6 Global Precipitation Measurement
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using Earth Observation Data to Improve Health in the United States Accomplishments and Future Challenges
a report of the csis technology and public policy program Using Earth Observation Data to Improve Health in the United States accomplishments and future challenges 1800 K Street, NW | Washington, DC 20006 Tel: (202) 887-0200 | Fax: (202) 775-3199 Author E-mail: [email protected] | Web: www.csis.org Lyn D. Wigbels September 2011 ISBN 978-0-89206-668-1 Ë|xHSKITCy066681zv*:+:!:+:! a report of the csis technology and public policy program Using Earth Observation Data to Improve Health in the United States accomplishments and future challenges Author Lyn D. Wigbels September 2011 About CSIS At a time of new global opportunities and challenges, the Center for Strategic and International Studies (CSIS) provides strategic insights and bipartisan policy solutions to decisionmakers in government, international institutions, the private sector, and civil society. A bipartisan, nonprofit organization headquartered in Washington, D.C., CSIS conducts research and analysis and devel- ops policy initiatives that look into the future and anticipate change. Founded by David M. Abshire and Admiral Arleigh Burke at the height of the Cold War, CSIS was dedicated to finding ways for America to sustain its prominence and prosperity as a force for good in the world. Since 1962, CSIS has grown to become one of the world’s preeminent international policy institutions, with more than 220 full-time staff and a large network of affiliated scholars focused on defense and security, regional stability, and transnational challenges ranging from energy and climate to global development and economic integration. Former U.S. senator Sam Nunn became chairman of the CSIS Board of Trustees in 1999, and John J. -
Passive Microwave Radiometer Channel Selection Based on Cloud and Precipitation Information Content Estimation
475 Passive Microwave Radiometer Channel Selection Based on Cloud and Precipitation Information Content Estimation Sabatino Di Michele and Peter Bauer Research Department Submitted to Q. J. Royal Meteor. Soc. July 2005 Series: ECMWF Technical Memoranda A full list of ECMWF Publications can be found on our web site under: http://www.ecmwf.int/publications/ Contact: [email protected] c Copyright 2005 European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading, RG2 9AX, England Literary and scientific copyrights belong to ECMWF and are reserved in all countries. This publication is not to be reprinted or translated in whole or in part without the written permission of the Director. Appropriate non-commercial use will normally be granted under the condition that reference is made to ECMWF. The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability for error, omission and for loss or damage arising from its use. Microwave Channel Selection from Precipitation Information Content Abstract The information content of microwave frequencies between 5 and 200 GHz for rain, snow and cloud wa- ter retrievals over ocean and land surfaces was evaluated using optimal estimation theory. The study was based on large datasets representative of summer and winter meteorological conditions over North Amer- ica, Europe, Central Africa, South America and the Atlantic obtained from short-range forecasts with the operational ECMWF model. The information content was traded off against noise that is mainly produced by geophysical variables such as surface emissivity, land surface skin temperature, atmospheric temperature and moisture. The estimation of the required error statistics was based on ECMWF model forecast error statistics. -
GST Responses to “Questions to Inform Development of the National Plan”
