United States Patents on Powder Metallurgy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From a Technical Standpoint, What Is Firework Flash Powder?
This article originally appeared in Fireworks Business, No. 246, 2004. From a Technical Standpoint, What Is Firework Flash Powder? K. L. Kosanke and L. Weinman perature attainable in pyrotechnic reactions, only Introduction solids and liquids incandesce, gases do not. As a In a recently published article on the regulatory practical matter, metal oxides are the only pyro- definitions of firework flash powder[1] it was con- technic reaction products that are not gaseous at cluded that none of those definitions provided suf- high temperature. Thus metal fuels need to be pre- ficient information to objectively establish wheth- sent in substantial quantity in flash powders. See er or not a pyrotechnic composition is a flash Table 1, which is a list of the boiling point of powder. That is to say, those definitions are all some of the pyrotechnic reaction products. The subjective to the extent that they depend on the table has somewhat arbitrarily been divided into intended use of the composition and none provide species with boiling points above and below a quantifiable measure that can be used to deter- 2500 °C. Note that the oxides of zirconium, mag- mine whether a particular pyrotechnic composi- nesium, aluminum and titanium top the list. tion is a flash powder. The purpose of the present article is to suggest a general approach that might Table 1. Boiling Point of Some Pyrotechnic be used as the basis for producing a quantitative [2] definition of flash powder. Reaction Products. The reason such an objectively quantifiable Reaction Product Boiling Point (°C) definition is needed is that – from both a regulato- ZrO2 ≈ 5000 ry and safety standpoint – flash powders are treat- MgO 3600 ed differently than other pyrotechnic composi- Al2O3 2980 tions. -
ENCYCLOPEDIA of CHEMISTRY & EXPLOSIVES MATERIALS Abelite
ENCYCLOPEDIA OF CHEMISTRY & EXPLOSIVES MATERIALS A Abelite An explosive, composed mainly of ammonium nitrate and trinitrotoluene. Absolute Zero The least possible temperature for all substances. Generally accepted as -273.15ÝC AC Alternating current. Acceptance Quality Level (AQL) A nominal value expressed in terms of percentage defective per hundred units, by which a group of sampling plans is identified. The sampling plans so identified have a high probability of accepting lots containing material with a process average not greater than the designed value of the AQL. Acetin [CH3COOC3H5(OH)2] also known as glyceryl monoacetate, a colourless hydroscopic liquid. Used as an intermediate for various explosives, and a solvent for various dyes. Acetone [CH3COCH3] colourless, flammable liquid. Acetone is widely used in industry as a solvent for many organic substances. It is used in making synthetic Resins and fillers, smokeless powders, and many other organic compounds. Boiling Point 56ÝC. Useful solvent for acetylene, also known as the simplest saturated ketone. Acetylene or ethyne, a colourless gas and the simplest alkyne Hydrocarbon. Explosive on contact with air, it is stored dissolved under pressure in Acetone. It is used to make neoprene rubber, plastics, and resins. The oxyacetylene torch mixes and burns oxygen and acetylene to produce a very hot flame-as high as 3480ÝC (6300ÝF)-that can cut steel and weld iron and other metals. Produced by the action of wateron calcium carbide and catalytically from naphtha. Acetylide A carbide formed by bubbling acetylene through a metallic salt solution, eg cuprous acetylide, Cu2C2. These are violently explosive compounds. Acid Any substance capable of giving up a proton; a substance that ionizes in solution to give the positive ion of the solvent; a solution with a pH measurement less than 7. -
Connected Histories: the Dynamics of Bronze Age Interaction and Trade 1500–1100 BC
Proceedings of the Prehistoric Society 81, 2015, pp. 361–392 © The Prehistoric Society doi:10.1017/ppr.2015.17 Connected Histories: the Dynamics of Bronze Age Interaction and Trade 1500–1100 BC By KRISTIAN KRISTIANSEN1 and PAULINA SUCHOWSKA-DUCKE2 The Bronze Age was the first epoch in which societies became irreversibly linked in their co-dependence on ores and metallurgical skills that were unevenly distributed in geographical space. Access to these critical resources was secured not only via long-distance physical trade routes, making use of landscape features such as river networks, as well as built roads, but also by creating immaterial social networks, consisting of interpersonal relations and diplomatic alliances, established and maintained through the exchange of extraordinary objects (gifts). In this article, we