Contrasting Demographic Histories Revealed in Two Invasive
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating. -
Descriptions of New Serpulid Polychaetes from the Kimberleys Of
© The Author, 2009. Journal compilation © Australian Museum, Sydney, 2009 Records of the Australian Museum (2009) Vol. 61: 93–199. ISSN 0067-1975 doi:10.3853/j.0067-1975.61.2009.1489 Descriptions of New Serpulid Polychaetes from the Kimberleys of Australia and Discussion of Australian and Indo-West Pacific Species of Spirobranchus and Superficially Similar Taxa T. Gottfried Pillai Zoology Department, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom absTracT. In 1988 Pat Hutchings of the Australian Museum, Sydney, undertook an extensive polychaete collection trip off the Kimberley coast of Western Australia, where such a survey had not been conducted since Augener’s (1914) description of some polychaetes from the region. Serpulids were well represented in the collection, and their present study revealed the existence of two new genera, and new species belonging to the genera Protula, Vermiliopsis, Hydroides, Serpula and Spirobranchus. The synonymy of the difficult genera Spirobranchus, Pomatoceros and Pomatoleios is also dealt with. Certain difficult taxa currently referred to as “species complexes” or “species groups” are discussed. For this purpose it was considered necessary to undertake a comparison of apparently similar species, especially of Spirobranchus, from other locations in Australia and the Indo-West Pacific region. It revealed the existence of many more new species, which are also described and discussed below. Pillai, T. Gottfried, 2009. Descriptions of new serpulid polychaetes from the Kimberleys of Australia and discussion of Australian and Indo-West Pacific species ofSpirobranchus and superficially similar taxa.Records of the Australian Museum 61(2): 93–199. Table of contents Introduction ................................................................................................................... 95 Material and methods .................................................................................................. -
Phylogenetic Relationships of Serpulidae (Annelida: Polychaeta) Based on 18S Rdna Sequence Data, and Implications for Opercular Evolution Janina Lehrkea,Ã, Harry A
ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2007) 195–206 www.elsevier.de/ode Phylogenetic relationships of Serpulidae (Annelida: Polychaeta) based on 18S rDNA sequence data, and implications for opercular evolution Janina Lehrkea,Ã, Harry A. ten Hoveb, Tara A. Macdonaldc, Thomas Bartolomaeusa, Christoph Bleidorna,1 aInstitute for Zoology, Animal Systematics and Evolution, Freie Universitaet Berlin, Koenigin-Luise-Street 1-3, 14195 Berlin, Germany bZoological Museum, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands cBamfield Marine Sciences Centre, Bamfield, British Columbia, Canada, V0R 1B0 Received 19 December 2005; accepted 2 June 2006 Abstract Phylogenetic relationships of (19) serpulid taxa (including Spirorbinae) were reconstructed based on 18S rRNA gene sequence data. Maximum likelihood, Bayesian inference, and maximum parsimony methods were used in phylogenetic reconstruction. Regardless of the method used, monophyly of Serpulidae is confirmed and four monophyletic, well- supported major clades are recovered: the Spirorbinae and three groups hitherto referred to as the Protula-, Serpula-, and Pomatoceros-group. Contrary to the taxonomic literature and the hypothesis of opercular evolution, the Protula- clade contains non-operculate (Protula, Salmacina) and operculate taxa both with pinnulate and non-pinnulate peduncle (Filograna vs. Vermiliopsis), and most likely is the sister group to Spirorbinae. Operculate Serpulinae and poorly or non-operculate Filograninae are paraphyletic. It is likely that lack of opercula in some serpulid genera is not a plesiomorphic character state, but reflects a special adaptation. r 2007 Gesellschaft fu¨r Biologische Systematik. Published by Elsevier GmbH. All rights reserved. Keywords: Serpulidae; Phylogeny; Operculum; 18S rRNA gene; Annelida; Polychaeta Introduction distinctive calcareous tubes and bilobed tentacular crowns, each with numerous radioles that bear shorter Serpulids are common members of marine hard- secondary branches (pinnules) on the inner side. -
