Distribution of Building-Associated Wood-Destroying Fungi in the Federal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annotated Check List and Host Index Arizona Wood
Annotated Check List and Host Index for Arizona Wood-Rotting Fungi Item Type text; Book Authors Gilbertson, R. L.; Martin, K. J.; Lindsey, J. P. Publisher College of Agriculture, University of Arizona (Tucson, AZ) Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 28/09/2021 02:18:59 Link to Item http://hdl.handle.net/10150/602154 Annotated Check List and Host Index for Arizona Wood - Rotting Fungi Technical Bulletin 209 Agricultural Experiment Station The University of Arizona Tucson AÏfJ\fOTA TED CHECK LI5T aid HOST INDEX ford ARIZONA WOOD- ROTTlNg FUNGI /. L. GILßERTSON K.T IyIARTiN Z J. P, LINDSEY3 PRDFE550I of PLANT PATHOLOgY 2GRADUATE ASSISTANT in I?ESEARCI-4 36FZADAATE A5 S /STANT'" TEACHING Z z l'9 FR5 1974- INTRODUCTION flora similar to that of the Gulf Coast and the southeastern United States is found. Here the major tree species include hardwoods such as Arizona is characterized by a wide variety of Arizona sycamore, Arizona black walnut, oaks, ecological zones from Sonoran Desert to alpine velvet ash, Fremont cottonwood, willows, and tundra. This environmental diversity has resulted mesquite. Some conifers, including Chihuahua pine, in a rich flora of woody plants in the state. De- Apache pine, pinyons, junipers, and Arizona cypress tailed accounts of the vegetation of Arizona have also occur in association with these hardwoods. appeared in a number of publications, including Arizona fungi typical of the southeastern flora those of Benson and Darrow (1954), Nichol (1952), include Fomitopsis ulmaria, Donkia pulcherrima, Kearney and Peebles (1969), Shreve and Wiggins Tyromyces palustris, Lopharia crassa, Inonotus (1964), Lowe (1972), and Hastings et al. -
How Many Fungi Make Sclerotia?
fungal ecology xxx (2014) 1e10 available at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/funeco Short Communication How many fungi make sclerotia? Matthew E. SMITHa,*, Terry W. HENKELb, Jeffrey A. ROLLINSa aUniversity of Florida, Department of Plant Pathology, Gainesville, FL 32611-0680, USA bHumboldt State University of Florida, Department of Biological Sciences, Arcata, CA 95521, USA article info abstract Article history: Most fungi produce some type of durable microscopic structure such as a spore that is Received 25 April 2014 important for dispersal and/or survival under adverse conditions, but many species also Revision received 23 July 2014 produce dense aggregations of tissue called sclerotia. These structures help fungi to survive Accepted 28 July 2014 challenging conditions such as freezing, desiccation, microbial attack, or the absence of a Available online - host. During studies of hypogeous fungi we encountered morphologically distinct sclerotia Corresponding editor: in nature that were not linked with a known fungus. These observations suggested that Dr. Jean Lodge many unrelated fungi with diverse trophic modes may form sclerotia, but that these structures have been overlooked. To identify the phylogenetic affiliations and trophic Keywords: modes of sclerotium-forming fungi, we conducted a literature review and sequenced DNA Chemical defense from fresh sclerotium collections. We found that sclerotium-forming fungi are ecologically Ectomycorrhizal diverse and phylogenetically dispersed among 85 genera in 20 orders of Dikarya, suggesting Plant pathogens that the ability to form sclerotia probably evolved 14 different times in fungi. Saprotrophic ª 2014 Elsevier Ltd and The British Mycological Society. All rights reserved. Sclerotium Fungi are among the most diverse lineages of eukaryotes with features such as a hyphal thallus, non-flagellated cells, and an estimated 5.1 million species (Blackwell, 2011). -
Gymnosperms) of New York State
