Small Satellite Launch Vehicle from a Balloon Platform

Total Page:16

File Type:pdf, Size:1020Kb

Small Satellite Launch Vehicle from a Balloon Platform Reinventing Space Conference BIS-RS-2015-60 Small satellite launch vehicle from a balloon platform Kieran Hayward Cranfield University José Mariano López-Urdiales Founder, zero2infinity 13th Reinventing Space Conference 9-12 November 2015 Oxford, UK Small Satellite Launch Vehicle from a Balloon Platform Kieran Hayward1 and Jose Mariano Lopez Urdiales2 1 Cranfield University, Cranfield, UK 2 zero2infinity, Barcelona, Spain Abstract In the last decade there has been growing use of smaller satellites (0-100kg) to conduct Earth observation and science missions and this industry is growing. 2014 saw a small satellite launch increase of 72% compared with 2013. Companies such as Planet Labs are starting to launch large numbers of small satellites. However, to date the use of small satellites has been restricted due to the limited launch availability to this class of satellite. Due to their small size these satellites are normally launched as secondary payloads on larger launch vehicles (such as Falcon 9 or Ariane 5). This restriction has severely limited the launch dates available to these small satellites and also limits their orbit selection. Due to the restrictions mentioned above and building on its experience in high-altitude ballooning zero2infinity has begun designing a new small satellite launch vehicle, called bloostar. This three-stage vehicle is designed to put a 75kg payload into a 600km sun synchronous orbit. It is launched from a high altitude helium balloon at 20km, at this altitude the atmospheric density is low enough (<7% of sea level density) that aerodynamic drag is negligible. Traditional launch vehicles, which are launched from sea level have to pass through the densest part of the atmosphere, incurring large amounts of aerodynamic drag. By launching above the denser part of the atmosphere bloostar avoids these drag losses resulting in a significant Δ� saving. This reduction in atmospheric drag removes the need for an aerodynamic fairing around the payload, as the payload no longer needs to fit into an aerodynamic fairing, the constraints regarding payload volume are much reduced compared to existing launch vehicles. Additionally, the acoustic and shock environments are more benign which reduces the minimum thicknesses of components and overall satellite structural weight. This will allow light-weight, high volume satellites, such as small Earth observation telescopes which need larger diameter mirrors, to be launched. Launching at an altitude where aerodynamic drag is negligible also leads to a launch vehicle that is no longer required to be slender but instead is a series of concentric tori. This novel shape has a number of advantages, including allowing all engines to fire at the same time reducing inert mass of the first and second stages. The control system has to be adapted to the new geometry and mass distribution of the rocket. How much thrust vectoring and how much differential throttling of 13 engines is needed to optimize the trajectory even in engine out situations is the focus of some ongoing research. K. Hayward & J.M. Lopez-Urdiales BIS-RS-2015-60 Introduction Nano- (1-10kg) and micro-satellites (10-100kg) have proven their capabilities to perform increasingly complex missions effectively, affordably and responsively. Multiple factors have contributed to enhance their performance such as miniaturization of electronics and enhanced precision in small mechanical systems. There is an increasing interest in missions performed by nano/microsatellites with a whole new industry value chain emerging around them. For example, 2014 saw a small satellite launch increase of 72% compared with 2013 (Crisp, Smith, & Hollingsworth, 2014). Companies such as Planet Labs (Marshall & Boshuizen, 2013) are starting to launch large numbers of small satellites. The use of these smaller satellites has been restricted by the limited launch availability for this class of satellite. To date these satellites have been required to be launched as secondary (or tertiary) payloads on large launch vehicles such as Europe's Ariane 5 or SpaceX’s Falcon 9. Despite many competing efforts to develop has a launch vehicle solely for the purpose of launching small satellites (Niederstrasser, Frick, 2015) none has yet been fully developed. Those launchers which were being developed (for example Falcon 1) have been canceled as they were viewed by their manufacturers as non-profitable (or less profitable than launching larger satellite payloads). Being restricted to secondary payload spaces has severely limited the launch opportunities available to small satellites and also limits the selection of orbit location and launch date to existing planned launches. After identifying (Palerm, Barrera, Salas, 2013) that the true revolution in