How Free Data Has Enabled the Science and Monitoring Promise of Landsat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using Earth Observation Data to Improve Health in the United States Accomplishments and Future Challenges
a report of the csis technology and public policy program Using Earth Observation Data to Improve Health in the United States accomplishments and future challenges 1800 K Street, NW | Washington, DC 20006 Tel: (202) 887-0200 | Fax: (202) 775-3199 Author E-mail: [email protected] | Web: www.csis.org Lyn D. Wigbels September 2011 ISBN 978-0-89206-668-1 Ë|xHSKITCy066681zv*:+:!:+:! a report of the csis technology and public policy program Using Earth Observation Data to Improve Health in the United States accomplishments and future challenges Author Lyn D. Wigbels September 2011 About CSIS At a time of new global opportunities and challenges, the Center for Strategic and International Studies (CSIS) provides strategic insights and bipartisan policy solutions to decisionmakers in government, international institutions, the private sector, and civil society. A bipartisan, nonprofit organization headquartered in Washington, D.C., CSIS conducts research and analysis and devel- ops policy initiatives that look into the future and anticipate change. Founded by David M. Abshire and Admiral Arleigh Burke at the height of the Cold War, CSIS was dedicated to finding ways for America to sustain its prominence and prosperity as a force for good in the world. Since 1962, CSIS has grown to become one of the world’s preeminent international policy institutions, with more than 220 full-time staff and a large network of affiliated scholars focused on defense and security, regional stability, and transnational challenges ranging from energy and climate to global development and economic integration. Former U.S. senator Sam Nunn became chairman of the CSIS Board of Trustees in 1999, and John J. -
Information Summaries
TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical -
SEER for Hardware's Cost Model for Future Orbital Concepts (“FAR OUT”)
Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com SEER for Hardware’s Cost Model for Future Orbital Concepts (“FAR OUT”) Lee Fischman ISPA/SCEA Industry Hills 2008 Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Introduction A model for predicting the cost of long term unmanned orbital spacecraft (Far Out) has been developed at the request of AFRL. Far Out has been integrated into SEER for Hardware. This presentation discusses the Far Out project and resulting model. © 2008 Galorath Incorporated Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Goals • Estimate space satellites in any earth orbit. Deep space exploration missions may be considered as data is available, or may be an area for further research in Phase 3. • Estimate concepts to be launched 10-20 years into the future. • Cost missions ranging from exploratory to strategic, with a specific range decided based on estimating reliability. The most reliable estimates are likely to be in the middle of this range. • Estimates will include hardware, software, systems engineering, and production. • Handle either government or commercial missions, either “one-of-a-kind” or constellations. • Be used in a “top-down” manner using relatively less specific mission resumes, similar to those available from sources such as the Earth Observation Portal or Janes Space Directory. © 2008 Galorath Incorporated Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com Challenge: Technology Change Over Time Evolution in bus technologies Evolution in payload technologies and performance 1. -
GST Responses to “Questions to Inform Development of the National Plan”
GST Responses to “Questions to Inform Development of the National Plan” Name (optional): Dr. Darrel Williams Position (optional): Chief Scientist, (240) 542-1106; [email protected] Institution (optional): Global Science & Technology, Inc. Greenbelt, Maryland 20770 Global Science & Technology, Inc. (GST) is pleased to provide the following answers as a contribution towards OSTP’s effort to develop a national plan for civil Earth observations. In our response we provide information to support three main themes: 1. There is strong science need for high temporal resolution of moderate spatial resolution satellite earth observation that can be achieved with cost effective, innovative new approaches. 2. Operational programs need to be designed to obtain sustained climate data records. Continuity of Earth observations can be achieved through more efficient and economical means. 