Adding Non-Photosynthetic Corals to Your Reef
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pacific Plate Biogeography, with Special Reference to Shorefishes
Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
Copyrighted Material
Index INDEX Note: page numbers in italics refer to fi gures, those in bold refer to tables and boxes. abducens nerve 55 activity cycles 499–522 inhibition 485 absorption effi ciency 72 annual patterns 515, 516, 517–22 interactions 485–6 abyssal zone 393 circadian rhythms 505 prey 445 Acanthaster planci (Crown-of-Thorns Starfi sh) diel patterns 499, 500, 501–2, 503–4, reduction 484 579 504–7 aggressive mimicry 428, 432–3 Acanthocybium (Wahoo) 15 light-induced 499, 500, 501–2, 503–4, aggressive resemblance 425–6 Acanthodii 178, 179 505 aglomerular 52 Acanthomorpha 284–8, 289 lunar patterns 507–9 agnathans Acanthopterygii 291–325 seasonal 509–15 gills 59, 60 Atherinomorpha 293–6 semilunar patterns 507–9 osmoregulation 101, 102 characteristics 291–2 supra-annual patterns 515, 516, 517–22 phylogeny 202 distribution 349, 350 tidal patterns 506–7 ventilation 59, 60 jaws 291 see also migration see also hagfi shes; lampreys Mugilomorpha 292–3, 294 adaptive response 106 agnathous fi shes see jawless fi shes pelagic 405 adaptive zones 534 agonistic interactions 83–4, 485–8 Percomorpha 296–325 adenohypophysis 91, 92 chemically mediated 484 pharyngeal jaws 291 adenosine triphosphate (ATP) 57 sound production 461–2 phylogeny 292, 293, 294 adipose fi n 35 visual 479 spines 449, 450 adrenocorticotropic hormone (ACTH) 92 agricultural chemicals 605 Acanthothoraciformes 177 adrianichthyids 295 air breathing 60, 61–2, 62–4 acanthurids 318–19 adult fi shes 153, 154, 155–7 ammonia production 64, 100–1 Acanthuroidei 12, 318–19 death 156–7 amphibious 60 Acanthurus bahianus -
Catalogue Customer-Product
AQUATIC DESIGN CENTRE 26 Zennor Trade Park Balham ¦ London ¦ SW12 0PS Shop Enquiries Tel: 020 7580 6764 Email: [email protected] PLEASE CALL TO CHECK AVAILABILITY ON DAY In Stock Yes/No Marine Invertebrates and Corals Anemones Common name Scientific name Atlantic Anemone Condylactis gigantea Atlantic Anemone - Pink Condylactis gigantea Beadlet Anemone - Red Actinea equina Y Bubble Anemone - Coloured Entacmaea quadricolor Y Bubble Anemone - Common Entacmaea quadricolor Bubble Anemone - Red Entacmaea quadricolor Caribbean Anemone Condylactis spp. Y Carpet Anemone - Coloured Stichodactyla haddoni Carpet Anemone - Common Stichodactyla haddoni Carpet Anemone - Hard Blue Stichodactyla haddoni Carpet Anemone - Hard Common Stichodactyla haddoni Carpet Anemone - Hard Green Stichodactyla haddoni Carpet Anemone - Hard Red Stichodactyla haddoni Carpet Anemone - Hard White Stichodactyla haddoni Carpet Anemone - Mini Maxi Stichodactyla tapetum Carpet Anemone - Soft Blue Stichodactyla gigantea Carpet Anemone - Soft Common Stichodactyla gigantea Carpet Anemone - Soft Green Stichodactyla gigantea Carpet Anemone - Soft Purple Stichodactyla gigantea Carpet Anemone - Soft Red Stichodactyla gigantea Carpet Anemone - Soft White Stichodactyla gigantea Carpet Anemone - Soft Yellow Stichodactyla gigantea Carpet Anemone - Striped Stichodactyla haddoni Carpet Anemone - White Stichodactyla haddoni Curly Q Anemone Bartholomea annulata Flower Anemone - White/Green/Red Epicystis crucifer Malu Anemone - Common Heteractis crispa Malu Anemone - Pink Heteractis -
Aquacultue OPEN COURSE: NOTES PART 1
OPEN COURSE AQ5 D01 ORNAMENTAL FISH CULTURE GENERAL INTRODUCTION An aquarium is a marvelous piece of nature in an enclosed space, gathering the attraction of every human being. It is an amazing window to the fascinating underwater world. The term ‘aquarium’is a derivative of two words in Latin, i.e aqua denoting ‘water’ and arium or orium indicating ‘compartment’. Philip Henry Gosse, an English naturalist, was the first person to actually use the word "aquarium", in 1854 in his book The Aquarium: An Unveiling of the Wonders of the Deep Sea. In this book, Gosse primarily discussed saltwater aquaria. Aquarium or ornamental fish keeping has grown from the status of a mere hobby to a global industry capable of generating international exchequer at considerable levels. History shows that Romans have kept aquaria (plural for ‘aquarium’) since 2500 B.C and Chinese in 1278-960 B.C. But they used aquaria primarily for rearing and fattening of food fishes. Chinese developed the art of selective breeding in carp and goldfish, probably the best known animal for an aquarium. Ancient Egyptians were probably the first to keep the fish for ornamental purpose. World’s first public aquarium was established in Regents Park in London in 1853. Earlier only coldwater fishes were kept as pets as there was no practical system of heating which is required for tropical freshwater fish. The invention of electricity opened a vast scope of development in aquarium keeping. The ease of quick transportation and facilities for carting in temperature controlled packaging has broadened the horizon for this hobby. -
