No Application Specified

Total Page:16

File Type:pdf, Size:1020Kb

No Application Specified Phylogeography and phylogenetic diversity of Amazon tree species and communities Eurídice Nora Honorio Coronado Submitted in accordance with the requirements for the degree of Doctor in Philosophy The University of Leeds School of Geography May, 2013 The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2013 The University of Leeds and Eurídice Nora Honorio Coronado -ii- Acknowledgements This work was undertaken at the University of Leeds and at the Royal Botanic Garden Edinburgh (RBGE), and funded by a FINCyT studentship of the Peruvian Government (LASPAU student ID Number: 20090402), the School of Geography, University of Leeds and the Davis Expedition Fund. I am grateful to my supervisors Prof. Toby Pennington at Edinburgh and Prof. Oliver Phillips at Leeds who led me through the PhD, and for their comments and contributions to improve my research. Other external supervisors were Kyle Dexter from University of Edinburgh and Peter Hollingworth from RBGE who contributed with the discussion of my results. Thanks also to Simon Lewis and Manuel Gloor, who were part of my research support group at Leeds, for their questions about hypotheses, methods and analyses. This thesis was only possible because of the guidance of Prof. Toby Pennington and his team from RBGE who introduced me to the fascinating world of DNA extraction and sequencing and gave me assistance in using the molecular lab, library, computers and programmes. I am thankful to Alan Forrest, Michelle Hollingworth and Ruth McGregor for training and assistance during the molecular lab work. I would like to thank Dennis del Castillo from the Instituto de Investigaciones de la Amazonía Peruana (IIAP) who gave me his unconditional support in pursuing my studies abroad and for letting me spent this time in the UK. I am also thankful to Kyle Dexter and Nikée Groot for their patience to teach me useful tools in R Statistical Software. Fieldwork was a key component of chapter 2 and 3 and this was only possible thanks to all those people who worked with me in the forests of Ecuador, Peru and Bolivia. I am grateful to Pablo Alvez, Tim Baker, Aniceto Daza, Julio Irarica, Miguel Luza, Antonio Peña, Diego Rojas, Hugo Vasquez, Meison Vega, and J. Yalder for climbing nearly one thousand trees. Thanks also to Alejandro Araujo, Luzmila Arroyo, Stephan Beck, Roel Brienen, Abel Monteagudo, Carlos Reynel, and Guido Vasquez for helpful information in planning the fieldtrips and to the field stations and their station managers for logistical support. I am also thankful to Monica Poelchau, Kyle Dexter, Abel Monteagudo, Otilene dos Anjos, Ricardo Zárate, Jose Luis Marcelo, Chris Dick, William Farfán, Sanda Patiño, and Miguel -i- Luza for kindly sharing fresh leaves, herbarium specimens or sequences for some of the study species (see Appendix S2.1 and Appendix S3.2). During field work, I also collected soil samples for each of my tree species. Soil analysis was possible with the training received from Rachel Gasior at the laboratory of the School of Geography, University of Leeds. David Ashley kindly helped me running the analysis of concentration of cations using the ICP machine. In chapter 4, I analysed the floristic composition of a large number of permanent forest plots, a long-term dataset that was kindly shared by several collaborators of the Amazon Forest Inventory Network (RAINFOR). Fieldwork to support this network has been funded by the Gordon and Betty Moore Foundation and the Natural Environment Research Council. International and national organisations involved include University of Leeds, University of Oxford, University of Kent (UK), Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique (France), Naturalis Biodiversity Center Leiden, Wageningen University (Netherlands), James Cook University (Australia), Duke University, National Park Service Fredericksburg, Conservation International (USA), Herbario Universitario, Instituto de Investigaciones para el Desarrollo Forestal, Universidad de Los Andes (Venezuela), Jardín Botánico de Medellín, Universidad Nacional de Colombia (Colombia), Universidad Estatal Amazónica, Universidad Técnica del Norte (Ecuador), Andes Biodiversity and Ecosystem Research Group, Instituto de Investigaciones de la Amazonía Peruana, Jardín Botánico Missouri Oxapampa, Universidad de la Amazonía Peruana, Universidad Nacional San Antonio Abad del Cusco (Peru), Instituto Boliviano de Investigacion Forestal, Museo de Historia Natural Noel Kempff Mercado, Universidad Autónoma del Beni (Bolivia), Embrapa Amazonia Oriental, Instituto Nacional de Pesquisas da Amazônia, Museu Paraense Emílio