space capabilities would come not just from microsatellites but from the combination of microlaunchers and microsatellites (via responsive access and constellations) zero2infinity, a small Barcelona based start-up company, has begun development of a new launch vehicle specifically this market, bloostar. It is a three stage launch vehicle designed to put a 75kg payload into a 600km sun-synchronous orbit. It will be dropped from a helium balloon at an altitude of 20km. At this altitude the atmospheric density is low enough (<7% of sea level density) that aerodynamic drag can be neglected. This reduction in aerodynamic drag results in a significant Δ� saving (Beerer, 2014) and also means that instead of the long slender shape of ground launched vehicles bloostar is a series of concentric tori. This shape has a number of advantages over a slender body: this shape is easier to hoist by balloon; and it allows all rocket engines on every stage to be ignited in parallel reducing inert mass in the lower stages of the vehicle. 3 K. Hayward & J.M. Lopez-Urdiales BIS-RS-2015-60 Figure 1: bloostar rocket stack Advantages of Stratospheric Launch As mentioned in the introduction bloostar will be launched from a balloon at an altitude of 20km. Based on Astos simulations, it is expected that the launch vehicle will need approximately 9.28km/s of Δ� to reach a 600km polar orbit, compared to a Δ� of 10.12km/s for a ground launch (calculated from Astos simulations and Vega launcher data). While this may seem only a small difference (8%) using the Tsiolkowsky equation it can be shown by assuming a specific impulse of 3,250m/s (typical of a methane fueled rocket) that the initial mass of bloostar at launch would be approximately 30% larger than if launched at altitude. The benefits of launching at altitude are further shown by considering the graph in Figure 2 which shows that by launching at 20km drag losses can be as much as 22.5 times less. In addition to the reduced Δ� and atmospheric drag launching at altitude also results in reduced payload vibration, which reduce the impact of launch to sensitive scientific instruments, and also reduced height transfer, shown in Figure 3. 4 K. Hayward & J.M. Lopez-Urdiales BIS-RS-2015-60 Figure 2: Drag vs. altitude for a generic launcher ignited from ground (red) and 20km (blue) Figure 3: Heat flux vs. time for generic launcher ignited from ground (red) and 20km (blue) The only existing air launched orbital rocket, Orbital’s Pegasus experiences a maximum dynamic pressure (maxq) of 67kPa. With bloostar the maxq is only 5kPa. This has implications on the structural weight of the launcher. 5 K. Hayward & J.M. Lopez-Urdiales BIS-RS-2015-60 Compared to aircraft assisted launchers, there is no need for wings, fins, or heavy control system actuators, auxiliary power units, etc. The trajectory, higher control authority, and the structural shape of the rocket remove the typical longitudinal bending of air launch pull up maneuvers. This forced X-15, SpaceShipOne and Pegasus to have a heavier and reinforced fuselage, never carrying over 63% of their own gross weight as propellant. All of the benefits discussed above result in a launch vehicle which is significantly simpler and cheaper to operate which results in a reduced launch cost for the small satellite community. Configuration The following is a mass budget of the bloostar rocket stack. 1st stage 2nd stage 3rd stage Structural mass (kg) 552.7 118.8 103.7 Fairing (kg) 25 0 0 Propellant mass (kg) 3284.6 622.6 218.7 Total stage mass (kg) 3862.3 741.4 322.4 Stage “Payload” (kg) 1138.8 397.4 75 Engine Isp (s) 342 342 342 Ideal deltaV (m/s) 3587.8 2654.6 2681.4 deltaV share (%) 40.2 29.8 30 Figure 4: bloostar exploded view Concept of operation bloostar will be launched from a ship reducing the risk of launch delays. Several launch windows can be mapped over the surface of the ocean and the one with least chances of weather delays can be selected. Additionally, the ship can move at the speed of the wind and thus compensate ground winds. A near zero wind column is generated in which to inflate and release the balloon 6 K. Hayward & J.M. Lopez-Urdiales BIS-RS-2015-60 from the deck. The ship itself does not need any significant adaptation for the operation. Any ship with a sufficiently big flat area to fit the ISO containers where all the system can be packed could be rented to perform the flight. The payload is mounted near the balloon inflation area. The effective launch area should be of around 50x17 meters. The chosen location for the initial launches is the south west of the Canary Islands due to the calm seas and low wind speeds generated by the constant weather patterns and the geographic characteristics of the islands. This location is also excellent to choose a desired orbit since most azimuths are available. The first phase of the flight is a balloon ascent to Near Space (20 km) during approximately 90 minutes.
