Microbiota Associated with Different Developmental Stages of the Dry Rot Fungus Serpula Lacrymans
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating. -
The Fungus That Came in from the Cold: Dry Rot's Pre-Adapted Ability To
1 The fungus that came in from the cold: Dry rot’s pre-adapted ability to invade 2 buildings 3 S.V. Balasundaram1, J. Hess1, M. B. Durling2, S. C. Moody3, L. Thorbek1, C. Progida1, K. 4 LaButti4, A. Aerts4, K. Barry4, I. V. Grigoriev4, L. Boddy5, N. Högberg2, H. Kauserud1, D. C. 5 Eastwood3, I. Skrede1* 6 7 1Department of Biosciences, University of Oslo, Oslo, Norway; 2Department of Forest 8 Mycology, Swedish Agricultural University, Uppsala, Sweden; 3Department of Biosciences, 9 Swansea University, Swansea, UK; 4 United States Department of Energy Joint Genome 10 Institute, Walnut Creek, CA, USA; 5School of Biosciences, Cardiff University, Cardiff, UK; 11 12 13 Correspondence and request for materials should be addressed to I.S. 14 ([email protected]) 15 16 17 18 19 20 1 21 Abstract 22 Many organisms benefit from being pre-adapted to niches shaped by human activity, and 23 have successfully invaded man-made habitats. One such species is the dry-rot fungus Serpula 24 lacrymans, which has a wide distribution in buildings in temperate and boreal regions, where 25 it decomposes coniferous construction wood. Comparative genomic analyses and growth 26 experiments using this species and its wild relatives revealed that S. lacrymans evolved a 27 very effective brown rot decay compared to its wild relatives, enabling an extremely rapid 28 decay in buildings under suitable conditions. Adaptations in intracellular transport 29 machineries promoting hyphal growth, and nutrient and water transport may explain why it is 30 has become a successful invader of timber in houses. Further, we demonstrate that S. -
The Mycetozoa of North America, Based Upon the Specimens in The
THE MYCETOZOA OF NORTH AMERICA HAGELSTEIN, MYCETOZOA PLATE 1 WOODLAND SCENES IZ THE MYCETOZOA OF NORTH AMERICA BASED UPON THE SPECIMENS IN THE HERBARIUM OF THE NEW YORK BOTANICAL GARDEN BY ROBERT HAGELSTEIN HONORARY CURATOR OF MYXOMYCETES ILLUSTRATED MINEOLA, NEW YORK PUBLISHED BY THE AUTHOR 1944 COPYRIGHT, 1944, BY ROBERT HAGELSTEIN LANCASTER PRESS, INC., LANCASTER, PA. PRINTED IN U. S. A. To (^My CJriend JOSEPH HENRI RISPAUD CONTENTS PAGES Preface 1-2 The Mycetozoa (introduction to life history) .... 3-6 Glossary 7-8 Classification with families and genera 9-12 Descriptions of genera and species 13-271 Conclusion 273-274 Literature cited or consulted 275-289 Index to genera and species 291-299 Explanation of plates 301-306 PLATES Plate 1 (frontispiece) facing title page 2 (colored) facing page 62 3 (colored) facing page 160 4 (colored) facing page 172 5 (colored) facing page 218 Plates 6-16 (half-tone) at end ^^^56^^^ f^^ PREFACE In the Herbarium of the New York Botanical Garden are the large private collections of Mycetozoa made by the late J. B. Ellis, and the late Dr. W. C. Sturgis. These include many speci- mens collected by the earlier American students, Bilgram, Farlow, Fullmer, Harkness, Harvey, Langlois, Macbride, Morgan, Peck, Ravenel, Rex, Thaxter, Wingate, and others. There is much type and authentic material. There are also several thousand specimens received from later collectors, and found in many parts of the world. During the past twenty years my associates and I have collected and studied in the field more than ten thousand developments in eastern North America. -
Wood-Decaying Fungi in Protected Buildings and Structures on Svalbard