Goeldi, Tropical Ecology Assessment and Monitoring Network, CNPq/PELD 558069/2009-6/Universidade do Estado de Mato Grosso, Universidade Federal do Acre (Brazil). Thanks also to Gabriela López-Gonzalez for her work curating and managing the ForestPlots database and for helping me with the queries to access the floristic data. Research permits for the molecular work were provided by the Ministerio de Medio Ambiente y Agua in Bolivia (SERNAP-DMA-CAR-1232/10) and the Direccion General Forestal y de Fauna Silvestre in Peru (Resolucion Directorial № 281-2010-AG-DGFFS- -ii- DGEFFS). Several other research permits have been granted to national and international collaborators in different Amazonian countries for fieldwork in RAINFOR plots. During my lab work at the RBGE, I spent great moments with my friends in Edinburgh. I would like to thank Boni, Rocio, Maca, Natalia, Nikki, Tony, Jal, Andreas, and Kyle for sharing with me so many wonderful moments, trips, parties and pub times. At Leeds, I am grateful to my friend Lina who has always been so positive about this project and for understanding my busy days and for sharing so many nice moments. I would also like to thanks the researchers and students at the University of Leeds who were also interested in my project. I want also to thank Tim Baker, my husband, who gave me support and took care of me during my PhD, and for listening so many times to my results and interpretation of the data. Finally, I thank my mother who believed I was able to complete this project, and all my family in Peru who have always encouraged my professional development. -iii- -iv- Abstract The Amazon rain forest is the most diverse ecosystem on Earth, harbouring more than ten thousand tree species. In this project, I used ecological and molecular information to explore how ecological factors and historical events have determined the species distributions and population genetic structure of tree species and the phylogenetic diversity of tree communities in the Amazon rain forest. Chapter 2 indicates that seasonally dry vegetation in northern South America represents a barrier to migration for Ficus insipida (Moraceae) and other wet-adapted Amazonian tree species as they have different plastid haplotypes restricted to Mesoamerica and Amazonia. Conversely, the ability of some pioneer species to survive seasonal drought may explain the weakly differentiated phylogeographic structure within these species, with some haplotypes occurring on both sides of this barrier. Chapter 3 explores whether patterns of population genetic structure in five widespread western Amazonian tree species are consistent with historical explanations. My results show that the genetic patterns among species are not entirely congruent suggesting that tropical rain forest species respond differently to long-term geological and climatic changes. Despite this, some tentative generalisations emerge, notably high genetic diversity and a strong geographic structure for plastid sequences suggesting long-term population stability across western Amazonia, and recent population expansions in the south-western Amazon. Chapter 4 uses 283 floristic inventories from the RAINFOR plot network to explore patterns of phylogenetic diversity across Amazonia. This study reveals that the species-rich communities of central Amazonia are dominated by phylogenetic close relatives compared to the equally species- rich communities of the north-west that tend to contain more distantly related species. Across Amazonia, an east-west gradient of the abundance of early divergent angiosperm clades was found, with the greatest percentage of tree species of Magnoliids and Monocots in the west. As these early diverging clades are also characteristic of pre- montane habitats, these results suggest that migration events from cooler environments at different geological times has played an important role in the assemblage of the most phylogenetically diverse communities in Amazonia. -v- The findings from these three chapters corroborate the notion that both ecological factors and historical events have been important in determining species distributions and the phylogenetic diversity of tropical tree communities in Amazonia. Regional differences in genetic structure among populations, and phylogenetic diversity among communities, should both be taken into account in forest conservation planning and management. -vi- Table of Contents ACKNOWLEDGEMENTS .................................................................................................................... I ABSTRACT ......................................................................................................................................