Recommended publications
  • Semi Cryogenic Propellants: an Overview of a Non Toxic Propellant for Delivering Heavier Payloads to Space
    INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN: 2455-0620 Volume - 6, Issue - 10, Oct – 2020 Monthly, Peer-Reviewed, Refereed, Indexed Journal with IC Value: 86.87 Impact Factor: 6.719 Received Date: 12/10/2020 Acceptance Date: 26/10/2020 Publication Date: 31/10/2020 SEMI CRYOGENIC PROPELLANTS: AN OVERVIEW OF A NON TOXIC PROPELLANT FOR DELIVERING HEAVIER PAYLOADS TO SPACE 1Aiswarya A. Satheesan, 2Akash R S, 3Gokul Krishna Menon, 4Ishwaragowda V Patil 1, 2, 3Student, 4Assistant Professor 1, 2, 3ACE College of Engineering, Trivandrum, 4 Shree Devi Institute of Techchnology Email - [email protected], [email protected] Abstract: Semi cryogenic fueled rockets use refined kerosene instead of liquid hydrogen, which is used in combination with liquid oxygen as the propellant in the cryogenic engine which is stored in a normal temperature. The refined kerosene needs lesser space to make it possible to carry more propellant in the semi cryogenic fuel part. Semi cryogenics is more powerful, ecofriendly and the cost effective compared to cryogenic engines. Key Words: Semi cryogenics, Cryogenics, Propellant, ULV. 1. INTRODUCTION: Kerosene as a fuel has its advantage of burn off gas eco-friendly and cost effective and relative safety. Unlike liquid hydrogen and oxygen which has to store at -253 and 183 degree Celsius respectively, it is stable at room temperature. Kerosene is a fuel which produces line fumes in its paraffin form, it is considered environmentally friendly. It is a non-corrosive fuel, safe to store for a long time. Depending in what kind of container in which it is stored, kerosene can be kept in storage for a 1 year to 10 year.
    [Show full text]
  • 2019 Nano/Microsatellite Market Forecast, 9Th Edition
    2019 NANO/MICROSATELLITE MARKET FORECAST, 9TH EDITION Copyright 2018, SpaceWorks Enterprises, Inc. (SEI) APPROVED FOR PUBLIC RELEASE. SPACEWORKS ENTERPRISES, INC., COPYRIGHT 2018. 1 Since 2008, SpaceWorks has actively monitored companies and economic activity across both the satellite and launch sectors 0 - 50 kg 50 - 250kg 250 - 1000kg 1000 - 2000kg 2000kg+ Custom market assessments are available for all mass classes NANO/MICROSATELLITE DEFINITION Picosatellite Nanosatellite Microsatellite Small/Medium Satellite (0.1 – 0.99 kg) (1 – 10 kg) (10 – 100 kg) (100 – 1000 kg) 0 kg 1 kg 10 kg 100 kg 1000 kg This report bounds the upper range of interest in microsatellites at 50 kg given the relatively large amount of satellite development activity in the 1 – 50 kg range FORECASTING METHODOLOGY SpaceWorks’ proprietary Launch Demand Database (LDDB) Downstream serves as the data source for all satellite market Demand assessments ▪ Planned The LDDB is a catalogue of over 10,000+ historical and Constellations future satellites containing both public and non-public (LDDB) satellite programs Launch Supply SpaceWorks newly updated Probabilistic Forecast Model (PFM) is used to generate future market potential SpaceWorks PFM Model ▪ The PFM considers down-stream demand, announced/planed satellite constellations, and supply-side dynamics, among other relevant factors Expert Analysis The team of expert industry analysts at SpaceWorks SpaceWorks further interprets and refines the PFM results to create Forecast accurate market forecasts Methodology at a Glance 2018 SpaceWorks forecasted 2018 nano/microsatellite launches with unprecedented accuracy – actual satellites launched amounted to just 5% below our analysts’ predictions. In line with SpaceWorks’ expectations, the industry corrected after a record launch year in 2017, sending 20% less nano/microsatellites to orbit than in 2018.