3. We need programs to address the integration of remotely sensed data with in situ data. GST has carefully considered these important national Earth observation issues over the past few years and has submitted the following RFI responses: The USGS RFI on Landsat Data Continuity Concepts (April 2012), NASA’s Sustainable Land Imaging Architecture RFI (September 2013), and This USGEO RFI (November 2013) relative to OSTP’s efforts to develop a national plan for civil Earth observations. In addition to the above RFI responses, GST led the development of a mature, fully compliant flight mission concept in response to NASA’s Earth Venture-2 RFP in September 2011. Our capacity to address these critical national issues resides in GST’s considerable bench strength in Earth science understanding (Drs. Darrel Williams, DeWayne Cecil, Samuel Goward, and Dixon Butler) and in NASA systems engineering and senior management oversight (Drs. -
Carbon Earth Observatory for Carbon Dioxide Reduction Robert D
Carbon Earth Observatory for Carbon Dioxide Reduction Robert D. Cormia Foothill College GHG Emissions / NET Strategies Terrestrial Options for Negative Emissions Earth System Observation Data Platform Technology (NET) The messaging from IPCC is clear; without significant and sustained • Argo • OCO-2/OCO-3 Carbon Dioxide Reduction (CDR) strategies, there is no realistic • Afforestation and reforestation, stop deforestation, • Aqua • GOSAT 2 chance of avoiding potentially disastrous climate change. increase biomass of forest and soils for decades In addition to emission reduction, “drawdown” of atmospheric • Terra • ECOSTRESS carbon dioxide must begin soon and remain in place through the • Monitor and enhance grassland productivity and • CloudSat • GEDI end of the century. There are carbon sinks in the terrestrial carbon sequestration, including hydrology • CALIPSO • LandSat biosphere that have the potential to remove gigatons of carbon Improve soil microbial activity, carbon uptake in soils, dioxide each year, for decades or more. An earth observatory • • SMAP • TROPOMI system, for analysis of carbon cycle processes throughout the userecommended management practices • ICESat-2 • GeoCARB (2022) biosphere, could help measure, inform, and optimize terrestrial • Restore wetlands and connect to ocean inlet to increase carbon sequestration projects. salinity and decrease methane emissions NASA Earth Observing System (EOS) • Enhance Net Primary Productivity (NPP) of oceans Integrated toolset to help achieve CDR Goals NASA’s Earth Observatory tools are designed for accurate and precise measurements of atmospheric gases, geometric aspects of land and biomass, and can sense biochemical changes in plants and biomass that may result from climate change. If we are to be effective in optimizing carbon dioxide reduction projects, we need an integrated data platform with both spatial and temporal resolution. -
NASA Process for Limiting Orbital Debris
NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions ......................................................................................................................... -
Complete List of Contents
Complete List of Contents Volume 1 Cape Canaveral and the Kennedy Space Center ......213 Publisher’s Note ......................................................... vii Chandra X-Ray Observatory ....................................223 Introduction ................................................................. ix Clementine Mission to the Moon .............................229 Preface to the Third Edition ..................................... xiii Commercial Crewed vehicles ..................................235 Contributors ............................................................. xvii Compton Gamma Ray Observatory .........................240 List of Abbreviations ................................................. xxi Cooperation in Space: U.S. and Russian .................247 Complete List of Contents .................................... xxxiii Dawn Mission ..........................................................254 Deep Impact .............................................................259 Air Traffic Control Satellites ........................................1 Deep Space Network ................................................264 Amateur Radio Satellites .............................................6 Delta Launch Vehicles .............................................271 Ames Research Center ...............................................12 Dynamics Explorers .................................................279 Ansari X Prize ............................................................19 Early-Warning Satellites ..........................................284 -