Biomineralization of Polychaete Annelids in the Fossil Record
minerals Review Biomineralization of Polychaete Annelids in the Fossil Record Olev Vinn Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; [email protected]; Tel.: +372-5067728 Received: 31 August 2020; Accepted: 25 September 2020; Published: 29 September 2020 Abstract: Ten distinct microstructures occur in fossil serpulids and serpulid tubes can contain several layers with different microstructures. Diversity and complexity of serpulid skeletal structures has greatly increased throughout their evolution. In general, Cenozoic serpulid skeletal structures are better preserved than Mesozoic ones. The first complex serpulid microstructures comparable to those of complex structures of molluscs appeared in the Eocene. The evolution of serpulid tube microstructures can be explained by the importance of calcareous tubes for serpulids as protection against predators and environmental disturbances. Both fossil cirratulids and sabellids are single layered and have only spherulitic prismatic tube microstructures. Microstructures of sabellids and cirratulids have not evolved since the appearance of calcareous species in the Jurassic and Oligocene, respectively. The lack of evolution in sabellids and cirratulids may result from the unimportance of biomineralization for these groups as only few species of sabellids and cirratulids have ever built calcareous tubes. Keywords: biominerals; calcite; aragonite; skeletal structures; serpulids; sabellids; cirratulids; evolution 1. Introduction Among polychaete annelids, calcareous tubes are known in serpulids, cirratulids and sabellids [1–3]. The earliest serpulids and sabellids are known from the Permian [4], and cirratulids from the Oligocene [5]. Only serpulids dwell exclusively within calcareous tubes. Polychaete annelids build their tubes from calcite, aragonite or a mixture of both polymorphs. Calcareous polychaete tubes possess a variety of ultrastructural fabrics, from simple to complex, some being unique to annelids [1]. -
DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1. -
A Study of Natural Durability of Wood in Selected Tropical Wood Species From
Board of reviewers: Scientific council : Annals of Warsaw University of Life Sciences - SGGW Forestry and Wood Technology № 92, 2015: 11-17 (Ann. WULS - SGGW, For. and Wood Technol. 92, 2015) Piotr Beer Arnold WilczyĔski (Poland) Piotr Borysiuk Kazimierz Oráowski (Poland) Ewa Dobrowolska Ladislav Dzurenda (Slovakia) A study of natural durability of wood in selected tropical wood species from Dorota Dziurka Miroslav Rousek (Czech Republic) South America and Africa affected by the fungus Serpula lacrymans (Wulf., Jarosáaw Górski Nencho Deliiski (Bulgaria) Fr.) Schroet. Emila Grzegorzewska Olena Pinchewska (Ukraine) 1 1 2 1 1 ďubomír Javorek Wáodzimierz PrądzyĔski (Poland) B. ANDRES , A. JANKOWSKA , M. KLOCH , A. MAZUREK , A. OLEKSIEWICZ , M. 1 1 Grzegorz Kowaluk PAŁUCKI , A. WÓJCIK 1 Paweá Kozakiewicz Department of Wood Science and Wood Protection, Faculty of Wood Technology, Warsaw University of Life Sciences - SGGW, Sáawomir Krzosek 2Department of Physics, Faculty of Wood Technology, Warsaw University of Life Sciences - SGGW Mariusz MamiĔski Kazimierz Oráowski Abstract: This paper presents the results of a study on natural durability of selected tropical wood species from Danuta Nicewicz South America and Africa affected by Serpula lacrymans (Wulf., Fr.) Schroet. Tabebuia sp. and Autranella Jan Osipiuk congolensis (De Wild.) A.Chev. wood displayed the highest class of natural durability. They were ranked to first Olena Pinchewska class in terms of natural durability. Apuleia leiocarpa (Vogel) J.F.Macbr. exhibited the lowest resistance to fungal activity. It was classified third class in terms of natural durability presented in European standards. Alena Rohanova Miroslav Rousek Keywords: natural durability, Tabebuia, Autranella congolensis, Apuleia leiocarpa, Serpula lacrymans Jacek Wilkowski Piotr Witomski INTRODUCTION Ján Sedliaþik Mariana Sedliaþiková The use of wood in construction has a long tradition and the demand for the material is constant. -
