through a systematic nonlocal transport study, in conjunction with an examination rooted in K- theory. The moiré band topology of t-BLG manifests itself as two pronounced nonlocal responses in the electron and hole superlattice gaps. We further show that the nonlocal responses are robust to the interlayer electric field, twist angle, and edge termination, exhibiting a universal scaling law. While an unusual symmetry of t-BLG trivializes Berry curvature, we elucidate that two Z2 invariants characterize the topology of the moiré Dirac bands, validating the topological edge origin of the observed nonlocal responses. Our findings not only provide a new perspective for understanding the emerging strongly correlated phenomena in twisted van der Waals heterostructures, but also suggest a potential strategy to achieve topologically nontrivial metamaterials from topologically trivial quantum materials based on twist engineering.
    [Show full text]
  • Exploring the Electrical Properties of Twisted Bilayer Graphene
    Linfield University DigitalCommons@Linfield Senior Theses Student Scholarship & Creative Works 5-2019 Exploring the Electrical Properties of Twisted Bilayer Graphene William Shannon Linfield College Follow this and additional works at: https://digitalcommons.linfield.edu/physstud_theses Part of the Condensed Matter Physics Commons, Energy Systems Commons, Engineering Physics Commons, Materials Science and Engineering Commons, and the Power and Energy Commons Recommended Citation Shannon, William, "Exploring the Electrical Properties of Twisted Bilayer Graphene" (2019). Senior Theses. 45. https://digitalcommons.linfield.edu/physstud_theses/45 This Thesis (Open Access) is protected by copyright and/or related rights. It is brought to you for free via open access, courtesy of DigitalCommons@Linfield, with permission from the rights-holder(s). Your use of this Thesis (Open Access) must comply with the Terms of Use for material posted in DigitalCommons@Linfield, or with other stated terms (such as a Creative Commons license) indicated in the record and/or on the work itself. For more information, or if you have questions about permitted uses, please contact [email protected]. Exploring the Electrical Properties of Twisted Bilayer Graphene William Shannon A THESIS Presented to the Department of Physics LINFIELD COLLEGE McMinnville, Oregon In partial fulfillment of the requirements for the Degree of BACHELOR OF SCIENCE May, 2019 THESIS COPYRIGHT PERMISSIONS Pleaseread this document carefully before signing. If you have questions about any of these permissions,please contact the DigitalCommonsCoordinator. Title of the Thesis: Exploring the Electrical Properties of Twisted Bilayer Graphene Author's Name: (Last name, first name) Shannon, William111 Advisor's Name DigitalCommons@Linfield(DC@L) is our web-based, open access-compliantinstitutional repository for digital content produced by Linfield faculty, students, staff, and their collaborators.
    [Show full text]
  • Critical Point for Bose–Einstein Condensation of Excitons in Graphite
    Critical point for Bose–Einstein condensation of excitons in graphite Jinhua Wanga,b , Pan Niea,b , Xiaokang Lia,b, Huakun Zuoa,b, Benoˆıt Fauque´ c, Zengwei Zhua,b,1 , and Kamran Behniad aWuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China; bSchool of Physics, Huazhong University of Science and Technology, Wuhan 430074, China; cJeunes Equipes´ de l’Institut de Physique, Unite´ Mixte de Service et de Recherche 3573, CNRS, College` de France, Paris Sciences et Lettres Research University, 75231 Paris Cedex 05, France; and dLaboratoire de Physique et d’Etude´ des Materiaux,´ CNRS, Ecole´ Superieure´ de Physique et de Chimie Industrielles Paris, Paris Sciences et Lettres Research University, 75005 Paris, France Edited by Zachary Fisk, University of California, Irvine, CA, and approved October 15, 2020 (received for review June 22, 2020) An exciton is an electron–hole pair bound by attractive Coulomb nature of EI unexpected in the alternative Peierls-driven charge interaction. Short-lived excitons have been detected by a vari- density wave (CDW) (9). Other indirect signatures of BEC ety of experimental probes in numerous contexts. An excitonic transition have been reported in two-dimensional systems, such insulator, a collective state of such excitons, has been more elu- as quantum wells (11), graphene (12–14), and transition metal sive. Here, thanks to Nernst measurements in pulsed magnetic dichalcogenides heterostructures (15, 16). fields, we show that in graphite there is a critical temperature Here, we present the case of graphite subject to strong mag- (T = 9.2 K) and a critical magnetic field (B = 47 T) for Bose–Einstein netic field where the existence of a thermodynamic phase transi- condensation of excitons.