Recommended publications
  • FLORA of PERU 91 Are Very Showy, and Their Structure Is Highly Complicated
    90 FIELD MUSEUM OF NATURAL HISTORY BOTANY, VOL. XIII Huanuco: (Haenke). Lima: Above Matucana (Ball). In rock detritus, 1,700 meters, above St. Bartholome", Weberbauer 1690, type M. cylindrostachya. Purruchucho, Nee (type, as at Geneva); also between Obrajillo and San Buenaventura, Nee (Madrid). Malesherbia turbinea Macbr. Field Mus. Bot. 4: 118. 1927. Apparently allied to M. haemantha (only flowering branches known); calyx 12-15 mm. long, 7 mm. broad, sparsely pilose; crown 13 mm. high, irregularly denticulate-crenate; sepals 8-9 mm. long; pedicels nearly 15 mm. long; stamens scarcely exserted; capsules pilose, little exserted; seeds obscurely transversely but strongly longitudinally striate, about 1 mm. wide, nearly 2.5 mm. long. Flowers blood-red, the anthers apparently white or yellowish. The upper bract-like oblong-ovate leaves are merely crenate. Each leaf-crenation is tipped with one long cilium. Tacna: In rainy green shrubs and Cereus, Candarave, Weberbauer 7364, type. Malesherbia Weberbaueri Gilg, Bot. Jahrb. 50: Beibl. Ill: 11. 1913. Densely appressed silky-villous simple-stemmed shrub with crowded linear-lanceolate sessile leaves and long terminal racemes of leafy bracted greenish yellow or reddish tinged subtubular flowers; leaves subentire or obscurely crenate-serrulate, 8-12 cm. long, about 1 cm. wide, acute base and apex; calyx 3.5-4 cm. long, 8-10 mm. wide, sepals lanceolate, acuminate, 7-8 mm. long, 2 mm. wide at base, the petals shorter and narrower; crown irregularly and slightly dentate; capsule included or barely exserted; seeds minutely and obscurely striate. To about 1 meter high in steep, loose, rocky soils. Species distinctive in its closely appressed sericeous pubes- cence.
    [Show full text]
  • Hymenoptera: Trichogrammatidae), T
    bioRxiv preprint doi: https://doi.org/10.1101/493643; this version posted December 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Description and biology of two new egg parasitoid species, 2 Trichogramma chagres and T. soberania (Hymenoptera: 3 Trichogrammatidae) reared from eggs of Heliconiini 4 butterflies (Lepidoptera: Nymphalidae: Heliconiinae) 5 collected in Panama 6 7 Jozef B. Woelke1,2, Viktor N. Fursov3, Alex V. Gumovsky3, Marjolein de Rijk1,4, Catalina 8 Estrada5, Patrick Verbaarschot1, Martinus E. Huigens1,6 and Nina E. Fatouros1,7 9 10 1 Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, 11 Wageningen, The Netherlands. 12 2 Current address: Business Unit Greenhouse Horticulture, Wageningen University & 13 Research, P.O. Box 20, 2665 Z0G, Bleiswijk, The Netherlands. 14 3 Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Bogdan 15 Khmel’nitskiy Street 15, 01601, Kiev, Ukraine. 16 4 Faculty of Science, Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The 17 Netherlands. 18 5 Imperial College London, Silwood Park campus, Buckhurst road, SL5 7PY, Ascot, UK. 19 6 Current address: Education Institute, Wageningen University & Research, P.O. Box 59, 20 6700 AB, Wageningen, The Netherlands. bioRxiv preprint doi: https://doi.org/10.1101/493643; this version posted December 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Article Download
    wjpls, 2020, Vol. 6, Issue 9, 114-132 Review Article ISSN 2454-2229 Arjun et al. World Journal of Pharmaceutical World Journaland Life of Pharmaceutical Sciences and Life Science WJPLS www.wjpls.org SJIF Impact Factor: 6.129 A REVIEW ARTICLE ON PLANT PASSIFLORA Arjun Saini* and Bhupendra Kumar Dev Bhoomi Institute of Pharmacy and Research Dehradun Uttrakhand Pin: 248007. Corresponding Author: Arjun Saini Dev Bhoomi Institute of Pharmacy and Research Dehradun Uttrakhand Pin: 248007. Article Received on 29/06/2020 Article Revised on 19/07/2020 Article Accepted on 09/08/2020 ABSTRACT Nature has been a wellspring of remedial administrators for an enormous number of year and a vital number of present day calm have been isolated from customary sources, numerous reliant on their use in ordinary medicine. Plants from the family Passiflora have been used in standard drug by various social orders. Flavonoids, glycosides, alkaloids, phenolic blends and eccentric constituents have been represented as the major phyto- constituents of the Passiflora spe-cies. This overview delineates the morphology, standard and tales uses, phyto- constituents and pharmacological reports of the prominent kinds of the sort Passiflora. Diverse virgin areas of investigation on the kinds of this sort have been highlighted to examine, detach and recognize the therapeutically huge phyto- constituents which could be utilized to help various diseases impacting the mankind. The objective of the current examination was to concentrate all Passiflora species. The sythesis of each specie presented particularities; this legitimizes the essentialness of studies concentrating on the phenolic bit of different Passiflora species. Flavones C- glycosides were recognized in all concentrates, and are found as the central constituents in P.