Re-Thinking the Classification of Corticioid Fungi
mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma. -
Distribution of Building-Associated Wood-Destroying Fungi in the Federal
European Journal of Wood and Wood Products https://doi.org/10.1007/s00107-019-01407-w ORIGINAL Distribution of building‑associated wood‑destroying fungi in the federal state of Styria, Austria Doris Haas1 · Helmut Mayrhofer2 · Juliana Habib1 · Herbert Galler1 · Franz Ferdinand Reinthaler1 · Maria Luise Fuxjäger3 · Walter Buzina1 Received: 20 September 2018 © The Author(s) 2019 Abstract Wood is an important construction material, but when used incorrectly it can be subjected to deterioration by wood-destroying fungi. The brown rot producing dry rot fungus (Serpula lacrymans) is by far the most dangerous wood-destroying fungus in Europe. In the present publication, 645 fungal samples from damaged wood in the federal state of Styria (Austria) were examined and recorded by isolation date, geographical location, species identifcation of the wood-destroying fungus, loca- tion of damage, construction method, and age and type of building. In Styria, Serpula spp. accounted for 61.5% of damages, followed by Antrodia spp. (10.7%) and the genera Gloeophyllum (8.2%), Coniophora (3.9%) and Donkioporia (1.1%). Properties in the area of the Styrian capital Graz and old buildings were more often infested by wood-destroying fungi than houses in the rural area and new constructions. 1 Introduction the cellar fungus (Coniophora puteana), Antrodia spp. and other wood-destroying fungi can cause severe damage to Wood rot is the degradation of wood by the destruction of buildings and potentially cause human injuries. Some wood- organic materials caused by fungi. This process is predomi- destroying fungi can penetrate even masonry and are able to nantly afected by temperature and moisture as well as the translocate water and nutrition over long distances. -
The Fungus That Came in from the Cold: Dry Rot's Pre-Adapted Ability To
1 The fungus that came in from the cold: Dry rot’s pre-adapted ability to invade 2 buildings 3 S.V. Balasundaram1, J. Hess1, M. B. Durling2, S. C. Moody3, L. Thorbek1, C. Progida1, K. 4 LaButti4, A. Aerts4, K. Barry4, I. V. Grigoriev4, L. Boddy5, N. Högberg2, H. Kauserud1, D. C. 5 Eastwood3, I. Skrede1* 6 7 1Department of Biosciences, University of Oslo, Oslo, Norway; 2Department of Forest 8 Mycology, Swedish Agricultural University, Uppsala, Sweden; 3Department of Biosciences, 9 Swansea University, Swansea, UK; 4 United States Department of Energy Joint Genome 10 Institute, Walnut Creek, CA, USA; 5School of Biosciences, Cardiff University, Cardiff, UK; 11 12 13 Correspondence and request for materials should be addressed to I.S. 14 ([email protected]) 15 16 17 18 19 20 1 21 Abstract 22 Many organisms benefit from being pre-adapted to niches shaped by human activity, and 23 have successfully invaded man-made habitats. One such species is the dry-rot fungus Serpula 24 lacrymans, which has a wide distribution in buildings in temperate and boreal regions, where 25 it decomposes coniferous construction wood. Comparative genomic analyses and growth 26 experiments using this species and its wild relatives revealed that S. lacrymans evolved a 27 very effective brown rot decay compared to its wild relatives, enabling an extremely rapid 28 decay in buildings under suitable conditions. Adaptations in intracellular transport 29 machineries promoting hyphal growth, and nutrient and water transport may explain why it is 30 has become a successful invader of timber in houses. Further, we demonstrate that S. -
The Mycetozoa of North America, Based Upon the Specimens in The