GST Responses to “Questions to Inform Development of the National Plan” Name (optional): Dr. Darrel Williams Position (optional): Chief Scientist, (240) 542-1106; [email protected] Institution (optional): Global Science & Technology, Inc. Greenbelt, Maryland 20770 Global Science & Technology, Inc. (GST) is pleased to provide the following answers as a contribution towards OSTP’s effort to develop a national plan for civil Earth observations. In our response we provide information to support three main themes: 1. There is strong science need for high temporal resolution of moderate spatial resolution satellite earth observation that can be achieved with cost effective, innovative new approaches. 2. Operational programs need to be designed to obtain sustained climate data records. Continuity of Earth observations can be achieved through more efficient and economical means. 3. We need programs to address the integration of remotely sensed data with in situ data. GST has carefully considered these important national Earth observation issues over the past few years and has submitted the following RFI responses: The USGS RFI on Landsat Data Continuity Concepts (April 2012), NASA’s Sustainable Land Imaging Architecture RFI (September 2013), and This USGEO RFI (November 2013) relative to OSTP’s efforts to develop a national plan for civil Earth observations. In addition to the above RFI responses, GST led the development of a mature, fully compliant flight mission concept in response to NASA’s Earth Venture-2 RFP in September 2011. Our capacity to address these critical national issues resides in GST’s considerable bench strength in Earth science understanding (Drs. Darrel Williams, DeWayne Cecil, Samuel Goward, and Dixon Butler) and in NASA systems engineering and senior management oversight (Drs. -
First Provisional Land Surface Reflectance Product From
remote sensing Letter First Provisional Land Surface Reflectance Product from Geostationary Satellite Himawari-8 AHI Shuang Li 1,2, Weile Wang 3, Hirofumi Hashimoto 3 , Jun Xiong 4, Thomas Vandal 4, Jing Yao 1,2, Lexiang Qian 5,*, Kazuhito Ichii 6, Alexei Lyapustin 7 , Yujie Wang 7,8 and Ramakrishna Nemani 9 1 School of Geography and Resources, Guizhou Education University, Guiyang 550018, China; [email protected] (S.L.); [email protected] (J.Y.) 2 Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang 550018, China 3 NASA Ames Research Center—California State University Monterey Bay (CSUMB), Moffett Field, CA 94035, USA; [email protected] (W.W.); [email protected] (H.H.) 4 NASA Ames Research Center—Bay Area Environmental Research Institute (BAERI), Moffett Field, CA 94035, USA; [email protected] (J.X.); [email protected] (T.V.) 5 School of Geographical Sciences, Guangzhou University, Guangzhou 510006, China 6 Center for Environmental Remote Sensing, Chiba University, Chiba 263-8522, Japan; [email protected] 7 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; [email protected] (A.L.); [email protected] (Y.W.) 8 Joint Center for Earth systems Technology (JCET), University of Maryland-Baltimore County (UMBC), Baltimore, MD 21228, USA 9 Goddard Space Flight Center—NASA Ames Research Center, Moffett Field, CA 94035, USA; [email protected] * Correspondence: [email protected] Received: 11 October 2019; Accepted: 2 December 2019; Published: 12 December 2019 Abstract: A provisional surface reflectance (SR) product from the Advanced Himawari Imager (AHI) on-board the new generation geostationary satellite (Himawari-8) covering the period between July 2015 and December 2018 is made available to the scientific community. -
Carbon Earth Observatory for Carbon Dioxide Reduction Robert D
Carbon Earth Observatory for Carbon Dioxide Reduction Robert D. Cormia Foothill College GHG Emissions / NET Strategies Terrestrial Options for Negative Emissions Earth System Observation Data Platform Technology (NET) The messaging from IPCC is clear; without significant and sustained • Argo • OCO-2/OCO-3 Carbon Dioxide Reduction (CDR) strategies, there is no realistic • Afforestation and reforestation, stop deforestation, • Aqua • GOSAT 2 chance of avoiding potentially disastrous climate change. increase biomass of forest and soils for decades In addition to emission reduction, “drawdown” of atmospheric • Terra • ECOSTRESS carbon dioxide must begin soon and remain in place through the • Monitor and enhance grassland productivity and • CloudSat • GEDI end of the century. There are carbon sinks in the terrestrial carbon sequestration, including hydrology • CALIPSO • LandSat biosphere that have the potential to remove gigatons of carbon Improve soil microbial activity, carbon uptake in soils, dioxide each year, for