    [Show full text]
  • Echter's Nursery & Garden Center Crimson Passion Flower
    5150 Garrison St. Echter's Nursery & Garden Center Arvada, CO, 80002 phone: 303-424-7979 [email protected] Crimson Passion Flower www.echters.com Crimson Passion Flower Passiflora vitifolia Height: 15 feet Spread: 30 inches Sunlight: Hardiness Zone: (annual) Other Names: Perfumed Passion Flower, Grape-leaf Passion Flower Description: Crimson Passion Flower flowers Photo courtesy of NetPS Plant Finder A truly spectacular vine for the garden; the large crimson flowers are very distinctive; fruit is edible but quite sour; wonderful for covering an arbor, trellis or lattice, the flowers are individually beautiful close up Ornamental Features Crimson Passion Flower features showy lightly-scented crimson star-shaped flowers with white eyes at the ends of the branches in mid summer. The flowers are excellent for cutting. Its lobed leaves remain dark green in color throughout the year. It produces dark green berries with white spots from mid summer to mid fall. Landscape Attributes Crimson Passion Flower is a multi-stemmed annual with a ground-hugging habit of growth. Its medium texture blends into the garden, but can always be balanced by a couple of finer or coarser plants for an effective composition. Crimson Passion Flower fruit This is a relatively low maintenance plant, and is best Photo courtesy of NetPS Plant Finder cleaned up in early spring before it resumes active growth for the season. It has no significant negative characteristics. Crimson Passion Flower is recommended for the following landscape applications; - Accent - Hedges/Screening - General Garden Use - Container Planting 5150 Garrison St. Echter's Nursery & Garden Center Arvada, CO, 80002 phone: 303-424-7979 [email protected] Crimson Passion Flower www.echters.com Planting & Growing Crimson Passion Flower will grow to be about 15 feet tall at maturity, with a spread of 30 inches.
    [Show full text]
  • Per-Visit Pollinator Performance and Regional Importance of Wild Bombus and Andrena (Melandrena) Compared to the Managed Honey Bee in New York Apple Orchards Mia G
    Per-visit pollinator performance and regional importance of wild Bombus and Andrena (Melandrena) compared to the managed honey bee in New York apple orchards Mia G. Park, Robert A. Raguso, John E. Losey, Bryan N. Danforth To cite this version: Mia G. Park, Robert A. Raguso, John E. Losey, Bryan N. Danforth. Per-visit pollinator perfor- mance and regional importance of wild Bombus and Andrena (Melandrena) compared to the man- aged honey bee in New York apple orchards. Apidologie, Springer Verlag, 2016, 47 (2), pp.145-160. 10.1007/s13592-015-0383-9. hal-01356113 HAL Id: hal-01356113 https://hal.archives-ouvertes.fr/hal-01356113 Submitted on 24 Aug 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2016) 47:145–160 Original article * The Author(s), 2015. This article is published with open access at Springerlink.com DOI: 10.1007/s13592-015-0383-9 Per-visit pollinator performance and regional importance of wild Bombus and Andrena (Melandrena )compared to the managed honey bee in New York apple orchards 1,2 3 1 1 Mia G. PARK , Robert A. RAGUSO , John E. LOSEY , Bryan N.