    [Show full text]
  • Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor
    Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition Seunghyun Lee§, Kyunghoon Lee§, Zhaohui Zhong * Department of Electrical Engineering and Computer Science, University of Michigan Ann Arbor, MI 48109, USA § These authors contributed equally to this work. *Corresponding author. Electronic mail: [email protected] ABSTRACT The discovery of electric field induced bandgap opening in bilayer graphene opens new door for making semiconducting graphene without aggressive size scaling or using expensive substrates. However, bilayer graphene samples have been limited to µm2 size scale thus far, and synthesis of wafer scale bilayer graphene posts tremendous challenge. Here we report homogeneous bilayer graphene films over at least 2 inch × 2 inch area, synthesized by chemical vapor deposition on copper foil and subsequently transferred to arbitrary substrates. The bilayer nature of graphene film is verified by Raman spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM). Importantly, spatially resolved Raman spectroscopy confirms a bilayer coverage of over 99%. The homogeneity of the film is further supported by electrical transport measurements on dual-gate bilayer graphene transistors, in which bandgap opening is observed in 98% of the devices. 1 KEYWORDS Graphene, bilayer, chemical vapor deposition, wafer scale, bandgap opening Single and few-layer graphene1-5 are promising materials for post-silicon electronics because of their potential of integrating bottom-up nanomaterial synthesis with top-down lithographic fabrication at wafer scale.4,6 However, single layer graphene is intrinsically semimetal; introducing energy bandgap requires patterning nanometer-width graphene ribbons7-9 or utilizing special substrates.10-12 Bilayer graphene, instead, has an electric field induced bandgap up to 250 meV,13-18 thus eliminating the need for extreme scaling or costly substrates.
    [Show full text]
  • Gate Controlled Valley Polarizer in Bilayer Graphene ✉ Hao Chen1,2, Pinjia Zhou1, Jiawei Liu1,2, Jiabin Qiao1, Barbaros Oezyilmaz1,2 & Jens Martin 1,2,3
    ARTICLE https://doi.org/10.1038/s41467-020-15117-y OPEN Gate controlled valley polarizer in bilayer graphene ✉ Hao Chen1,2, Pinjia Zhou1, Jiawei Liu1,2, Jiabin Qiao1, Barbaros Oezyilmaz1,2 & Jens Martin 1,2,3 Sign reversal of Berry curvature across two oppositely gated regions in bilayer graphene can give rise to counter-propagating 1D channels with opposite valley indices. Considering spin and sub-lattice degeneracy, there are four quantized conduction channels in each direction. Previous experimental work on gate-controlled valley polarizer achieved good contrast only in the presence of an external magnetic field. Yet, with increasing magnetic field the ungated 1234567890():,; regions of bilayer graphene will transit into the quantum Hall regime, limiting the applications of valley-polarized electrons. Here we present improved performance of a gate-controlled valley polarizer through optimized device geometry and stacking method. Electrical mea- surements show up to two orders of magnitude difference in conductance between the valley-polarized state and gapped states. The valley-polarized state displays conductance of nearly 4e2/h and produces contrast in a subsequent valley analyzer configuration. These results pave the way to further experiments on valley-polarized electrons in zero magnetic field. 1 Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, 117546 Singapore, Singapore. 2 Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 Singapore, Singapore. 3Present address:
    [Show full text]
  • Arxiv:2105.05857V1 [Cond-Mat.Str-El] 12 May 2021
    Kekul´espiral order at all nonzero integer fillings in twisted bilayer graphene Y.H. Kwan,1 G. Wagner,1 T. Soejima,2 M.P. Zaletel,2, 3 S.H. Simon,1 S.A. Parameswaran,1 and N. Bultinck1, 4 1Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom 2Department of Physics, University of California, Berkeley, California 94720, USA 3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 4Department of Physics, Ghent University, 9000 Ghent, Belgium We study magic angle graphene in the presence of both strain and particle-hole symmetry break- ing due to non-local inter-layer tunneling. We perform a self-consistent Hartree-Fock study that incorporates these effects alongside realistic interaction and substrate