Findings and Recommendations of Effectiveness of the West Hawai'i Regional Fishery Management Area (WHRFMA)
Report to the Thirtieth Legislature 2020 Regular Session Findings and Recommendations of Effectiveness of the West Hawai'i Regional Fishery Management Area (WHRFMA) Prepared by: Department of Land and Natural Resources Division of Aquatic Resources State of Hawai'i In response to Section 188F-5, Hawaiʹi Revised Statutes November 2019 Findings and Recommendations of Effectiveness of the West Hawai'i Regional Fishery Management Area (WHRFMA) CORRESPONDING AUTHOR William J. Walsh Ph.D., Hawai′i Division of Aquatic Resources CONTRIBUTING AUTHORS Stephen Cotton, M.S., Hawai′i Division of Aquatic Resources Laura Jackson, B. S., Hawai′i Division of Aquatic Resources Lindsey Kramer, M.S., Hawai′i Division of Aquatic Resources, Pacific Cooperative Studies Unit Megan Lamson, M.S., Hawai′i Division of Aquatic Resources, Pacific Cooperative Studies Unit Stacia Marcoux, M.S., Hawai′i Division of Aquatic Resources, Pacific Cooperative Studies Unit Ross Martin B.S., Hawai′i Division of Aquatic Resources, Pacific Cooperative Studies Unit Nikki Sanderlin. B.S., Hawai′i Division of Aquatic Resources ii PURPOSE OF THIS REPORT This report, which covers the period between 2015 - 2019, is submitted in compliance with Act 306, Session Laws of Hawai′i (SLH) 1998, and subsequently codified into law as Chapter 188F, Hawaiʹi Revised Statutes (HRS) - West Hawai'i Regional Fishery Management Area. Section 188F-5, HRS, requires a review of the effectiveness of the West Hawai′i Regional Fishery Management Area shall be conducted every five years by the Department of Land and Natural Resources (DLNR), in cooperation with the University of Hawai′i (Section 188F-5 HRS). iii CONTENTS PURPOSE OF THIS REPORT ................................................................................................. -
The Importance of Live Coral Habitat for Reef Fishes and Its Role in Key Ecological Processes
ResearchOnline@JCU This file is part of the following reference: Coker, Darren J. (2012) The importance of live coral habitat for reef fishes and its role in key ecological processes. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/23714/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/23714/ THE IMPORTANCE OF LIVE CORAL HABITAT FOR REEF FISHES AND ITS ROLE IN KEY ECOLOGICAL PROCESSES Thesis submitted by Darren J. Coker (B.Sc, GDipResMeth) May 2012 For the degree of Doctor of Philosophy In the ARC Centre of Excellence for Coral Reef Studies and AIMS@JCU James Cook University Townsville, Queensland, Australia Statement of access I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and via the Australian Digital Thesis Network for use elsewhere. I understand that as an unpublished work this thesis has significant protection under the Copyright Act and I do not wish to put any further restrictions upon access to this thesis. Signature Date ii Statement of sources Declaration I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at my university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given. -
Order GASTEROSTEIFORMES PEGASIDAE Eurypegasus Draconis
click for previous page 2262 Bony Fishes Order GASTEROSTEIFORMES PEGASIDAE Seamoths (seadragons) by T.W. Pietsch and W.A. Palsson iagnostic characters: Small fishes (to 18 cm total length); body depressed, completely encased in Dfused dermal plates; tail encircled by 8 to 14 laterally articulating, or fused, bony rings. Nasal bones elongate, fused, forming a rostrum; mouth inferior. Gill opening restricted to a small hole on dorsolat- eral surface behind head. Spinous dorsal fin absent; soft dorsal and anal fins each with 5 rays, placed posteriorly on body. Caudal fin with 8 unbranched rays. Pectoral fins large, wing-like, inserted horizon- tally, composed of 9 to 19 unbranched, soft or spinous-soft rays; pectoral-fin rays interconnected by broad, transparent membranes. Pelvic fins thoracic, tentacle-like,withI spine and 2 or 3 unbranched soft rays. Colour: in life highly variable, apparently capable of rapid colour change to match substrata; head and body light