    [Show full text]
  • Access to Space Through Isro Launch Vehicles
    Volume -2, Issue-4, October 2012 ACCESS TO SPACE THROUGH ISRO subsystems of a complex launch vehicle but also the maturity attained in conceiving, designing and realizing LAUNCH VEHICLES other vital elements viz., control, guidance, navigation Introduction : and staging systems. The nation’s capability to plan, integrate and carry out a satellite launch mission which is Climbing out of the Earth’s gravity well and transcending truly a multi-disciplinary technological challenge was the dense atmospheric shield is the most energy intensive proved on July 18, 1980 when India successfully orbited crucial first step in the journey into space and the Launch Rohini-1 satellite on SLV-3 E02 flight. Vehicles are the primary viable means of accomplishing this task. India acquired the capability to orbit a satellite While the sub-orbital sounding rockets which just carry in 1980, when SLV-3 the indigenously developed all the payload instruments upto a height of 100 to 200 solid launcher deployed the 40 kg Rohini satellite around kilometers have very few sub-systems apart from the earth. Tremendous progress has been made in this area propulsive device, a Satellite Launcher which has to in the last three decades and today, India is one among import a velocity of around 8 km/sec and precisely the leading space-faring nations with assured access to deliver the payload into a pre targeted injection vector in space through the work-horse operational launcher space has far more complex systems all of which have to PSLV, the Polar Satellite Launch Vehicle. function flawlessly for a successful orbital mission.
    [Show full text]
  • Cubesat Mission: from Design to Operation
    applied sciences Article CubeSat Mission: From Design to Operation Cristóbal Nieto-Peroy 1 and M. Reza Emami 1,2,* 1 Onboard Space Systems Group, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Space Campus, 981 92 Kiruna, Sweden 2 Aerospace Mechatronics Group, University of Toronto Institute for Aerospace Studies, Toronto, ON M3H 5T6, Canada * Correspondence: [email protected]; Tel.: +1-416-946-3357 Received: 30 June 2019; Accepted: 29 July 2019; Published: 1 August 2019 Featured Application: Design, fabrication, testing, launch and operation of a particular CubeSat are detailed, as a reference for prospective developers of CubeSat missions. Abstract: The current success rate of CubeSat missions, particularly for first-time developers, may discourage non-profit organizations to start new projects. CubeSat development teams may not be able to dedicate the resources that are necessary to maintain Quality Assurance as it is performed for the reliable conventional satellite projects. This paper discusses the structured life-cycle of a CubeSat project, using as a reference the authors’ recent experience of developing and operating a 2U CubeSat, called qbee50-LTU-OC, as part of the QB50 mission. This paper also provides a critique of some of the current poor practices and methodologies while carrying out CubeSat projects. Keywords: CubeSat; miniaturized satellite; nanosatellite; small satellite development 1. Introduction There have been nearly 1000 CubeSats launched to the orbit since the inception of the concept in 2000 [1]. An up-to-date statistics of CubeSat missions can be found in Reference [2]. A summary of CubeSat missions up to 2016 can also be found in Reference [3].
    [Show full text]
  • Satellite Trends
    Satellite trends Technical and business technology and regulatory challenges Attila MATAS [email protected] WRC-15 GFT Decision Seamless satellite based ADS-B – GFT - world wide coverage 2 © ITU WRC-15 – UAS Decision Unmanned Aircraft Systems (UAS) – Use of FSS bands for control and non- payload communications (CNPC) of UAS in non-segregated airspaces LOS Out-LOS 3 Non-GSO satellites Advantages – Less booster power required – Less delay in transmission path – Suitability for providing service at higher latitude – Lower cost per satellite to build and launch satellites Disadvantages – Satellite system and ground segment are expensive – Less expected life of satellites due to ionizing radiation effects, requires frequent replacement – Requirements for deorbiting Non-GSO satellite projects Nowadays – Space science missions, navigation (GPS, Galileo, Glonass, Compas) and mobile-satellite systems (Iridium, Globalstar) – First non-GSO broadband from O3B Satellite technology – Era of microsats, nanosats – Mass production brings down the cost – Technological advancements • Satellites terminals are smaller and cheaper • Ka-band applications • New technologies – optical links, electronic propulsion How it is non-GSO different? 1990s 2016 Cost per kg to LEO >10 000 [1 600] – 4 000 (USD) (Dnepr-1) (FH projected) Teledesic OneWeb Cost per sat. (USD) 20mil/35mil [0.5mil] Project cost (USD) 9bn 1.5-2bn How is the satellite communication different? Investments More IT/TECH - companies ready to invest (Google, Facebook) Launch Costs Launch costs are down, new entrants in the market SpaceX, Virgin Galactic, Orbital ATK etc Market Internet is very different There are millions without access Big Data requires more users to mine data Mobile is the next market to win New applications – ADS-B, UAS, IoT, ESiM Competition More players Support from satellite operators High Throughput Satellite (HTS) Improved capacity, higher throughput rates, lower space segment cost per MB through frequency reuse and multiple spot beams 1.