decades or more. An earth observatory • • SMAP • TROPOMI system, for analysis of carbon cycle processes throughout the userecommended management practices • ICESat-2 • GeoCARB (2022) biosphere, could help measure, inform, and optimize terrestrial • Restore wetlands and connect to ocean inlet to increase carbon sequestration projects. salinity and decrease methane emissions NASA Earth Observing System (EOS) • Enhance Net Primary Productivity (NPP) of oceans Integrated toolset to help achieve CDR Goals NASA’s Earth Observatory tools are designed for accurate and precise measurements of atmospheric gases, geometric aspects of land and biomass, and can sense biochemical changes in plants and biomass that may result from climate change. If we are to be effective in optimizing carbon dioxide reduction projects, we need an integrated data platform with both spatial and temporal resolution. -
Instruments for Earth Science Measurements
NASA SBIR 2004 Phase I Solicitation E1 Instruments for Earth Science Measurements NASA's Earth Science Enterprise (ESE) is studying how our global environment is changing. Using the unique perspective available from space and airborne platforms, NASA is observing, documenting, and assessing large- scale environmental processes with emphasis on atmospheric composition, climate, carbon cycle and ecosystems, the Earth’s surface and interior, the water and energy cycles, and weather. A major objective of the ESE instrument development programs is to implement science measurement capabilities with small or more affordable spacecraft so development programs can meet multiple mission needs and therefore, make the best use of limited resources. The rapid development of small, low cost remote sensing and in situ instruments is essential to achieving this objective. Consequently, the objective of the Instruments for Earth Science Measurements SBIR topic is to develop and demonstrate instrument component and subsystem technologies that reduce the risk, cost, size, and development time of Earth observing instruments, and enable new Earth observation measurements. The following subtopics are concomitant with this objective and are organized by measurement technique. Subtopics E1.01 Passive Optics Lead Center: LaRC Participating Center(s): ARC, GSFC The following technologies are of interest to NASA in the remote sensing subtopic “passive optics.” Passive optical remote sensing generally requires that deployed devices have large apertures and large throughput. NASA is interested primarily in instrument technologies suitable for aircraft or space flight platforms, and these inherently also prefer low mass, low power, fast measurement times, and a high degree of robustness to survive vibrations in flight or at launch. -
Aqua: an Earth-Observing Satellite Mission to Examine Water and Other Climate Variables Claire L
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 2, FEBRUARY 2003 173 Aqua: An Earth-Observing Satellite Mission to Examine Water and Other Climate Variables Claire L. Parkinson Abstract—Aqua is a major satellite mission of the Earth Observing System (EOS), an international program centered at the U.S. National Aeronautics and Space Administration (NASA). The Aqua satellite carries six distinct earth-observing instruments to measure numerous aspects of earth’s atmosphere, land, oceans, biosphere, and cryosphere, with a concentration on water in the earth system. Launched on May 4, 2002, the satellite is in a sun-synchronous orbit at an altitude of 705 km, with a track that takes it north across the equator at 1:30 P.M. and south across the equator at 1:30 A.M. All of its earth-observing instruments are operating, and all have the ability to obtain global measurements within two days. The Aqua data will be archived and available to the research community through four Distributed Active Archive Centers (DAACs). Index Terms—Aqua, Earth Observing System (EOS), remote sensing, satellites, water cycle. I. INTRODUCTION AUNCHED IN THE early morning hours of May 4, 2002, L Aqua is a major satellite mission of the Earth Observing System (EOS), an international program for satellite observa- tions of earth, centered at the National Aeronautics and Space Administration (NASA) [1], [2]. Aqua is the second of the large satellite observatories of the EOS program, essentially a sister satellite to Terra [3], the first of the large EOS observatories, launched in December 1999. Following the phraseology of Y. -