reason about Bronze Age communication networks and apply the results of use-wear analysis to create robust indicators of the rise and fall of political and commercial networks. In conclusion, we discuss some of the historical forces behind the phenomena and processes observable in the archaeological record of the Bronze Age in Europe and beyond. Keywords: Bronze Age communication networks, agents, temperate Europe, Mediterranean Basin THE EUROPEAN BRONZE AGE AS A COMMUNICATION by small variations in ornaments and weapons NETWORK: HISTORICAL & THEORETICAL FRAMEWORK (Kristiansen 2014). Among the characteristics that might compel archaeo- Initially driven by the necessity to gain access to logists to label the Bronze Age a ‘formative epoch’ in remote resources and technological skills, Bronze Age European history, the density and extent of the era’s societies established communication links that ranged exchange and communication networks should per- from the Baltic to the Mediterranean and from haps be regarded as the most significant. -
Black Match” …………………………………………… P
Selected Pyrotechnic Publications of K.L. and B.J. Kosanke Part 5 (1998 through 2000) This book contains 134 pages Development of a Video Spectrometer …………………………………………… P. 435-445. Measurements of Glitter Flash Delay, Size and Duration ……………………… P. 446-449. Lift Charge Loss for a Shell to Remain in Mortar ……………………………… P. 450-450. Configuration and “Over-Load” Studies of Concussion Mortars ……………… P. 451-463. Quick Match – A Review and Study ……………………………………………… P. 464-479. Pyrotechnic Primes and Priming ………………………………………………… P. 480-495. Dud Shell Risk Assessment: NFPA Distances …………………………………… P. 496-499. Dud Shell Risk Assessment: Mortar Placement ………………………………… P. 500-503. Performance Study of Civil War Vintage Black Powder ……………………… P. 504-509. CAUTION: Very Fast “Black Match” …………………………………………… P. 510-512. Peak In-Mortar Aerial Shell Accelerations ……………………………………… P. 513-516. Firing Precision for Choreographed Displays …………………………………… P. 517-518. Sticky Match and Quick Match: Temperature Dependent Burn Times ……… P. 519-523. Mortar Separations in Troughs and Drums …………………………………… P. 524-530. Preliminary Study of the Effect of Ignition Stimulus on Aerial Shell Lift Performance …………………………………………………… P. 531-535. Pyrotechnic Particle Morphologies – Metal Fuels ……………………………… P. 536-542. Peak Mortar Pressures When Firing Spherical Aerial Shells …………………… P. 543-544. Indoor Pyrotechnic Electrostatic Discharge Hazard …………………………… P. 545-545. Pyrotechnic Particle Morphology – Low Melting Point Oxidizers ……………… P. 546-556. An earlier version -
Heavier Alkali Metal Complexes of 2-Phenylamidopyridine: an X- Ray Crystallographic and Theoretical Study of a Structurally Diverse Series of Crown Ether Adducts
Edinburgh Research Explorer Heavier alkali metal complexes of 2-phenylamidopyridine: An X- ray crystallographic and theoretical study of a structurally diverse series of crown ether adducts Citation for published version: Morrison, C, Liddle, ST & Clegg, W 2004, 'Heavier alkali metal complexes of 2-phenylamidopyridine: An X- ray crystallographic and theoretical study of a structurally diverse series of crown ether adducts', Dalton Transactions, no. 16, pp. 2514-2525. https://doi.org/10.1039/B406741J Digital Object Identifier (DOI): 10.1039/B406741J Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Dalton Transactions Publisher Rights Statement: Copyright © 2004 by the Royal Society of Chemistry. All rights reserved. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Post-print of a peer-reviewed article published by the Royal Society of Chemistry. Published article available at: http://dx.doi.org/10.1039/B406741J Cite as: Morrison, C., Liddle, S. T., & Clegg, W. (2004). Heavier alkali metal complexes of 2- phenylamidopyridine: An X-ray crystallographic and theoretical study of a structurally diverse series of crown ether adducts. -
Ion Sources for High-Power Hadron Accelerators
Ion sources for high-power hadron accelerators Daniel C. Faircloth Rutherford Appleton Laboratory, Chilton, Oxfordshire, UK Abstract Ion sources are a critical component of all particle accelerators. They create the initial beam that is accelerated by the rest of the machine. This paper will introduce the many methods of creating a beam for high-power hadron accelerators. A brief introduction to some of the relevant concepts of plasma physics and beam formation is given. The different types of ion source used in accelerators today are examined. Positive ion sources for producing H+ ions and multiply charged heavy ions are covered. The physical principles involved with negative ion production are outlined and different types of negative ion sources are described. Cutting edge ion source technology and the techniques used to develop sources for the next generation of accelerators are discussed. 