THE MYCETOZOA OF NORTH AMERICA HAGELSTEIN, MYCETOZOA PLATE 1 WOODLAND SCENES IZ THE MYCETOZOA OF NORTH AMERICA BASED UPON THE SPECIMENS IN THE HERBARIUM OF THE NEW YORK BOTANICAL GARDEN BY ROBERT HAGELSTEIN HONORARY CURATOR OF MYXOMYCETES ILLUSTRATED MINEOLA, NEW YORK PUBLISHED BY THE AUTHOR 1944 COPYRIGHT, 1944, BY ROBERT HAGELSTEIN LANCASTER PRESS, INC., LANCASTER, PA. PRINTED IN U. S. A. To (^My CJriend JOSEPH HENRI RISPAUD CONTENTS PAGES Preface 1-2 The Mycetozoa (introduction to life history) .... 3-6 Glossary 7-8 Classification with families and genera 9-12 Descriptions of genera and species 13-271 Conclusion 273-274 Literature cited or consulted 275-289 Index to genera and species 291-299 Explanation of plates 301-306 PLATES Plate 1 (frontispiece) facing title page 2 (colored) facing page 62 3 (colored) facing page 160 4 (colored) facing page 172 5 (colored) facing page 218 Plates 6-16 (half-tone) at end ^^^56^^^ f^^ PREFACE In the Herbarium of the New York Botanical Garden are the large private collections of Mycetozoa made by the late J. B. Ellis, and the late Dr. W. C. Sturgis. These include many speci- mens collected by the earlier American students, Bilgram, Farlow, Fullmer, Harkness, Harvey, Langlois, Macbride, Morgan, Peck, Ravenel, Rex, Thaxter, Wingate, and others. There is much type and authentic material. There are also several thousand specimens received from later collectors, and found in many parts of the world. During the past twenty years my associates and I have collected and studied in the field more than ten thousand developments in eastern North America. -
Download Complete Work
AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Hutchings, Pat A., & Anna Murray, 1984. Taxonomy of polychaetes from the Hawkesbury River and the southern estuaries of New South Wales, Australia. Records of the Australian Museum, Supplement 3: 1–118. [28 September 1984]. doi:10.3853/j.0812-7387.3.1984.101 ISSN 0812-7387 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia Records of the Australian Museum (1984), Suppl. 3 ISSN-0067-1975 Taxonomy of Polychaetes from the Hawkesbury River and the Southern Estuaries of New South Wales, Australia PAT HUTCHINGS and ANNA MURRAY The Australian Museum, P.O. Box A285, Sydney South, NSW 2000, Australia ABSTRACT. The polychaete fauna of the Hawkesbury River and some other estuarine areas in central and southern New South Wales is described. The majority of material comes from Merimbula, Jervis Bay, Port Hacking, Botany Bay, Hawkesbury River, Port Stephens and Broughton Island; often from seagrass habitats. The material from the Hawkesbury River has been collected over several years and detailed habitat and occurrence data are available. Over 180 species are recorded, of which 28 species and 4 genera are new: Harmothoe charlottae n.sp., Sthenelais pettiboneae n.sp., Compsanaitis inflata n.gen., n.sp., Podarke microantennata n.sp., Augeneria verdis n.sp., Schistomeringosjilijormis n.sp., Caulleriella dimorphosetosa n.sp., C. longisetosa n.sp., C. retusiseta n.sp., Chaetozone platycerca n.sp., Tharyx aphelocephalus n.sp., Lobochesis bibrancha n.gen., n.sp., L. -
Fungi of French Guiana Gathered in a Taxonomic, Environmental And
Fungi of French Guiana gathered in a taxonomic, environmental and molecular dataset Gaëlle Jaouen, Audrey Sagne, Bart Buyck, Cony Decock, Eliane Louisanna, Sophie Manzi, Christopher Baraloto, Melanie Roy, Heidy Schimann To cite this version: Gaëlle Jaouen, Audrey Sagne, Bart Buyck, Cony Decock, Eliane Louisanna, et al.. Fungi of French Guiana gathered in a taxonomic, environmental and molecular dataset. Scientific Data , Nature Publishing Group, 2019, 6 (1), 10.1038/s41597-019-0218-z. hal-02346160 HAL Id: hal-02346160 https://hal-agroparistech.archives-ouvertes.fr/hal-02346160 Submitted on 4 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. www.nature.com/scientificdata OPEN Fungi of French Guiana gathered in DATA DescriPTOR a taxonomic, environmental and molecular dataset Received: 23 April 2019 Gaëlle Jaouen 1, Audrey Sagne2, Bart Buyck3, Cony Decock4, Eliane Louisanna2, Accepted: 3 September 2019 Sophie Manzi5, Christopher Baraloto6, Mélanie Roy5 & Heidy Schimann 2 Published: xx xx xxxx In Amazonia, the knowledge about Fungi remains patchy and biased towards accessible sites. This is particularly the case in French Guiana where the existing collections have been confned to few coastal localities. Here, we aimed at flling the gaps of knowledge in undersampled areas of this region, particularly focusing on the Basidiomycota.