Wood-decaying fungi in protected buildings and structures on Svalbard Johan Mattsson1, Anne-Cathrine Flyen2, and Maria Nunez1 1Mycoteam AS, P.O.Box 5 Blindern, N-0313 Oslo, Norway, E-mail: [email protected], [email protected] 2NIKU, P.O. Box 736, Sentrum, N-0105 OSLO, Norway, E-mail: [email protected] Norsk tittel: Råtesopp i fredede bygninger og expected adverse growing conditions for bygningsmaterialer på Svalbard fungi, the present study shows that decay in protected buildings and building materials is Mattsson J, Flyen A-C, Nunez M, 2010. relatively common. Leucogyrophana mollis Wood-decaying fungi in protected buildings was the dominant brown rot fungus in the and structures on Svalbard. Agarica 2010 investigated material, but a few other brown vol. 29, 5-14. rot species and also soft-rot decay were found. This pattern of damage, with mainly KEY WORDS brown rotting fungi, differs clearly from Svalbard, wood-decaying fungi, protected studies in protected buildings in Antarctica, buildings, brown rot, Leucogyrophana where no brown rot fungi has been discover mollis. ed. The observed damages on Svalbard are most extensive along floors and ceilings and NØKKELORD in wood that is in contact with soil. Svalbard, råtesopp, fredede bygninger, brun råte, Leucogyrophana mollis. INTRODUCTION Decay of wood caused by fungi is a normal SAMMENDRAG process at least in temperate and tropic clim Svalbard har et kaldt og relativt tørt klima, ates (Rayner and Boddy 1988). Since the men til tross for forventet ugunstige vekstfor fungal organisms have a minimum require hold viser våre undersøkelser at det er rela ment with regard to physical conditions, i.e. -
Wood Research Indoor Fungal Destroyers of Wooden Materials – Their Identification in Present Review
WOOD RESEARCH 63 (2): 2018 203-214 INDOOR FUNGAL DESTROYERS OF WOODEN MATERIALS – THEIR IDENTIFICATION IN PRESENT REVIEW Ján Gáper Technical University in Zvolen, Faculty of Ecology and Environmental Sciences Department of Biology and Ecology Zvolen, Slovak Republic et University of Ostrava Faculty of Sciences, Department of Biology and Ecology Ostrava, Czech Republic Svetlana Gáperová, Terézia Gašparcová, Simona Kvasnová Matej Bel University, Faculty of Natural Sciences, Department of Biology and Ecology Banská Bystrica, Slovak Republic Peter Pristaš Pavol Jozef Šafárik University, Faculty of Natural Sciences Institute of Biology and Ecology Košice, Slovak Republic Kateřina Náplavová University of Ostrava, Faculty of Sciences, Department of Biology and Ecology Ostrava, Czech Republic et University of Minho Ceb-Centre of Biological Engineering, Campus De Gualtar Braga, Portugal (Received January 2018) ABSTRACT The wood-destroying fungi traditionally were separated from one another primarily on a basis of their sporocarp and/or strain morphology. Their diversity and simple macro- and 203 WOOD RESEARCH micromorphology of fungal structures have been major obstacles for more rapid progress in this regard. However, over the past two decades, there has been substantial progress in our understanding of genetic variability within traditionally recognized morphospecies. In this study we have overviewed genetic variation and phylogeography of macrofungi, which are important destroyers of wooden materials indoor of buildings. Several morphologically defined species of these fungal destroyers (Coniophora puteana, C. olivacea, C. arida, Serpula himantioides) have been shown to actually encompass several genetically isolated lineages (cryptic species). The protective efficacy against cryptic species within traditionally recognized morphospecies through laboratory tests (EN 113) and field trials (EN 252) might be sufficient to better prognosis of decay development in wooden materials for hazard assessment and for proper conservation and management plans. -
Indoor Population Structure of the Dry Rot Fungus, Serpula Lacrymans Master of Science Thesis Sarasvati Jacobsen Bjørnaraa