to dark brown, olive-brown, reddish brown, or almost black, with dorsal and lateral surfaces usually darker than ventral surface; dorsal and lateral body surface often with fine, dark brown reticulations or mottled lines, sometimes with irregular white or yellow blotches; tail rings often encircled with dark brown bands; pectoral fins with broad white outer margin and small brown spots forming irregular, longitudinal bands; unpaired fins with small brown spots in irregular rows. dorsal view lateral view Habitat, biology, and fisheries: Benthic, found on sand, gravel, shell-rubble, or muddy bottoms. Collected incidentally by seine, trawl, dredge, or shrimp nets; postlarvae have been taken at surface lights at night. -
SPC Beche-De-Mer Information Bulletin Has 13 Original S.W
ISSN 1025-4943 Issue 36 – March 2016 BECHE-DE-MER information bulletin Inside this issue Editorial Rotational zoning systems in multi- species sea cucumber fisheries This 36th issue of the SPC Beche-de-mer Information Bulletin has 13 original S.W. Purcell et al. p. 3 articles relating to the biodiversity of sea cucumbers in various areas of Field observations of sea cucumbers the western Indo-Pacific, aspects of their biology, and methods to better in Ari Atoll, and comparison with two nearby atolls in Maldives study and rear them. F. Ducarme p. 9 We open this issue with an article from Steven Purcell and coworkers Distribution of holothurians in the on the opportunity of using rotational zoning systems to manage shallow lagoons of two marine parks of Mauritius multispecies sea cucumber fisheries. These systems are used, with mixed C. Conand et al. p. 15 results, in developed countries for single-species fisheries but have not New addition to the holothurian fauna been tested for small-scale fisheries in the Pacific Island countries and of Pakistan: Holothuria (Lessonothuria) other developing areas. verrucosa (Selenka 1867), Holothuria cinerascens (Brandt, 1835) and The four articles that follow, deal with biodiversity. The first is from Frédéric Ohshimella ehrenbergii (Selenka, 1868) Ducarme, who presents the results of a survey conducted by an International Q. Ahmed et al. p. 20 Union for Conservation of Nature mission on the coral reefs close to Ari A checklist of the holothurians of Atoll in Maldives. This study increases the number of holothurian species the far eastern seas of Russia recorded in Maldives to 28. -
Aquarium Products in the Pacific Islands: a Review of the Fisheries, Management and Trade
Aquarium products in the Pacific Islands: A review of the fisheries, management and trade FAME Fisheries, Aquaculture and Marine Ecosystems Division Aquarium products in the Pacific Islands: A review of the fisheries, management and trade Robert Gillett, Mike A. McCoy, Ian Bertram, Jeff Kinch, Aymeric Desurmont and Andrew Halford March 2020 Pacific Community Noumea, New Caledonia, 2020 © Pacific Community (SPC) 2020 All rights for commercial/for profit reproduction or translation, in any form, reserved. SPC authorises the partial reproduction or translation of this material for scientific, educational or research purposes, provided that SPC and the source document are properly acknowledged. Permission to reproduce the document and/or translate in whole, in any form, whether for commercial/for profit or non-profit purposes, must be requested in writing. Original SPC artwork may not be altered or separately published without permission. Original text: English Pacific Community Cataloguing-in-publication data Gillett, Robert Aquarium products in the Pacific Islands: a review of the fisheries, management and trade / Robert Gillett, Mike A. McCoy, Ian Bertram, Jeff Kinch, Aymeric Desurmont and Andrew Halford 1. Ornamental fish trade – Oceania. 2. Aquarium fish collecting – Oceania. 3. Aquarium fishes – Oceania. 4. Aquarium fishes – Management – Oceania. 5. Fishery – Management – Oceania. 6. Fishery – Marketing – Oceania. I. Gillett, Robert II. McCoy, Mike A. III. Bertram, Ian IV. Kinch, Jeff V. Desurmont, Aymeric VI. Halford, Andrew VII. Title -
Centriscidae Bonaparte, 1831 - Razorfishes, Shrimpfishes