1 Introduction 1.1 Ion source basics An ion is an atom or molecule in which the total number of electrons is not equal to the total number of protons, thus giving it a net positive or negative electrical charge. The name ion (from the Greek ιον, meaning "going") was first suggested by William Whewell in 1834. Michael Faraday used the term to refer to the charged particles that carry current in his electrolysis experiments. Ion sources consist of two parts: a plasma generator and an extraction system. The plasma generator must be able to provide enough of the correct ions to the extraction system. There are numerous ways of making plasma: electrical discharges in all of their forms; heating by many different means; using lasers; or even being hit by beams of other particles. -
A Brief History of the International Regulation of Wine Production
A Brief History of the International Regulation of Wine Production The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation A Brief History of the International Regulation of Wine Production (2002 Third Year Paper) Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:8944668 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A Brief History of the International Regulation of Wine Production Jeffrey A. Munsie Harvard Law School Class of 2002 March 2002 Submitted in satisfaction of Food and Drug Law required course paper and third-year written work require- ment. 1 A Brief History of the International Regulation of Wine Production Abstract: Regulations regarding wine production have a profound effect on the character of the wine produced. Such regulations can be found on the local, national, and international levels, but each level must be considered with the others in mind. This Paper documents the growth of wine regulation throughout the world, focusing primarily on the national and international levels. The regulations of France, Italy, Germany, Spain, the United States, Australia, and New Zealand are examined in the context of the European Community and United Nations. Particular attention is given to the diverse ways in which each country has developed its laws and compromised between tradition and internationalism. I. Introduction No two vineyards, regions, or countries produce wine that is indistinguishable from one another. -
M-80 (Explosive) - Wikipedia,Visited the Free Encyclopediaon 8/14/2015 Page 1 of 4
M-80 (explosive) - Wikipedia,visited the free encyclopediaon 8/14/2015 Page 1 of 4 M-80 (explosive) From Wikipedia, the free encyclopedia For other uses, see M80. M-80s are an American class of large firecrackers, sometimes called SALUTES.[1] The Simulator, Artillery, M-80 was originally made in the early 20th century by the U.S. military to simulate explosives or artillery fire;[2] later, M-80s were manufactured as fireworks. Traditionally, M-80s were made from a small cardboard 1 tube, often red, approximately 1 ⁄2 inches (3.8 cm) long 9 and ⁄16 inch (1.4 cm) inside diameter, with a fuse or wick coming out of the side; this type fuse is commonly known as cannon fuse or Visco fuse, after a company responsible for standardizing the product. The tubes M-80 Salute (BOOTLEG) often hold approximately 2½–3 grams of pyrotechnic flash powder; many sources state that an M-80 carries 3 grams of powder.[3] Contents ◾ 1 Legality ◾ 1.1 Canada ◾ 1.2 United States ◾ 2 Accidents ◾ 3 References ◾ 4 Further reading Legality Canada https://en.wikipedia.org/wiki/M-80_(explosive) 8/14/2015 M-80 (explosive) - Wikipedia,visited the free encyclopediaon 8/14/2015 Page 2 of 4 M-80s are not authorized under the law, thus making importation, possession, transportation, storage or manufacturing illegal in Canada.[4] Firecrackers, including the M-80, can be purchased from Native Reserves in Canada, as they have different governing laws. United States Due to property damages and bodily harm caused by M-80s, Class C fireworks—now known as consumer fireworks (class 1.4G), as opposed to display fireworks (which were Class B, and are now 1.3G)[5]— civilians require a license, issued by federal authorities, for pyrotechnic devices containing a charge in excess of 50 milligrams of pyrotechnic flash powder. -
An Anthropological Assessment of Neanderthal Behavioural Energetics