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NORA - Norwegian Open Research Archives Indoor Population Structure of The Dry Rot Fungus, Serpula lacrymans Master of Science Thesis Sarasvati Jacobsen Bjørnaraa University of Oslo Department of Biosciences Microbial Evolution Research Group Oslo, Norway 2013 FORORD En stor takk til mine veiledere, Håvard Kauserud og Inger Skrede, som introduserte meg til en så fascinerende sopp som Serpula lacrymans. Dere har den fine kombinasjonen av faglig og menneskelig kompetanse som jeg tror enhver masterstudent ønsker seg. -Synet av Håvard som hopper av glede midt i mycel og sporer er ikke noe jeg glemmer med det første... Takk for god innføring i sterilteknikk og kultivering, og takk for hjelp med korrekturlesing! Takk til familie-heiagjengen: Mine foreldre, Mette og Gisle Anker Jacobsen, min lillesøster, Sita «Goffe» Jacobsen, og min mann, Paal Bjørnaraa. Dere stiller alltid opp for meg og lar meg velvillig pepre dere ned med soppsnakk. Takk til mamma og pappa for tidenes tredveårslag! Dere to skal også ha takk for å ha dratt med Goffe og meg på utallige skogturer i barndommen, for å ha sagt ja til å ha padder i badekaret og for at dere lot oss ha Østmarka som lekeplass. Takk til Paal for å ha bidratt med korrekturlesing, for å ha laget «jobbegryta som varer en uke» og for stadige små oppmerksomheter i løpet av innspurten. Takk også til mine svigerforeldre, Aud og Toggen, som er to skikkelig ålreite mennesker. På forhånd takk for at dere kjører oss opp på Engelstadvangen til helgen! Takk til Svarteper for å ha latt artiklene mine ligge i fred. -
Australia's Fun Gi M Appin G Sch Em E
June 2006 A U S T R A LIA ’S FU N G I M A PPIN G S CH EM E Inside this Edition: Australian Geographic commissioned News from the Fungimap President ............1 photographer Jason Edwards to accompany Contacting Fungimap ..................................2 the expedition. We are eagerly awaiting the Fungi Interest Groups..................................2 results of his endeavors, which involved From the Editor. ..........................................3 much crouching in mud whilst being The Hawaiian fungus Agaricus rotalis in sheltered by an umbrella. Australia by Neale Bougher ........................4 Rhacophyllus lilacinus in the Kimberley Fungimap Strategy Region of WA by Matthew Barrett .............5 Whilst in Tasmania, the Fungimap Dung beetles with a taste for mushrooms Committee discussed strategy for the by Chris Burwell .........................................6 coming year. Four areas were identified as Fungi in William Bay NP, WA priorities: (1) organise Fungimap IV by Katrina Syme..........................................7 Conference, (2) reprint Fungi Down Under, Fungimap - colour supplement....................8 with possibility of expanding target species, Slime Moulds. Report on talk given by (3) revamp website, including on-line maps, Paul George, by Virgil Hubregtse .............13 and (4) explore preparation of manuals and Two new fungi in SA by Pam Catcheside .14 reference material for use in identification A butterfly and a stinkhorn by Heino Lepp15 and information workshops. Cotylidia undulata: a rare species in Europe by Richard Robinson.....................15 Bumper Season Perth Urban bushland Fungi Project by Steady rain over the last month in Roz Hart ....................................................16 Melbourne has produced a bumper mushroom season. In the Royal Botanic Gardens and surrounds I have seen prolific fruiting of Fly Agaric Amanita muscaria, in N EW S FR O M T H E FU N G IM A P many places for the first time in the dozen years that I have been at the Gardens. -
MOLECULAR ANALYSIS of the DRY ROT FUNGUS Serpula Lacrymans♦