    [Show full text]
  • Passiflora Vitifolia: Passifloraceae) - an Endangered Species
    Acta Scientific MICROBIOLOGY (ISSN: 2581-3226) Volume 4 Issue 9 September 2021 Review Article A Review on the Pharmacological Importance of Crimson Passion Flower (Passiflora vitifolia: Passifloraceae) - An Endangered Species Rohit Pal* Received: July 21, 2021 Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GhalKalan, Published: August 13, 2021 Punjab, India © All rights are reserved by Rohit Pal. *Corresponding Author: Rohit Pal, Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GhalKalan, Punjab, India. Abstract Plants are the gifts from nature and this gift is explored widely by the humans in terms of many essential utility such as medici- nal, edible, essential oil, etc. Among these uses Pharmacological utilization of plants are one of the most vital one. Plants are used as the medicinal remedies from the ancient times. Passiflora Passiflora species species is one of plants that influences the Ayurveda for several remedies Passiflora vitifolia is one of the species which is not explored much. Although there are few reports that suggested that there are dif- such as sedative, anxiety and hypertension etc. But this plant does not have scientific evidence so far. Among the described the various pharmacological important of this an endangered species. This review comprises the medical important of the ferent chemical constituents present in the plant such as alkaloids, glycosides, flavonoids., volatile oils etc. therefore, the reports also Passiflora vitifolia along with their chemical constituents and their structure. Keywords: Passiflora vitifolia; Flavonoids Pharmacological Utilization; Sedative; Anti-inflammatory; Introduction The P. vitifolia P. vitifolia Passiflora belong to the country Colombia with locality Victoria a (Caldas), is called as Crimson Passion flower.
    [Show full text]
  • Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
    United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D.
    [Show full text]
  • New Insights Into the Evolution of Passiflora Subgenus Decaloba
    Systematic Botany (2013), 38(3): pp. 692–713 © Copyright 2013 by the American Society of Plant Taxonomists DOI 10.1600/036364413X670359 New Insights into the Evolution of Passiflora subgenus Decaloba (Passifloraceae): Phylogenetic Relationships and Morphological Synapomorphies Shawn E. Krosnick,1,6 Kristen E. Porter-Utley,2,6 John M. MacDougal,3 Peter M. Jørgensen,4 and Lucinda A. McDade5 1Southern Arkansas University, Department of Biology, 100 East University Street, Magnolia, Arkansas 71753 U. S. A. 2Keene State College, Department of Biology, 229 Main Street, Keene, New Hampshire 03435 U. S. A. 3Harris-Stowe State University, Department of Mathematics and Natural Sciences, 3026 Laclede, St. Louis, Missouri 63103 U. S. A. 4Missouri Botanical Garden, Post Office Box 299, St. Louis, Missouri 63166 U. S. A. 5Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, California 71753 U. S. A. 6Both authors contributed equally to this work. Authors for correspondence ([email protected] or [email protected]). Communicating Editor: Lucia G. Lohmann Abstract—Phylogenetic relationships of Passiflora subgenus Decaloba were examined using 148 taxa and four molecular markers: nuclear nrITS, ncpGS, cp trnL-F, and ndhF. Relationships of subgenus Decaloba to the other four Passiflora subgenera (Astrophea, Deidamioides, Tetrapathea,andPassiflora) are investigated, as are relationships among the eight supersections within subgenus Decaloba. Results indicate that subgenus Deidamioides is not monophyletic. Subgenus Astrophea + subgenus Deidamioides (section Tryphostemmatoides) together form the most basally branching lineage in the genus, followed by a clade comprised of subgenus Passiflora + subgenus Deidamioides (sections Tetrastylis, Polyanthea, and Deidamioides). Passiflora obovata (subgenus Deidamioides section Mayapathanthus) is resolved as part of subgenus Decaloba.