    [Show full text]
  • Trends in Small Satellite Technology and the Role of the NASA Small Spacecraft Technology Program
    Trends in Small Satellite Technology and the Role of the NASA Small Spacecraft Technology Program Final Update to the NASA Advisory Committee Technology, Innovation and Engineering Committee March 28, 2017 Bhavya Lal, Asha Balakrishnan, Alyssa Picard, Ben Corbin, Jonathan Behrens, Ellen Green, Roger Myers Reviewers: Brian Zuckerman, Mike Yarymovych, Iain Boyd, Malcolm MacDonald Project Goal Given investments outside STMD, and NASA’s mission needs, what is the “the appropriate, discriminating role for STMD vis-à-vis all the other organizations that are developing small satellite technology?” 2 Overall Approach • Examined smallsat developments • Scope – State-of-the-art and activities outside – STMD’s Small Spacecraft Technology STMD Program (SSTP) supplemented by other – Evolution of the ecosystem: players STMD efforts and markets – Did not conduct an evaluation – Drivers of future activities: • No comment on adequacy of funding infrastructure, policies, investment levels • Analyzed STMD’s current and • Definition of a small spacecraft or emerging smallsat portfolio smallsat • Identified NASA’s small spacecraft – Considered several metrics – mass, cost, innovation approach (“lean needs, both user driven (tech satellite”) pull) and technology driven (tech – Settled on mass with upper limit ~200 push) kg • Identified gaps and made • With exceptions up to 500 kg as needed recommendations 3 Data Sources • Reviewed the literature • Conducted 57 stakeholder – National Academy of Sciences discussions CubeSat Report (2016) – Industry representatives
    [Show full text]
  • IAF SPACE TRANSPORTATION SOLUTIONS and INNOVATIONS SYMPOSIUM (D2) Small Launchers: Concepts and Operations (Part I) (7)
    69th International Astronautical Congress 2018 Paper ID: 44054 oral IAF SPACE TRANSPORTATION SOLUTIONS AND INNOVATIONS SYMPOSIUM (D2) Small Launchers: Concepts and Operations (Part I) (7) Author: Ms. Sirisha Bandla Virgin Galactic L.L.C, United States, [email protected] Ms. Monica Jan Virgin Galactic L.L.C, United States, [email protected] LAUNCHERONE: RESPONSIVE LAUNCH FOR SMALL SATELLITES Abstract Virgin Orbit is a developing small launch platform that will provide affordable, dedicated rides to orbit for small satellites starting this year. We are in the midst of a small satellite revolution and with technology advancement packing more capability in smaller packages, small satellites are progressively pro- viding solutions for remote sensing, communications, earth observation and other low-Earth orbit needs. Currently, a small satellite operator is typically forced to ride as a secondary payload, constrained to the primary payload's launch schedule and orbit. However, Virgin Orbit's small launch vehicle, LauncherOne, will soon begin providing frequent, affordable, and dedicated transportation to orbit for small payloads. LauncherOne is a two stage, liquid propulsion (LOX/RP) rocket launched from a Boeing 747-400. By utilizing air-launch, the system is designed to conduct operations from a variety of locations, removing the complexity and scheduling typically associated with traditional launch ranges. LauncherOne will allow customers to select from various launch azimuths, including equatorial inclinations, and will increase avail- able orbital launch windows. The Long Beach, California, USA facility where the team is based has been outfitted with the equipment needed for the manufacture of the LauncherOne rocket, and currently staffs over 300 employees.