MOLECULAR ANALYSIS OF THE DRY ROT FUNGUS Serpula lacrymans♦ Anne Vigrow B.Sc., P.G.C.E. This thesis is presented to the Council for National Academic Awards in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy. Department of Molecular and Life Sciences, Dundee Institute of Technology. September, 1992. I certify that this thesis is the true and accurate version of the thesisvapproved by the examiners. S i g n e d D a t e i e s ) Sarah, John and I wish to dedicate this thesis to P e t e r . 1971 - 1985. Acknowledgements. I would like to express my gratitude to my supervisors Professor Bernard King and Drs David Button and John Palfreyman for their encouragement, supervision and guidance throughout this project and for constructive criticism of this manuscript. I hope that completion of this work is adequate recompense for the debt which I undoubtedly owe them, the last named in particular, for having faith in my scientific abilities at a time when I had neither faith nor ability. I am grateful to Professor W. Emond for enabling me to have a year's secondment in order to complete this work; and I also wish to thank my external advisor, Dr. J.A. Carey of the Building Research Establishment, for her advice. Other members of staff at DIT who deserve thanks are Mr. George Hunter and Mr. Charles Craig, for the preparation of photographs; Miss Margot Dunnachie, for the maps and drawings; and Miss Moira Malcolm and the operations' staff of the computer centre, who guided me in the use of Massll. -
The Domestic Dry Rot Fungus, Serpula Lacrymans, Its Natural Origins and Biological Control
The Domestic Dry Rot Fungus, Serpula lacrymans, its natural origins and biological control John W. Palfreyman Dry Rot Research Group, University of Abertay Dundee, Bell Street, Dundee, Scotland 1. Introduction The dry rot fungus, Serpula lacrymans, is one of the most important wood decay fungi in the built environment causing many hundreds of millions of pounds of damage each year in many countries around the world. This Basidiomycete is particularly common in countries of northern Europe especially where bad maintenance, particularly of old properties, and inappropriate design or alteration may result in water ingress followed by timber decay caused by the fungus. Notably, however, S.lacrymans is very rarely found outside the built environment in Europe, with there being only one published report of its occurrence in Europe in its presumed natural environment, the forest floor (Kotlaba, 1992). Reports of the fungus from other parts of the world are also limited, although there is now good evidence that S.lacrymans resides in regions of the Himalayan foothills; however, it does not appear to be prevalemt in that natural environment (Bagchee, 1954; White et al, 1997). Unlike other fungi discussed in this volume S.lacrymans cannot be considered to be a tropical fungus, since high tropical temperatures would be lethal to this temperature sensitive organism (White et al (1995); Cartwright and Findlay (1958); Segmuller and Walchli (1981)). Our interest is in the development of new treatments to counteract the organism and to determine, if possible, how it has developed such a widespread distribution in the built environment from, it would appear, a sparse distribution in the wild. -
UNIVERSIDAD DE CHILE Facultad De Ciencias Forestales Y Conservación De La Naturaleza Magíster En Áreas Silvestres Y Conservación De La Naturaleza
UNIVERSIDAD DE CHILE Facultad de Ciencias Forestales y Conservación de la Naturaleza Magíster en Áreas Silvestres y Conservación de la Naturaleza COFILOGENIA DE HONGOS FORMADORES DE ECTOMICORRIZAS DEL GÉNERO Austropaxillus Bresinsky & Jarosch 1999 Y SUS HUÉSPEDES, ESPECIES DEL GÉNERO Nothofagus Blume 1850: IMPLICANCIAS EN CONSERVACIÓN Proyecto para optar al grado de Magíster en Áreas Silvestres y Conservación de la Naturaleza. Juan Pablo Tejena Vergara Santiago, Chile 2014 Proyecto de grado presentado como parte de los requisitos para optar al grado de Magíster en Áreas Silvestres y Conservación de la Naturaleza. Coordinador de Programa Profesor(a) Nombre: Juan Caldentey Pont Firma ____________________________ Profesor(a) Guía/Patrocinante Nombre: Rosa Scherson Nota ____________________________ Firma ____________________________ Comité de Proyecto de Grado Profesor(a) Consejero(a) Marco Méndez Nota ____________________________ Firma ____________________________ Profesor(a) Consejero(o) Álvaro Promis Nota ____________________________ Firma ____________________________ Agradecimiento A la Dra. Rosa Scherson, docente de la Facultad de Ciencias Forestales y Conservación de la Naturaleza, de la Universidad de Chile, por su brillante asesoría académica, paciencia, amistad, y confianza depositada en mí durante la realización de este trabajo. Al Laboratorio de Sistemática y Evolución de Plantas del Departamento de Silvicultura y Conservación de la Naturaleza, Facultad de Ciencias Forestales y Conservación de la Naturaleza, de la Universidad de -