N€WS 'RELEASE NATIONAL AERONAUTICS and SPACE Admln ISTRATION 400 MARYLAND AVENUE, SW, WASHINGTON 25, D.C
https://ntrs.nasa.gov/search.jsp?R=19630002483 2020-03-11T16:50:02+00:00Z b " N€WS 'RELEASE NATIONAL AERONAUTICS AND SPACE ADMlN ISTRATION 400 MARYLAND AVENUE, SW, WASHINGTON 25, D.C. TELEPHONES WORTH 2-4155-WORTH. 3-1110 RELEASE NO. 62-182 MARINER SPACECRAFT Mariner 2, the second of a series of spacecraft designed for planetary exploration,- will be launched within a few days (no earlier than August 17) from the Atlantic Missile Range, Cape Canaveral, Florida, by the National Aeronautics and Space Administration. Mariner 1, launched at 4:21 a.m. (EST) on July 22, 1962 from AMR, was destroyed by the Range Safety Officer after about 290 seconds of flight because of a deviation from the planned flight path. Measures have been taken to correct the difficulties experienced in the Mariner 1 launch. These measures include a more rigorous checkout of the Atlas rate beacon and revision of the data editing equation. The data editing equation Is designed as a guard against acceptance of faulty databy the ground guidance equipment. The Mariner 2 spacecraft and its mission are identical to the first Mariner. Mariner 2 will carry six experiments. Two of these instruments, infrared and microwave radiometers, will make measurements at close range as Mariner 2 flys by Venus and communicate this in€ormation over an interplanetary distance of 36 million miles, Four other experiments on the spacecraft -- a magnetometer, ion chamber and particle flux detector, cosmic dust detector and solar plasma spectrometer -- will gather Information on interplantetary phenomena during the trip to Venus and in the vicinity of the planet. -
Status Report on the Status Report on the Current and Future Satellite
Coordination Group for Meteorological Satellites ‐ CGMS Status report on the current and future satellite systems by JAXA Presented to CGMS-44 Plenary session, agenda item [D.2] Add CGMS agency logo here (in the slide master) Agency, version?, Date 2014? [update filed in the slide master] Coordination Group for Meteorological Satellites ‐ CGMS Overview ‐ Planning of JAXA satellite systems Targets (JFY) 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Positioning QZS-1 [Land and Disaster monitoring] Disasters & ALOS/PALSAR ALOS-2 PALSAR-2 Resources ALOS Advanced Optical ALOS/PRISM AVNIR2 [Precipitation] Climate Change GPM / DPR TRMM/PR & Water TRMM [Wind, SST , Water vapor] Water Cycle Aqua/AMSR‐E Aqua GCOM-W / AMSR2 [Vegetation, aerosol, cloud, SST, ocean color] 250m, multi‐angle, polarization GCOM-C / SGLI Climate Change [Cloud and Aerosol 3D structure] EarthCARE / CPR Greenhouse [CO2, Methane] [CO2, Methane, CO] gases GOSAT GOSAT-2 ETS-VIII Communication WINDS Add CGMS agency logo here (in the slide master) On orbit Phase C/D Phase A/B Agency, version?, Date 2014? [update filed in the slide master] 2 Coordination Group for Meteorological Satellites ‐ CGMS Earth Observation ‐ ALOS‐2 ‐ GPM/DPR ‐ GCOM‐W/C ‐ GOSAT/GOSAT‐2 ‐ EarthCARE/CPR Add CGMS agency logo here (in the slide master) Agency, version?, Date 2014? [update filed in the slide master] Coordination Group for Meteorological Satellites ‐ CGMS Disaster, Land, Agriclture, Application Natural Resources, Sea Ice & Maritime Safety Stripmap: 3 to 10m res., 50 to 70 km L-band SAR -
Complete List of Contents
Complete List of Contents Volume 1 Cape Canaveral and the Kennedy Space Center ......213 Publisher’s Note ......................................................... vii Chandra X-Ray Observatory ....................................223 Introduction ................................................................. ix Clementine Mission to the Moon .............................229 Preface to the Third Edition ..................................... xiii Commercial Crewed vehicles ..................................235 Contributors ............................................................. xvii Compton Gamma Ray Observatory .........................240 