DEPARTMENT OF ARCHAEOLOGY, CLASSICS & EGYPTOLOGY An Anthropological Assessment of Neanderthal Behavioural Energetics. Thesis submitted in accordance with the requirements of the University of Liverpool for the Degree of Doctor in Philosophy by Andrew Shuttleworth. April, 2013. TABLE OF CONTENTS……………………………………………………………………..i LIST OF TABLES……………………………………………………………………………v LIST OF FIGURES…………………………………………………………………………..vi ACKNOWLEDGMENTS…………………………………………………………………...vii ABSTRACT…………………………………………………………………………………viii TABLE OF CONTENTS 1. INTRODUCTION...........................................................................................................1 1.1. Introduction..............................................................................................................1 1.2. Aims and Objectives................................................................................................2 1.3. Thesis Format...........................................................................................................3 2. THE NEANDERTHAL AND OXYEGN ISOTOPE STAGE-3.................................6 2.1. Discovery, Geographic Range & Origins..............................................................7 2.1.1. Discovery........................................................................................................7 2.1.2. Neanderthal Chronology................................................................................10 2.2. Morphology.............................................................................................................11 -
WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK). -
8. Chemistry of the Main Group Elements Unusual Bonding
8. Chemistry of the Main Group Elements A Snapshot on Main Group Chemistry unusual bonding , structure & reactivity 8. Chemistry of the Main Group Elements A Snapshot on Main Group Chemistry very powerful reducing agent te 2+ a − in d r o ? o ! c n - o b six r a c 2− Na2 [Ne]3s2 {Ba-cryptand} + disodide 2− M.Y. Redko et al. JACS 2003 gold(I) methanium also, in NH3(l) H. Schmidbaur et al. Na + (NH ) e − Chem. Ber. 1992 3 x 1 8. Chemistry of the Main Group Elements A Snapshot on Main Group Chemistry very powerful reducing agent 2+ − 2− Na2 [Ne]3s2 {Ba-cryptand} + disodide 2− M.Y. Redko et al. JACS 2003 gold(I) methanium also, in NH3(l) H. Schmidbaur & F. Gabbai Na + (NH ) e − Chem. Ber. 1997 3 x 8. Chemistry of the Main Group Elements here we go again… table salt #1 …well, not in my book! Check out Nitrogenase or Cytochrome C-Oxidase…or Hemoglobin… 2 8. Chemistry of the Main Group Elements Hemoglobin 8. Chemistry of the Main Group Elements more on that later… 3 8. Chemistry of the Main Group Elements General Trends in Main Group Chemistry Electrical Resistivities: far right: non-metals pnic(t)ogens (pnigo = choke), chalcogens, halogens & noble gases middle: C: Diamond, graphite & fullerenes Si: Silicon, Ge: germanium, Sn & Pb far left: metals alkali metals & alkaline earths: luster, high ability to conduct heat & electricity, malleability 8. Chemistry of the Main Group Elements General Trends in Main Group Chemistry Electrical Resistivities: Carbon conductivity 154.5 pm parallel to layers: σ = C-C 154 pm 2 C=C 134 pm 3 2.6 x 104 sp sp Ω-1cm-1 + pπz T ¼, σ ¿ metal conductivity perp. -
2013 Fireworks Safety Standards Development Status Report
FIREWORKS SAFETY STANDARDS DEVELOPMENT PROJECT FY 2013 STATUS REPORT October 2013 For further information contact: Dr. Christopher J. Musto, Project Manager Directorate for Laboratory Sciences U.S. Consumer Product Safety Commission (301) 987-2090 [email protected] Dr. Andrew Lock Directorate for Laboratory Sciences U.S. Consumer Product Safety Commission (301) 987-2099 [email protected] This report was prepared by the CPSC staff, has not been reviewed or approved by, and may not necessarily reflect the views of, the Commission. EXECUTIVE SUMMARY The U.S Consumer Product Safety Commission (CPSC, the Commission) is evaluating the need to amend its regulations for fireworks devices. CPSC staff evaluated issues concerning the explosive power of aerial fireworks. Aerial fireworks devices intended to produce an audible effect are limited to 130 mg (2 grains) of pyrotechnic composition, according to 16 C.F.R. § 1500.17(a)(3). Because the regulation only limits the amount of pyrotechnic composition for devices intended to produce an audible effect, compliance determinations can be made only after a subjective determination of intent to produce an audible effect. In 2012, staff conducted testing to evaluate two different approaches to replacing the regulation limiting pyrotechnic composition of devices intended to produce an audible effect; staff considered potential alternative regulations, based on the explosive power of fireworks devices. The American Fireworks Standards Laboratory (AFSL) had previously developed a “Black Powder Equivalency Test.” CPSC staff investigated and found that this test can distinguish between the energetics of black powder, hybrid powders, and flash powder, but the test does not consider the particular construction of a shell.