QK 129 . C667 1992 Pinophyta (Gymnosperms) of New York State Edward A. Cope The L. H. Bailey Hortorium Cornell University Contributions to a Flora of New York State IX Richard S. Mitchell, Editor 1992 Bulletin No. 483 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 V A ThL U: ESTHER T. SVIERTZ LIBRARY THI-: ?‘HW YORK BOTANICAL GARDEN THE LuESTHER T. MERTZ LIBRARY THE NEW YORK BOTANICAL GARDEN Pinophyta (Gymnosperms) of New York State Edward A. Cope The L. H. Bailey Hortorium Cornell University Contributions to a Flora of New York State IX Richard S. Mitchell, Editor 1992 Bulletin No. 483 New York State Museum The University of the State of New York THE STATE EDUC ATION DEPARTMENT Albany, New York 12230 THE UNIVERSITY OF THE STATE OF NEW YORK Regents of The University Martin C. Barell, Chancellor, B.A., I.A., LL.B. Muttontown R. Carlos Carballada, Vice Chancellor, B.S. Rochester Willard A. Genrich, LL.B. Buffalo Emlyn I. Griffith. A.B.. J.D. Rome Jorge L. Batista, B.A.. J.D. Bronx Laura Bradley Chodos, B.A., M.A. Vischer Ferry Louise P. Matteoni, B.A., M.A., Ph.D. Bayside J. Edward Meyer, B.A., LL.B. Chappaqua FloydS. Linton, A.B., M.A., M.P.A. Miller Place Mimi Levin Lif.ber, B.A., M.A. Manhattan Shirley C. Brown, B.A., M.A., Ph.D. Albany Norma Gluck, B.A., M.S.W. Manhattan Adelaide L. Sanford, B.A., M.A., P.D. -
Macrofungi on Fallen Oak Trunks in the Białowieża Virgin Forest – Ecological Role of Trunk Parameters and Surrounding Vegetation
CZECH MYCOLOGY 71(1): 65–89, JUNE 18, 2019 (ONLINE VERSION, ISSN 1805-1421) Macrofungi on fallen oak trunks in the Białowieża Virgin Forest – ecological role of trunk parameters and surrounding vegetation 1 2 3 1 1 JAN HOLEC ,JAN BĚŤÁK ,DANIEL DVOŘÁK ,MARTIN KŘÍŽ ,MIRIAM KUCHAŘÍKOVÁ , 4 5 RENATA KRZYŚCIAK-KOSIŃSKA ,TOMÁŠ KUČERA 1 National Museum, Mycological Department, Cirkusová 1740, CZ-193 00 Praha 9, Czech Republic; [email protected] 2 The Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Lidická 25/27, CZ-602 00 Brno, Czech Republic; [email protected] 3 Masaryk University, Department of Botany and Zoology, Kotlářská 2, CZ-611 37 Brno, Czech Republic; [email protected] 4 Polish Academy of Sciences, Institute of Nature Conservation, al. A. Mickiewicza 33, PL-31-120 Kraków, Poland; [email protected] 5 University of South Bohemia, Faculty of Science, Branišovská 1645/31a, CZ-370 05 České Budějovice, Czech Republic; [email protected] Holec J., Běťák J., Dvořák D., Kříž M., Kuchaříková M., Krzyściak-Kosińska R., Kučera T. (2019): Macrofungi on fallen oak trunks in the Białowieża Virgin Forest – ecological role of trunk parameters and surrounding vegetation. – Czech Mycol. 71(1): 65–89. All groups of macrofungi were recorded on 32 large fallen trunks of pedunculate oak (Quercus robur) in various decay stages in the strictly protected zone of Białowieża National Park, Poland. The total number of species was 187 with 4–38 species per trunk. The mycobiota of individual trunks was unique, consisting of a variable set of several frequent species, a high number of infrequent to rare ones, and a considerable proportion of mycorrhizal fungi and species preferring conifer wood. -
A Phylogenetic Overview of the Antrodia Clade (Basidiomycota, Polyporales)
Mycologia, 105(6), 2013, pp. 1391–1411. DOI: 10.3852/13-051 # 2013 by The Mycological Society of America, Lawrence, KS 66044-8897 A phylogenetic overview of the antrodia clade (Basidiomycota, Polyporales) Beatriz Ortiz-Santana1 phylogenetic studies also have recognized the genera Daniel L. Lindner Amylocystis, Dacryobolus, Melanoporia, Pycnoporellus, US Forest Service, Northern Research Station, Center for Sarcoporia and Wolfiporia as part of the antrodia clade Forest Mycology Research, One Gifford Pinchot Drive, (SY Kim and Jung 2000, 2001; Binder and Hibbett Madison, Wisconsin 53726 2002; Hibbett and Binder 2002; SY Kim et al. 2003; Otto Miettinen Binder et al. 2005), while the genera Antrodia, Botanical Museum, University of Helsinki, PO Box 7, Daedalea, Fomitopsis, Laetiporus and Sparassis have 00014, Helsinki, Finland received attention in regard to species delimitation (SY Kim et al. 2001, 