List of Abbreviations ................................................. xxi Cooperation in Space: U.S. and Russian .................247 Complete List of Contents .................................... xxxiii Dawn Mission ..........................................................254 Deep Impact .............................................................259 Air Traffic Control Satellites ........................................1 Deep Space Network ................................................264 Amateur Radio Satellites .............................................6 Delta Launch Vehicles .............................................271 Ames Research Center ...............................................12 Dynamics Explorers .................................................279 Ansari X Prize ............................................................19 Early-Warning Satellites ..........................................284 -
An Assessment of Rain “Contamination” in ARM Two
An assessment of rain “contamination” in ARM two-channel microwave radiometer measurements Roger Marchand1, Casey Wall1*, Wei Zhao1 and Maria Cadeddu2 1University of Washington, 2Argonne National Laboratory, *Presenting Author Case 1 Case 3 Motivation! ? !! ✔ ? � ✔ 5000 wet-window flag (open/covered) ! Microwave radiometers (MWRs) are the most commonly used and wet-window flag (open/covered) 1500 3000 accurate instruments ARM has to retrieve cloud liquid water path. open MWR open MWR Unfortunately, MWR data are not easily used in precipitating conditions. 1000 500 There are two reasons for this:" 5000 ) ) 2 1500 " 2 1. The measurements are “contaminated” by water on the MWR radome." 3000 covered! covered! MWR MWR 2. Precipitating particles can scatter microwave radiation, yet traditional 1000 500 MWR retrievals neglect scattering." 5000 " 1500 "We designed an experiment that alleviates the “wet radome” problem. 3000 1000 500 5000 The Experiment! 1500 !! 3000 500 ! Two MWRs were operated side by side in a “scanning” or tip-cal mode. Path (g/m Water Liquid 1000 Liquid Water Path (g/m Path Water Liquid One MWR was placed under a cover that kept the radome dry while still 5000 permitting measurements away from zenith (photograph below). The 1500 other MWR was operated normally, with the radome exposed to the sky. 3000 We refer to these as the “covered” and “open” MWRs, respectively. 1000 500 Coincident measurements from the 17.8 18.2 18.6 19 19.4 19.8 covered and open MWRs are 17.5 18 18.5 19 compared to estimate contamination Hours (UTC) Hours (UTC) Case 2 due to a wet radome. -
NASA's Aqua and GPM Satellites Examine Tropical Cyclone Kenanga 17 December 2018
NASA's Aqua and GPM satellites examine Tropical Cyclone Kenanga 17 December 2018 northeast of Kenanga's center of circulation was dropping rain at a rate of over 119 mm (4.7 inches) per hour. At NASA's Goddard Space Flight Center in Greenbelt, Maryland, imagery and animations were created using GPM data. A 3-D animation used GPM's radar to show the structure of precipitation within tropical Cyclone Kenanga. The simulated flyby around Kenanga showed storm tops that were reaching heights above 13.5 km (8.4 miles). GPM is a joint mission between NASA and the Japanese space agency JAXA. On Dec. 17 at 3:05 a.m. EST (0805 UTC), NASA's Aqua satellite provided an infrared look at Tropical Cyclone Kenanga. Coldest cloud top temperatures (in purple) indicated where strongest storms appeared. Credit: NASA JPL/Heidar Thrastarson On December 16 and 17, NASA's GPM core observatory satellite and NASA's Aqua satellite, respectively, passed over the Southern Indian Ocean and captured rainfall and temperature data on Tropical Cyclone Kenanga. Kenanga formed on Dec. 15 about 1,116 miles east of Diego Garcia, and strengthened into a tropical storm. When the Global Precipitation Measurement mission or GPM core satellite passed overhead, The GPM core satellite found that a powerful storm the rainfall rates it gathered were derived from the northeast of Kenanga's center of circulation was dropping satellite's Microwave Imager (GMI) instrument. rain at a rate of over 119 mm (4.7 inches) per hour. GPM provided a close-up analysis of rainfall Credit: NASA /JAXA, Hal Pierce around tropical cyclone Kenanga.