A Global Land-Observing Program, Fact Sheet 023-03 (March 2003) 05/31/2006 12:58 PM
Landsat: A Global Land-Observing Program, Fact Sheet 023-03 (March 2003) 05/31/2006 12:58 PM Landsat: A Global Land-Observing Program Fact Sheet 023-03 (March 2003) || A Brief History of the Landsat Program || Characteristics of the Landsat System || || Applications of Landsat Data || Landsat Data Continuity Mission || Information || The Landsat Program is a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) to gather Earth resource data using a series of satellites. NASA was responsible for developing and launching the spacecrafts. The USGS is responsible for flight operations, maintenance, and management of all ground data reception, processing, archiving, product generation, and distribution. A primary objective of the Landsat Program is to ensure a collection of consistently calibrated Earth imagery. Landsat's mission is to establish and execute a data acquisition strategy that ensures the repetitive acquisition of observations over the Earth's land mass, coastal boundaries, and coral reefs and to ensure that the data acquired are of maximum utility in supporting the scientific objective of monitoring changes in the Earth's land surface. || Top || Main Table of Contents || A Brief History of the Landsat Program In the mid-1960s, stimulated by success in planetary exploration using unmanned remote sensing satellites, the Department of the Interior, NASA, the Department of Agriculture, and others embarked on an ambitious initiative to develop and launch the first civilian Earth-observing satellite to meet the needs of resource managers and earth scientists. The USGS assumed responsibility for archiving the data acquired by the new program and for distributing the anticipated data product. -
Press Kit Pr°I§£L LANDSAT D RELEASE NO: 82-100
News National Aeronautics and Space Administration Washington, D.C. 20546 AC 202 755-8370 For Release IMMEDIATE Press Kit Pr°i§£L LANDSAT D RELEASE NO: 82-100 (NASA-News-Belease-82-100)- 1ANDSAT D TO ' • N82-26741 TEST THEHATIC HAPPEE, INAUGURATE -. CPEKATIONAL SYSTEM (National Aeronautics and Space f , Administration) 43 p...Avail;r ;> NASA .. ' ^ unclfa;s\. VW Scientific_and. Technical Inf CSCX_22A -00/43 _ 24227v V Contents GENERAL RELEASE 1 THE LANDSAT STORY 5 DESCRI PTION OF OPERATIONAL SYSTEM 16 PLANNING TO MEET USER NEEDS 17 MISSION DESCRIPTION. 18 LAUNCH VEHICLE DESCRIPTION 19 LANDSAT D FLIGHT SEQUENCE OF EVENTS 22 SPACECRAFT ACTI VATION . 24 SPACECRAFT DESCRI PTION 27 MULTI SPECTRAL SCANNER 32 THEMATIC MAPPER ............ 35 LANDSAT D GROUND PROCESSING SYSTEM 38 NASA LANDSAT D PROGRAM MANAGEMENT 40 CONTRACTORS 42 IWNSANews National Aeronautics and Space Administration Washington, D.C. 20546 AC 202 755-8370 For Release. Charles Redmond IMMEDIATE Headquarters, Washington, D.C. (Phone: 202/755-3680) James C. Elliott Goddard Space Flight Center, Greenbelt, Md. (Phone: 301/344-8955) Hugh Harris Kennedy Space Center, Fla. (Phone: 305/867-2468) RELEASE NO: 82-100 LANDSAT D TO TEST THEMATIC MAPPER, INAUGURATE OPERATIONAL SYSTEM NASA will launch the Landsat D spacecraft, a new generation Earth resources satellite, from the Western Space and Missile Center, Vandenberg Air Force Base, Calif., no earlier than 1:59 p.m. EOT July 9, 1982, aboard a new, up-rated Delta 3920 expend- able launch vehicle. Landsat D will incorporate two highly sophisticated sensors: the flight proven multispectral scanner (MSS), one of the sensors on the Landsat 1, 2 and 3 spacecraft; and a new instrument ex- pected to advance considerably the remote sensing capabilities of Earth resources satellites. -
Platforms & Sensors