    [Show full text]
  • Echter's 2007 Indoor Plant List
    Echter's Indoor Plant List ABUTILON ASSORTED ABUTILON ASSORTED PATIO TREE ACALYPHA CHENILLE BASKET ACALYPHA CHENILLE HB ACALYPHA FIRE DRAGON ACALYPHA TRICOLOR ADENIUM OBESUM ADENIUM OBESUM DESERT ROSE AEONIUM BLACK ROSE AEONIUM VARIEGATED AESCHYNANTHUS LIPSTICK AFRICAN VIOLET AGAPANTHUS ALBUS AGAPANTHUS MIDNIGHT BLUE AGAPANTHUS PETER PAN AGAPANTHUS QUEEN ANNE AGAPANTHUS STORM CLOUD AGAPANTHUS STREAMLINE AGAPANTHUS SUMMER GOLD AGLAONEMA ABIDJAN AGLAONEMA ASSORTED AGLAONEMA BAY ASSORTED AGLAONEMA CECILIA AGLAONEMA COSMOS AGLAONEMA CRISTINA AGLAONEMA DIAMOND BAY AGLAONEMA EMERALD BAY AGLAONEMA EMERALD BEAUTY AGLAONEMA GOLDEN MADONNA AGLAONEMA HYBRID AGLAONEMA JEWEL OF INDIA AGLAONEMA JUBILEE AGLAONEMA MARIA CHRISTINE AGLAONEMA MARY LOU AGLAONEMA PAINTED PRINCESS Call for daily availability or to special order a particular variety not on this list. Echter's Indoor Plant List AGLAONEMA SAN REMO AGLAONEMA SILVER BAY AGLAONEMA SILVER MOON AGLAONEMA SILVER QUEEN AGLAONEMA SILVERADO AGLAONEMA STARS AGLAONEMA STRIPES ALLAMANDA BROWN BUD TRELLIS ALLAMANDA CHERRY JUBILEE TRELLIS ALLAMANDA YELLOW ALOCASIA BLACK VELVET ALOCASIA POLLY ALOE VERA ALSTROEMERIA ASSORTED ALYOGYNE PURPLE DELIGHT TREE AMARANTH HOPI RED DYE AMARYLLIS ASST. ANGELICA ASSORTED ANIGOZANTHUS KANGAROO PAW ANISE HYSSOP ANISODONTIA ELEGANT LADY ANNUAL ASSORTED ANNUAL RED HOT POT ANTHURIUM ASSORTED APHELANDRA WHITE CLOUD APHELANDRA ZEBRA APHELANDRA ZEBRA PLANT APPLE GOLDEN SENTINEL APPLE SCARLET SENTINEL ARABICA COFFEE PLANT ARABICA COFFEE TREE ARALIA ASSORTED ARALIA BALFOUR ARALIA BALFOURIANA ARALIA BIANCA Call for daily availability or to special order a particular variety not on this list. Echter's Indoor Plant List ARALIA BLACK ARALIA CASTOR ARALIA CELERY LEAF ARALIA CHICKEN GIZZARD ARALIA CHINENSIS ARALIA ELEGANTISSIMA ARALIA FABIAN ARALIA FALSE ARALIA LEMON ARALIA MING ARALIA MING CANE ARALIA ROBIE ARAUCARIA NORFOLK ISL.
    [Show full text]
  • Microsatellite Marker Development by Partial Sequencing of the Sour
    Araya et al. BMC Genomics (2017) 18:549 DOI 10.1186/s12864-017-3881-5 RESEARCH ARTICLE Open Access Microsatellite marker development by partial sequencing of the sour passion fruit genome (Passiflora edulis Sims) Susan Araya1, Alexandre M Martins2, Nilton T V Junqueira3, Ana Maria Costa3, Fábio G Faleiro3 and Márcio E Ferreira2,4* Abstract Background: The Passiflora genus comprises hundreds of wild and cultivated species of passion fruit used for food, industrial, ornamental and medicinal purposes. Efforts to develop genomic tools for genetic analysis of P. edulis, the most important commercial Passiflora species, are still incipient. In spite of many recognized applications of microsatellite markers in genetics and breeding, their availability for passion fruit research remains restricted. Microsatellite markers in P. edulis are usually limited in number, show reduced polymorphism, and are mostly based on compound or imperfect repeats. Furthermore, they are confined to only a few Passiflora species. We describe the use of NGS technology to partially assemble the P. edulis genome in order to develop hundreds of new microsatellite markers. Results: A total of 14.11 Gbp of Illumina paired-end sequence reads were analyzed to detect simple sequence repeat sites in the sour passion fruit genome. A sample of 1300 contigs containing perfect repeat microsatellite sequences was selected for PCR primer development. Panels of di- and tri-nucleotide repeat markers were then tested in P. edulis germplasm accessions for validation. DNA polymorphism was detected in 74% of the markers (PIC = 0.16 to 0.77; number of alleles/locus = 2 to 7). A core panel of highly polymorphic markers (PIC = 0.46 to 0.77) was used to cross-amplify PCR products in 79 species of Passiflora (including P.