FAMILY Centriscidae Bonaparte, 1831 - razorfishes, shrimpfishes SUBFAMILY Macroramphosinae Bleeker, 1879 - razorfishes, snipefishes [=Siluridi, Orthichthyinae, Macrorhamphoidei] Notes: Name in prevailing recent practice Siluridi Rafinesque, 1810b:35 [ref. 3595] (ordine) Macroramphosus [no stem of the type genus, no available, Article 11.7.1.1] Orthichthyinae Gill, 1862j:234 (footnote) [ref. 1663] (subfamily) Orthichthys [family-group name never used as valid after 1899] Macrorhamphoidei Bleeker, 1879a:14 [ref. 460] (family) Macroramphosus [Macrorhamphus inferred from the stem, Article 11.7.1.1; name must be corrected Article 32.5.3; stem corrected to Macroramphos- by Gill 1884c:156, 162 [ref. 17660]; family-group name used as valid by: Schultz with Stern 1948 [ref. 31938], Kamohara 1967, McAllister 1968 [ref. 26854], Lindberg 1971 [ref. 27211], Lagler, Bardach, Miller & May Passino 1977, Nelson 1984 [ref. 13596], Smith & Heemstra 1986 [ref. 5715], Whitehead et al. (1986a) [ref. 13676], Paxton et al. 1989 [ref. 12442], Quéro et al. 1990 [ref. 15946], Nelson 1994 [ref. 26204], Eschmeyer 1998 [ref. 23416], Menezes et al. 2003 [ref. 27192], Nelson et al. 2004 [ref. 27807], Hoese et al. 2006, Nelson 2006 [ref. 32486]; family name sometimes seen as †Rhamphosidae] GENUS Centriscops Gill, 1862 - bellowsfishes [=Centriscops Gill [T. N.], 1862:234, Limiculina (subgenus of Macrorhamphosus) Fowler [H. W.], 1907:425] Notes: [ref. 1663]. Masc. Centriscus humerosus Richardson, 1846. Type by monotypy. •Valid as Centriscops Gill, 1862 -- (Mohr 1937:53 [ref. 15290], Heemstra 1986:459 [ref. 5660], Paxton et al. 1989:407 [ref. 12442], Duhamel 1995:264 [ref. 21927], Gomon et al. 1994:436 [ref. 22532], Keivany & Nelson 2006:S84 [ref. 28978], Paxton et al. -
Zootaxa, Pontoniine Shrimps (Decapoda: Palaemonidae)
Zootaxa 1137: 1–36 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1137 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Pontoniine shrimps (Decapoda: Palaemonidae) from the island of Socotra, with descriptions of new species of Dactylonia Fransen, 2002 and Periclimenoides Bruce, 1990 A. J. BRUCE Queensland Museum, P.O. Box 3300, South Brisbane, Australia 4101. E-mail: [email protected] Table of contents Abstract ............................................................................................................................................. 2 Introduction ....................................................................................................................................... 2 Taxonomy .......................................................................................................................................... 2 Conchodytes meleagrinae Peters, 1852 ............................................................................................ 3 Coralliocaris sp. ................................................................................................................................ 3 Dactylonia carinicula sp. nov. .......................................................................................................... 4 Key to the Indo-West Pacific Species of Dactylonia Fransen, 2002 .............................................. 13 Harpiliopsis depressa (Stimpson, 1860) .........................................................................................14 -
Volume 19 Winter 2002 the Coral Hind, Lapu Lapu, Or Miniata
FREE ISSN 1045-3520 Volume 19 Winter 2002 Introducing a Zonal Based Natural Photo by Robert Fenner Filtration System for Reef Aquariums by Steve Tyree Quite a few natural based filtration systems have been devised by reef aquarists and scientists in the past twenty years. Some systems utilized algae to remove organic and inorganic pollutants from the reef aquarium; others utilized sediment beds. The natural filtration system that I have been researching and designing is drastically different from both of these types. No external algae are used. I believe that all the algae a functional reef requires are already growing in the reef, even if they are not apparent. They include micro-algae, turf algae, coralline algae, single-cell algae within photosynthetic corals, and cyanobacteria with photosynthetic capabilities. Most of the systems that I have set up to research this concept have not included sediment beds. All organic matter and pollutants are recycled and processed within the system by macro-organisms. Sediment beds have not been utilized to process excess Miniata Grouper, Cephalopholis miniata organic debris, but that does not prevent other aquarists from adding them. The main concept behind my system is the use of living sponges, sea squirts, and filter feeders for filtration. Sponges consume bacteria, can reach about twenty inches in length in the wild, and dissolved and colloidal organic material, micro-plankton, The Coral Hind, Lapu about half that in captivity. It is undoubtedly the most and fine particulate matter. Sea squirts consume large Lapu, or Miniata prized member of the genus for the aquarium trade.