2003; KM Kim et al. 2005, 2007; Alfredo Justo Desjardin et al. 2004; Wang et al. 2004; Wu et al. 2004; David S. Hibbett Dai et al. 2006; Blanco-Dios et al. 2006; Chiu 2007; Clark University, Biology Department, 950 Main Street, Worcester, Massachusetts 01610 Lindner and Banik 2008; Yu et al. 2010; Banik et al. 2010, 2012; Garcia-Sandoval et al. 2011; Lindner et al. 2011; Rajchenberg et al. 2011; Zhou and Wei 2012; Abstract: Phylogenetic relationships among mem- Bernicchia et al. 2012; Spirin et al. 2012, 2013). These bers of the antrodia clade were investigated with studies also established that some of the genera are molecular data from two nuclear ribosomal DNA not monophyletic and several modifications have regions, LSU and ITS. A total of 123 species been proposed: the segregation of Antrodia s.l. -
Bioaerosols, Fungi, Bacteria, Mycotoxins and Human Health: Patho-Physiology, Clinical Effects, Exposure Assessment, Prevention A
Bioaerosols, Fungi, Bacteria, Mycotoxins and Human Health: Patho-physiology, Clinical Effects, Exposure Assessment, Prevention and Control in Indoor Environments and Work Edited by: Dr. med. Eckardt Johanning M.D., M.Sc. Fungal Research Group Foundation, Inc. Albany, New York, U.S.A. © 2005 Fungal Research Group Foundation, Inc., Albany, New York, U.S.A. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher, Fungal Research Group Foundation, Inc., Albany, New York, U.S.A. Special regulation for readers in the U.S.A. This publication has been registered with the Copyright Clearance Center Inc. (CCC), Sale, Massachusetts. Information can be obtained from the CCC about conditions and which photocopies of parts of the publication may be made in the U.S.A. All copyright questions, including photocopying outside the U.S.A. should be referred to the copyright owner Fungal Research Group Foundation, Inc., Albany, New York, U.S.A., unless otherwise specified. No responsibility is assumed by the editor and publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas in the material herein. Bioaerosols, Fungi, Bacteria, Mycotoxins and Human Health: Patho-physiology, Clinical Effects, Exposure Assessment, Prevention and Control in Indoor Environments and Work Edited by: Dr. med. Eckardt Johanning M.D., M.Sc. International Standard Book Number: ISBN 0-9709915-1-7 Library of Congress Control Number: LCCN 2005920146 Supported by: Fungal Research Group Foundation, Inc., Albany, New York, U.S.A. -
A Preliminary Checklist of Arizona Macrofungi
A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona. -
9B Taxonomy to Genus
Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella -
Familie Hygrophoropsidaceae
Hygrophoropsidaceae 01-09-2020 Jean Werts & Joke De Sutter Hygrophoropsidaceae • Alfabetische index • Hygrophoropsidaceae foto’s & hyperlinken • Hygrophoropsidaceae geslachten alfabetisch • Bibliografie Hygrophoropsidaceae geslachten alfabetisch • Hygrophoropsis • Leucogyrophana Geslacht Hygrophoropsis • Sporenpoeder wit. Bodembewonende saprofyten. Vruchtlichaam met viltige hoed, gevorkte en +- witte of oranje plaatjes. Hygrophoropsis aurantiaca Valse hanenkam Hygrophoropsis fuscosquamula Fijnschubbige schijncantharel Hygrophoropsis macrospora Grootsporige schijncantharel Hygrophoropsis morganii Geurende schijncantharel Hygrophorposis aurantiaca (Wulfen/Fr.) Maire Valse hanenkam bij Dennen op arme zure bodem Lode Rubberecht Blommerschot 2018/11. Hygrophoropsis aurantiaca (Wulfen/Fr.) Maire Valse hanenkam • Hoed: gewelfd tot ondiep trechtervormig, Ø 2-8 cm, fijn donzig, mat, oranjegeel, met een blekere, ingerolde rand. • Steel: 3 - 5 cm x 5 - 10 mm, vaak gebogen, oranjegeel. • Vlees: taai, gelig tot oranje. Smaak zwamachtig. Geur zwamachtig. • Lamellen: gevorkt, aflopend, oranje. • Sporenfiguur: bleekgeel. • Ecologie: bij Dennen op arme zure bodem. Augustus – december. • Bron: Fungi of Switserland volume 3. Deze soort kan men verwarren met Cantharellus cibarius, ervan eten kan darmstoornissen veroorzaken. Deze soort is zeer variabel van kleur. Hygrophoropsis aurantiaca (Wulfen/Fr.) Maire Valse hanenkam Hygrophoropsis fuscosquamula P.D.Orton Fijnschubbige schijncantharel Ieko Staal waarneming.nl Hygrophoropsis fuscosquamula P.D.Orton Fijnschubbige -