    [Show full text]
  • MIT Japan Program Working Paper 01.10 the GLOBAL COMMERCIAL
    MIT Japan Program Working Paper 01.10 THE GLOBAL COMMERCIAL SPACE LAUNCH INDUSTRY: JAPAN IN COMPARATIVE PERSPECTIVE Saadia M. Pekkanen Assistant Professor Department of Political Science Middlebury College Middlebury, VT 05753 [email protected] I am grateful to Marco Caceres, Senior Analyst and Director of Space Studies, Teal Group Corporation; Mark Coleman, Chemical Propulsion Information Agency (CPIA), Johns Hopkins University; and Takashi Ishii, General Manager, Space Division, The Society of Japanese Aerospace Companies (SJAC), Tokyo, for providing basic information concerning launch vehicles. I also thank Richard Samuels and Robert Pekkanen for their encouragement and comments. Finally, I thank Kartik Raj for his excellent research assistance. Financial suppport for the Japan portion of this project was provided graciously through a Postdoctoral Fellowship at the Harvard Academy of International and Area Studies. MIT Japan Program Working Paper Series 01.10 Center for International Studies Massachusetts Institute of Technology Room E38-7th Floor Cambridge, MA 02139 Phone: 617-252-1483 Fax: 617-258-7432 Date of Publication: July 16, 2001 © MIT Japan Program Introduction Japan has been seriously attempting to break into the commercial space launch vehicles industry since at least the mid 1970s. Yet very little is known about this story, and about the politics and perceptions that are continuing to drive Japanese efforts despite many outright failures in the indigenization of the industry. This story, therefore, is important not just because of the widespread economic and technological merits of the space launch vehicles sector which are considerable. It is also important because it speaks directly to the ongoing debates about the Japanese developmental state and, contrary to the new wisdom in light of Japan's recession, the continuation of its high technology policy as a whole.
    [Show full text]
  • FCC FACT SHEET* Streamlining Licensing Procedures for Small Satellites Report and Order, IB Docket No
    FCC FACT SHEET* Streamlining Licensing Procedures for Small Satellites Report and Order, IB Docket No. 18-86 Background: The Commission’s part 25 satellite licensing rules, primarily used by commercial systems, group satellites into two general categories—geostationary-satellite orbit systems and non-geostationary-satellite orbit (NGSO) systems—for purposes of application processing. The Commission’s satellite licensing rules, in particular those applicable to commercial operations, were generally not developed with small satellite systems in mind, and uniformly impose fees and regulatory requirements appropriate to expensive, long-lived missions. However, the Commission has recognized that smaller, less expensive satellites, known colloquially as “small satellites” or “small sats,” have gained popularity among satellite operators, including for commercial operations. Therefore, in 2018, the Commission adopted a Notice of Proposed Rulemaking that proposed to develop a new authorization process tailored specifically to small satellite operations, keeping in mind efficient use of spectrum and mitigation of orbital debris. What the Report and Order Would Do: • Create an alternative, optional application process within part 25 of the Commission’s rules for small satellites. This streamlined process would be an addition to, and not replace, the existing processes for satellite authorization under parts 5 (experimental), 25, and 97 (amateur) of the Commission’s rules. • This new streamlined application process could be used by applicants for satellites and satellite systems meeting certain qualifying characteristics, such as: . 10 or fewer satellites under a single authorization. Total in-orbit lifetime of satellite(s) of six years or less. Maximum individual satellite wet mass of 180 kg. Propulsion capabilities or deployment below 600 km altitude.