Sendtnera = Vorm
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sendtnera = vorm. Mitt. Bot. Sammlung München Jahr/Year: 1999 Band/Volume: 6 Autor(en)/Author(s): Agerer Reinhard Artikel/Article: Never change a functionally successful principle: The evolution of Boletales s.l. (Hymenomycetes, Basidiomycota) as seen from below-ground features 5-91 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.biologiezentrum.at Never change a functionally successful principle: The evolution of Boletales s.l. (Hymenomycetes, Basidiomycota) as seen from below-ground features* R. Agerer Summary: Agerer, R.: Never change a functionally successful principle: The evolution of Bo- - letales s.l. (Hymenomycetes, Basidiomycota) as seen from below-ground features. Sendtnera : 5-9 1 . 1 999. ISSN 0944-0 1 78. In the present study characteristics of substrate hyphae and of rhizomorphs have been applied as a completely new group of features to discern relationships of Boletales s.l. Rhizomorph structures have been shown to be very conservative. A so-called 'boletoid- rhizomorph type' is representative of Suillaceae, Rhizopogonaceae, Conio- phoraceae, Strobilomycetaceae, Paxillaceae, Pisolithaceae, Astraeaceae, Boletaceae and Sclerodermataceae. These rhizomorphs possess 'runner hyphae' where backward oriented ramifications grow towards the main hypha, after they have originated above the first simple septum or the first clamp of a side-branch. Frequently, these hyphae fork close to the main hypha into a distally and a proximally growing branch. The 'runner hypha' and additional ones enlarge and become vessel-like. Gomphidiaceae, Tapinellaceae and Truncocolumellaceae have different types of rhizomorphs. Conio- phoroineae and Tapinellineae are proposed as new suborders of Boletales s.l. -
The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi Daniel C
The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi Daniel C. Eastwood,1*†‡ Dimitrios Floudas,2† Manfred Binder,2† Andrzej Majcherczyk,3† Patrick Schneider,4† Andrea Aerts,5 Fred O. Asiegbu,6 Scott E. Baker,7 Kerrie Barry,5 Mika Bendiksby,8 Melanie Blumentritt,9 Pedro M. Coutinho,10 Dan Cullen,11 Ronald P. de Vries,12 Allen Gathman,13 Barry Goodell,9,14 Bernard Henrissat,10 Katarina Ihrmark,15 Hävard Kauserud,16 Annegret Kohler,17 Kurt LaButti,5 Alla Lapidus,5 José L. Lavin,18 Yong-Hwan Lee,19 Erika Lindquist,5 Walt Lilly,13 Susan Lucas,5 Emmanuelle Morin,17 Claude Murat,17 José A. Oguiza,18 Jongsun Park,19 Antonio G. Pisabarro,18 Robert Riley,5 Anna Rosling,15 Asaf Salamov,5 Olaf Schmidt,20 Jeremy Schmutz,5 Inger Skrede,16 Jan Stenlid,15 Ad Wiebenga,12 Xinfeng Xie,9 Ursula Kües,3* David S. Hibbett,2* Dirk Hoffmeister,4* Nils Högberg,15* Francis Martin,17* Igor V. Grigoriev,5* Sarah C. Watkinson21* 1College of Science, University of Swansea, Singleton Park, Swansea SA2 8PP, UK. 2Biology Department, Clark University, Worcester, MA 01610, USA. 3Georg-August-University Göttingen, Büsgen-Institute, Büsgenweg 2, 37077 Göttingen, Germany. 4Friedrich-Schiller-Universität, Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany. 5US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA. 6Department of Forest Sciences, Box 27, FI-00014, University of Helsinki, Helsinki, Finland. 7 Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN P8-60, Richland, WA 99352, USA. 8Natural History Museum, University of Oslo, PO Box 1172, Blindern, NO-0138, Norway.