80130Dimou7-107Weblist Changed
Posted June, 2008. Summary published in Mycotaxon 104: 39–42. 2008. Mycodiversity studies in selected ecosystems of Greece: IV. Macrofungi from Abies cephalonica forests and other intermixed tree species (Oxya Mt., central Greece) 1 2 1 D.M. DIMOU *, G.I. ZERVAKIS & E. POLEMIS * [email protected] 1Agricultural University of Athens, Lab. of General & Agricultural Microbiology, Iera Odos 75, GR-11855 Athens, Greece 2 [email protected] National Agricultural Research Foundation, Institute of Environmental Biotechnology, Lakonikis 87, GR-24100 Kalamata, Greece Abstract — In the course of a nine-year inventory in Mt. Oxya (central Greece) fir forests, a total of 358 taxa of macromycetes, belonging in 149 genera, have been recorded. Ninety eight taxa constitute new records, and five of them are first reports for the respective genera (Athelopsis, Crustoderma, Lentaria, Protodontia, Urnula). One hundred and one records for habitat/host/substrate are new for Greece, while some of these associations are reported for the first time in literature. Key words — biodiversity, macromycetes, fir, Mediterranean region, mushrooms Introduction The mycobiota of Greece was until recently poorly investigated since very few mycologists were active in the fields of fungal biodiversity, taxonomy and systematic. Until the end of ’90s, less than 1.000 species of macromycetes occurring in Greece had been reported by Greek and foreign researchers. Practically no collaboration existed between the scientific community and the rather few amateurs, who were active in this domain, and thus useful information that could be accumulated remained unexploited. Until then, published data were fragmentary in spatial, temporal and ecological terms. The authors introduced a different concept in their methodology, which was based on a long-term investigation of selected ecosystems and monitoring-inventorying of macrofungi throughout the year and for a period of usually 5-8 years. -
Re-Thinking the Classification of Corticioid Fungi
mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma. -
The Fungus That Came in from the Cold: Dry Rot's Pre-Adapted Ability To
1 The fungus that came in from the cold: Dry rot’s pre-adapted ability to invade 2 buildings 3 S.V. Balasundaram1, J. Hess1, M. B. Durling2, S. C. Moody3, L. Thorbek1, C. Progida1, K. 4 LaButti4, A. Aerts4, K. Barry4, I. V. Grigoriev4, L. Boddy5, N. Högberg2, H. Kauserud1, D. C. 5 Eastwood3, I. Skrede1* 6 7 1Department of Biosciences, University of Oslo, Oslo, Norway; 2Department of Forest 8 Mycology, Swedish Agricultural University, Uppsala, Sweden; 3Department of Biosciences, 9 Swansea University, Swansea, UK; 4 United States Department of Energy Joint Genome 10 Institute, Walnut Creek, CA, USA; 5School of Biosciences, Cardiff University, Cardiff, UK; 11 12 13 Correspondence and request for materials should be addressed to I.S. 14 ([email protected]) 15 16 17 18 19 20 1 21 Abstract 22 Many organisms benefit from being pre-adapted to niches shaped by human activity, and 23 have successfully invaded man-made habitats. One such species is the dry-rot fungus Serpula 24 lacrymans, which has a wide distribution in buildings in temperate and boreal regions, where 25 it decomposes coniferous construction wood. Comparative genomic analyses and growth 26 experiments using this species and its wild relatives revealed that S. lacrymans evolved a 27 very effective brown rot decay compared to its wild relatives, enabling an extremely rapid 28 decay in buildings under suitable conditions. Adaptations in intracellular transport 29 machineries promoting hyphal growth, and nutrient and water transport may explain why it is 30 has become a successful invader of timber in houses. Further, we demonstrate that S.