potentials, and explore a com- prehensive set of competing orders including those that break translational symmetry at arbitrary wavevectors. We find that at all non-zero integer fillings very small strains, comparable to those measured in scanning tunneling experiments, stabilize a fundamentally new type of time-reversal symmetric and spatially non-uniform order. This order, which we dub the `incommensurate Kekul´e spiral' (IKS) order, spontaneously breaks both the emergent valley-charge conservation and moir´e translation symmetries, but preserves a modified translation symmetry T^0 | which simultaneously shifts the spatial coordinates and rotates the U(1) angle which characterizes the spontaneous inter- valley coherence. We discuss the phenomenological and microscopic properties of this order. We argue that our findings are consistent with all experimental observations reported so far, suggesting a unified explanation of the global phase diagram in terms of the IKS order.
    [Show full text]
  • Bandgap-Engineered Hgcdte Infrared Detector Structures for Reduced Cooling Requirements
    Bandgap-Engineered HgCdTe Infrared Detector Structures for Reduced Cooling Requirements by Anne M. Itsuno A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering) in The University of Michigan 2012 Doctoral Committee: Associate Professor Jamie D. Phillips, Chair Professor Pallab K. Bhattacharya Professor Fred L. Terry, Jr. Assistant Professor Kevin P. Pipe c Anne M. Itsuno 2012 All Rights Reserved To my parents. ii ACKNOWLEDGEMENTS First and foremost, I would like to thank my research advisor, Professor Jamie Phillips, for all of his guidance, support, and mentorship throughout my career as a graduate student at the University of Michigan. I am very fortunate to have had the opportunity to work alongside him. I sincerely appreciate all of the time he has taken to meet with me to discuss and review my research work. He is always very thoughtful and respectful of his students, treating us as peers and valuing our opinions. Professor Phillips has been a wonderful inspiration to me. I have learned so much from him, and I believe he truly exemplifies the highest standard of teacher and technical leader. I would also like to acknowledge the past and present members of the Phillips Research Group for their help, useful discussions, and camaraderie. In particular, I would like to thank Dr. Emine Cagin for her constant encouragement and humor. Emine has been a wonderful role model. I truly admire her expertise, her accom- plishments, and her unfailing optimism and can only hope to follow in her footsteps. I would also like to thank Dr.
    [Show full text]
  • Optimizing Fabrication and Modeling of Quantum Dot Superlattice for Fets and Nonvolatile Memories Pial Mirdha University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 12-12-2017 Optimizing Fabrication and Modeling of Quantum Dot Superlattice for FETs and Nonvolatile Memories Pial Mirdha University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Mirdha, Pial, "Optimizing Fabrication and Modeling of Quantum Dot Superlattice for FETs and Nonvolatile Memories" (2017). Doctoral Dissertations. 1686. https://opencommons.uconn.edu/dissertations/1686 Optimizing Fabrication and Modeling of Quantum Dot Superlattice for FETs and Nonvolatile Memories Pial Mirdha PhD University of Connecticut 2017 Quantum Dot Superlattice (QDSL) are novel structures which can be applied to transis- tors and memory devices to produce unique current voltage characteristics. QDSL are made of Silicon and Germanium with an inner intrinsic layer surrounded by their respective oxides and in the single digit nanometer range. When used in transistors they have shown to induce 3 to 4 states for Multi-Valued Logic (MVL). When applied to memory they have been demonstrated to retain 2 bits of charge which instantly double the memory density. For commercial application they must produce consistent and repeatable current voltage characteristics, the current QDSL structures consist of only two layers of quantum dots which is not a robust design. This thesis demonstrates the utility of using QDSL by designing MVL circuit which consume less power while still producing higher computational speed when compared to conventional cmos based circuits. Additionally, for reproducibility and stability of current voltage characteristics, a novel 4 layer of both single and mixed quantum dots are demonstrated.