PLATFORMS & SENSORS Platform: the vehicle carrying the remote sensing device Sensor: the remote sensing device recording wavelengths of energy e.g. Aerial photography - the plane and the camera Satellite image example: Platform: Landsat (1, 5, 7 etc..) Sensor: Multispectral Sensor (MSS) or Thematic Mapper (TM) Selected satellite remote sensing systems NASA Visible Earth: long list Wim Bakker's website http://members.home.nl/wim.h.bakker http://earthobservatory.nasa.gov/IOTD/view.php?id=52174 1. Satellite orbits “Sun-synchronous” “Geostationary” Land monitoring Weather satellites ~ 700 km altitude ~ 30,000 km altitude Satellite orbits Geostationary / geosynchronous : 36,000 km above the equator, stays vertically above the same spot, rotates with earth - weather images, e.g. GOES (Geostat. Operational Env. Satellite) Sun-synchronous satellites: 700-900 km altitude, rotates at circa 81-82 degree angle to equator: captures imagery approx the same time each day (10am +/- 30 minutes) - Landsat path: earthnow Sun-synchronous Graphic: http://ccrs.nrcan.gc.ca/resource/tutor/datarecept/c1p2_e.php 700-900 km altitude rotates at ~ 81-82 ° angle to the equator (near polar): captures imagery the same time each day (10.30am +/- 30 minutes) - for earth mapping Orbit every 90-100 minutes produces similar daytime lighting Geostationary satellites capture a (rectangular) scene, sun-synchronous satellites capture a continuous swath, … which is broken into rectangular scenes. 2. Scanner types Whiskbroom (mirror/ cross-track): a small number of sensitive diodes for each band sweep perpendicular to the path or swath, centred directly under the platform, i.e. at 'nadir' e.g. LANDSAT MSS /TM Pushbroom (along-track): an array of diodes (one for each column of pixels) is 'pointed' in a selected direction, nadir or off-nadir, on request, usually 0-30 degrees (max.), e.g. -
Interference EESS NASA
National Aeronautics and Space Administration ITU International Satellite Symposium 2019 Bariloche, Argentina 25‐27 September 2019 Science Services and Harmful Interference Coralí Roura Senior Spectrum Regulatory and Policy Advisor NASA Headquarters 26 September 2019 James T. Higgins Arctic Slope Technical Services NASA Office Support www.nasa.gov Overview 1 Harmful Interference to Science Services 3 Worldwide Science Services Passive • What is “Harmful Interference”? Sensing Frequencies • Typical sources of interference to science 4 Worldwide Science Services Passive services Sensing Bands 2 Radio Frequency Interference to Science 5 Importance of Passive Sensing Services 6 Summary • Aqua Mission & AMSR‐E Instrument 7 Science Services: Passive and Active • Frequency bands affected by RFI on AMSR‐E Remote Sensing and AMSR2 • Video: NASA | Getting the Big Picture − RFI from Ground‐based 8 References − RFI from GSO satellite surface reflections, and direct broadcast satellites • General Impact to Measurements & Consequences of Interference • Radio Frequency Interference Mitigations 2 Harmful Interference to Science Services What is “Harmful Interference”? Typical sources of interference to science services • ITU‐R Radio Regulations Sec. 1.169 ‐ harmful • Authorized transmitters operating in shared bands interference: Interference which endangers the functioning of a radionavigation service • Unauthorized transmitters operating in the band or of other safety services or seriously • Unwanted emissions from systems operating in adjacent bands -
Aquarius User Guide
AQUARIUS USER GUIDE Aquarius Dataset Version 3.0 Guide Version: 6.0 June 2, 2014 Revision: 19 Document #s: JPL D-70012 AQ-010-UG-0008 JPL URS CL#: 14-0748 National Aeronautics and Space Administration Physical Oceanography Distributed Active Archive Center (PO.DAAC) Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91109-8099 California Institute of Technology © 2014 California Institute of Technology. Government sponsorship acknowledged. Document Change Record Author Reason for Change Pages/paragraphs changed Date of revision Gregg Foti 1. Original Draft All 11 Aug. 2011 Chris Finch 2. Clean up section 4.2, other minor edits All 16 Sep. 2011 3. Changed footprint sizes of radiometer J. Vazquez 6,7 20 Oct 2011 and scatterometer J. Vazquez 4. Updated table on Level 3 metadata 25 Jan 2012 V. Tsontos 5. Editorial review 26 Jan 2012 6. Update of Level 2 metadata variables V. Tsontos associated with the release of version 29 16 Mar. 2012 1.2.2 of the Aquarius dataset 7. Update of Level 2 metadata variables V. Tsontos associated with the release of version 29 16 Mar. 2012 1.2.3 of the Aquarius dataset V. Tsontos 8. Added copyright information to title page 1 22 Mar. 2012 9. Updated Level 2 & 3 metadata for V. Tsontos version 1.2.3 of the Aquarius dataset. Various 29 Mar. 2012 Formatting improvements. 10. Updated Level 2 & 3 metadata for V. Tsontos Various 20 Apr. 2012 version 1.3 of the Aquarius dataset. 11. Updated Level 2 scatterometer-related descriptions based on information from Section 4.2 & associated tables V.