    [Show full text]
  • Plant DNA Barcodes and a Community Phylogeny of a Tropical Forest Dynamics Plot in Panama
    Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama W. John Kressa,1, David L. Ericksona, F. Andrew Jonesb,c, Nathan G. Swensond, Rolando Perezb, Oris Sanjurb, and Eldredge Berminghamb aDepartment of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012; bSmithsonian Tropical Research Institute, P.O. Box 0843-03092, Balboa Anco´n, Republic of Panama´; cImperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, United Kingdom; and dCenter for Tropical Forest Science - Asia Program, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138 Communicated by Daniel H. Janzen, University of Pennsylvania, Philadelphia, PA, September 3, 2009 (received for review May 13, 2009) The assembly of DNA barcode libraries is particularly relevant pling: the conserved coding locus will easily align over all taxa within species-rich natural communities for which accurate species in a community sample to establish deep phylogenetic branches identifications will enable detailed ecological forensic studies. In whereas the hypervariable region of the DNA barcode will align addition, well-resolved molecular phylogenies derived from these more easily within nested subsets of closely related species and DNA barcode sequences have the potential to improve investiga- permit relationships to be inferred among the terminal branches tions of the mechanisms underlying community assembly and of the tree. functional trait evolution. To date, no studies have effectively In this respect a supermatrix design (8, 9) is ideal for using a applied DNA barcodes sensu strictu in this manner. In this report, mixture of coding genes and intergenic spacers for phylogenetic we demonstrate that a three-locus DNA barcode when applied to reconstruction across the broadest evolutionary distances, as in 296 species of woody trees, shrubs, and palms found within the the construction of community phylogenies (10).
    [Show full text]
  • Plant DNA Barcodes and a Community Phylogeny of a Tropical Forest Dynamics Plot in Panama
    Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama W. John Kressa,1, David L. Ericksona, F. Andrew Jonesb,c, Nathan G. Swensond, Rolando Perezb, Oris Sanjurb, and Eldredge Berminghamb aDepartment of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012; bSmithsonian Tropical Research Institute, P.O. Box 0843-03092, Balboa Anco´ n, Republic of Panama´; cImperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire SL5 7PY, United Kingdom; and dCenter for Tropical Forest Science - Asia Program, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138 Communicated by Daniel H. Janzen, University of Pennsylvania, Philadelphia, PA, September 3, 2009 (received for review May 13, 2009) The assembly of DNA barcode libraries is particularly relevant pling: the conserved coding locus will easily align over all taxa within species-rich natural communities for which accurate species in a community sample to establish deep phylogenetic branches identifications will enable detailed ecological forensic studies. In whereas the hypervariable region of the DNA barcode will align addition, well-resolved molecular phylogenies derived from these more easily within nested subsets of closely related species and DNA barcode sequences have the potential to improve investiga- permit relationships to be inferred among the terminal branches tions of the mechanisms underlying community assembly and of the tree. functional trait evolution. To date, no studies have effectively In this respect a supermatrix design (8, 9) is ideal for using a applied DNA barcodes sensu strictu in this manner. In this report, mixture of coding genes and intergenic spacers for phylogenetic we demonstrate that a three-locus DNA barcode when applied to reconstruction across the broadest evolutionary distances, as in 296 species of woody trees, shrubs, and palms found within the the construction of community phylogenies (10).
    [Show full text]