    [Show full text]
  • Landau Quantization of Dirac Fermions in Graphene and Its Multilayers
    Front. Phys. 12(4), 127208 (2017) DOI 10.1007/s11467-016-0655-5 REVIEW ARTICLE Landau quantization of Dirac fermions in graphene and its multilayers Long-jing Yin (殷隆晶), Ke-ke Bai (白珂珂), Wen-xiao Wang (王文晓), Si-Yu Li (李思宇), Yu Zhang (张钰), Lin He (何林)ǂ The Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China Corresponding author. E-mail: ǂ[email protected] Received December 28, 2016; accepted January 26, 2017 When electrons are confined in a two-dimensional (2D) system, typical quantum–mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum–mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties. Keywords Landau quantization, graphene, STM/STS, stacking order, strain and defect PACS numbers Contents 1 Introduction ....................................................................................................................... 2 2 Landau quantization in graphene monolayer, Bernal bilayer, and Bernal trilayer ...........
    [Show full text]
  • Chemically Induced Transformation of CVD-Grown Bilayer Graphene Into Single Layer Diamond
    Chemically Induced Transformation of CVD-Grown Bilayer Graphene into Single Layer Diamond Authors: Pavel V. Bakharev1*, Ming Huang1,2, Manav Saxena1, Suk Woo Lee2, Se Hun Joo3, Sung O Park3, Jichen Dong1, Dulce Camacho-Mojica1, Sunghwan Jin1, Youngwoo Kwon1, Mandakini Biswal1, Feng Ding1, Sang Kyu Kwak1,3, Zonghoon Lee1,2 & Rodney S. Ruoff1,2,4* Affiliations: 1Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea. 2School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea. 3School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea 4Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea. *Correspondence to: [email protected], [email protected] (RSR); [email protected] (PVB) Abstract: Notwithstanding numerous density functional studies on the chemically induced transformation of multilayer graphene into a diamond-like film, a comprehensive convincing experimental proof of such a conversion is still lacking. We show that the fluorination of graphene sheets in Bernal (AB)-stacked bilayer graphene (AB-BLG) grown by chemical vapor deposition on a single crystal CuNi(111) surface triggers the formation of interlayer carbon-carbon bonds, 1 resulting in a fluorinated diamond monolayer (‘F-diamane’). Induced by fluorine chemisorption, the phase transition from AB-BLG to single layer diamond was studied and verified by X-ray photoelectron, ultraviolet photoelectron, Raman, UV-Vis, electron energy loss spectroscopies, transmission electron microscopy, and DFT calculations. Graphene and diamond are two well-known carbon allotropes with sp2 and sp3 bonding hybridization, respectively, and are characterized by outstanding physical and chemical properties.
    [Show full text]
  • Carbon-Based Nanomaterials/Allotropes: a Glimpse of Their Synthesis, Properties and Some Applications
    materials Review Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications Salisu Nasir 1,2,* ID , Mohd Zobir Hussein 1,* ID , Zulkarnain Zainal 3 and Nor Azah Yusof 3 1 Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 2 Department of Chemistry, Faculty of Science, Federal University Dutse, 7156 Dutse, Jigawa State, Nigeria 3 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; [email protected] (Z.Z.); [email protected] (N.A.Y.) * Correspondence: [email protected] (S.N.); [email protected] (M.Z.H.); Tel.: +60-1-2343-3858 (M.Z.H.) Received: 19 November 2017; Accepted: 3 January 2018; Published: 13 February 2018 Abstract: Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead.
    [Show full text]