    [Show full text]
  • Sale Price Drives Potential Effects on DOD and Commercial Launch Providers
    United States Government Accountability Office Report to Congressional Addressees August 2017 SURPLUS MISSILE MOTORS Sale Price Drives Potential Effects on DOD and Commercial Launch Providers Accessible Version GAO-17-609 August 2017 SURPLUS MISSILE MOTORS Sale Price Drives Potential Effects on DOD and Commercial Launch Providers Highlights of GAO-17-609, a report to congressional addressees Why GAO Did This Study What GAO Found The U.S. government spends over a The Department of Defense (DOD) could use several methods to set the sale billion dollars each year on launch prices of surplus intercontinental ballistic missile (ICBM) motors that could be activities as it strives to help develop a converted and used in vehicles for commercial launch if current rules prohibiting competitive market for space launches such sales were changed. One method would be to determine a breakeven and assure its access to space. Among price. Below this price, DOD would not recuperate its costs, and, above this others, one launch option is to use price, DOD would potentially save. GAO estimated that DOD could sell three vehicles derived from surplus ICBM Peacekeeper motors—the number required for one launch, or, a “motor set”—at motors such as those used on the Peacekeeper and Minuteman missiles. a breakeven price of about $8.36 million and two Minuteman II motors for about The Commercial Space Act of 1998 $3.96 million, as shown below. Other methods for determining motor prices, such prohibits the use of these motors for as fair market value as described in the Federal Accounting Standards Advisory commercial launches and limits their Board Handbook, resulted in stakeholder estimates ranging from $1.3 million per use in government launches in part to motor set to $11.2 million for a first stage Peacekeeper motor.
    [Show full text]
  • Indian Remote Sensing Satellites (IRS)
    Topic: Indian Remote Sensing Satellites (IRS) Course: Remote Sensing and GIS (CC-11) M.A. Geography (Sem.-3) By Dr. Md. Nazim Professor, Department of Geography Patna College, Patna University Lecture-5 Concept: India's remote sensing program was developed with the idea of applying space technologies for the benefit of human kind and the development of the country. The program involved the development of three principal capabilities. The first was to design, build and launch satellites to a sun synchronous orbit. The second was to establish and operate ground stations for spacecraft control, data transfer along with data processing and archival. The third was to use the data obtained for various applications on the ground. India demonstrated the ability of remote sensing for societal application by detecting coconut root-wilt disease from a helicopter mounted multispectral camera in 1970. This was followed by flying two experimental satellites, Bhaskara-1 in 1979 and Bhaskara-2 in 1981. These satellites carried optical and microwave payloads. India's remote sensing programme under the Indian Space Research Organization (ISRO) started off in 1988 with the IRS-1A, the first of the series of indigenous state-of-art operating remote sensing satellites, which was successfully launched into a polar sun-synchronous orbit on March 17, 1988 from the Soviet Cosmodrome at Baikonur. It has sensors like LISS-I which had a spatial resolution of 72.5 meters with a swath of 148 km on ground. LISS-II had two separate imaging sensors, LISS-II A and LISS-II B, with spatial resolution of 36.25 meters each and mounted on the spacecraft in such a way to provide a composite swath of 146.98 km on ground.
    [Show full text]
  • Improving Mission Success of Cubesats
    AEROSPACE REPORT NO. TOR-2017-01689 Improving Mission Success of CubeSats June 12, 2017 Catherine C. Venturini Developmental Planning and Projects Advanced Development and Planning Division Prepared for: Space and Missile Systems Center Air Force Space Command 483 N. Aviation Blvd. El Segundo, CA 90245-2808 Contract No. FA8802-14-C-0001 Authorized by Space Systems Group Developed in conjunction with Government and Industry contributors as part of the U.S. Space Programs Mission Assurance Improvement Workshop. Distribution Statement A: Approved for public release, distribution unlimited. Abstract As a concept, the CubeSat class of satellite is over 15 years old. The first were launched in 2003 and a few more in 2006. The numbers were noticeably greater in 2009 and have been increasing at a rapid pace ever since. However, if mission success is defined as simply the degree to which the mission goals were achieved, then the mission success of this class of satellite has been low. To find out why, our mission assurance topic team interviewed CubeSat developers in academia, industry, and government-funded research centers. The information in this document comes from the interview responses to a common set of questions that were posed to guide, but not limit, these conversations. Those who have built and flown satellites generously shared their processes, circumstances, results, and lessons learned, and everyone interviewed shared their current processes and philosophies on design, testing, and mission assurance. While root cause was not determined for most on-orbit anomalies, the theories of what possibly went wrong were still useful, as were the lessons learned on what could have been improved during the development process.
    [Show full text]