Volume 19 Winter 2002 the Coral Hind, Lapu Lapu, Or Miniata

Total Page:16

File Type:pdf, Size:1020Kb

Volume 19 Winter 2002 the Coral Hind, Lapu Lapu, Or Miniata FREE ISSN 1045-3520 Volume 19 Winter 2002 Introducing a Zonal Based Natural Photo by Robert Fenner Filtration System for Reef Aquariums by Steve Tyree Quite a few natural based filtration systems have been devised by reef aquarists and scientists in the past twenty years. Some systems utilized algae to remove organic and inorganic pollutants from the reef aquarium; others utilized sediment beds. The natural filtration system that I have been researching and designing is drastically different from both of these types. No external algae are used. I believe that all the algae a functional reef requires are already growing in the reef, even if they are not apparent. They include micro-algae, turf algae, coralline algae, single-cell algae within photosynthetic corals, and cyanobacteria with photosynthetic capabilities. Most of the systems that I have set up to research this concept have not included sediment beds. All organic matter and pollutants are recycled and processed within the system by macro-organisms. Sediment beds have not been utilized to process excess Miniata Grouper, Cephalopholis miniata organic debris, but that does not prevent other aquarists from adding them. The main concept behind my system is the use of living sponges, sea squirts, and filter feeders for filtration. Sponges consume bacteria, can reach about twenty inches in length in the wild, and dissolved and colloidal organic material, micro-plankton, The Coral Hind, Lapu about half that in captivity. It is undoubtedly the most and fine particulate matter. Sea squirts consume large Lapu, or Miniata prized member of the genus for the aquarium trade. It is bacteria, micro-plankton, and small particulate matter. beautiful, intelligent, and capable of gulping up small fish Filter feeders consume larger particulate matter. When Grouper, Cephalopholis and motile invertebrates. This species generally utilized with live rock and modern lighting, the aquarist tolerates shipping well, recovering at the retail shop well has a complete filtration system. miniata enough in a few days to go to the home aquarium. Any To set up this new system, the aquarist must by Robert Fenner torn fins that result from shipping will heal quickly. This establish separate zones having distinctly different fish is reclusive in nature, and will also be shy in a shop environmental parameters. Nutrient exchanges occur Cebu Island is a large island in the Philippines. We or home aquarium. between the zones. Before discussing these zones, we recently spent some time there with Dennis Mok and should discuss some details of basic nutrient cycling. Marty Beals, owners of Tideline in Los Angeles. We Environment and Behavior There has been much discussion about how much toured Lapu Lapu City and did some diving and A bigger aquarium is always better when food should be added to a reef tank of photosynthetic photography on Bohol Island, south of Cebu. We spent considering housing the true basses of the family corals. In the 1990’s, quite a few advanced reef aquarists one evening at a fresh seafood restaurant eating, among Serranidae, which includes the genus Cephalopholis. Even maintained heavily stocked small polyp stony (SPS) coral other delicacies, the Hind, a bass of the genus a small specimen should be in at least a sixty gallon tank, reefs. It was believed that adding large amounts of Cephalopholis, commonly known as the Miniata or even larger to encourage outgoing behavior. An external food was detrimental to the reef. Many of Grouper. This fish is also called the Lapu Lapu, as is the aquarium double this size is necessary for more than these reefs received only the minor amounts of food large town. This is the name of the local hero who one of the same or similar species. This species is added to supplement the diet of the herbivores. dispatched Ferdinand Magellan in 1521 and who has undemanding in regards to water chemistry, requiring Surprisingly, stony corals in some of these reefs grew at given his name to various other things. normal tropical sea temperature (low seventies to mid- phenomenal rates similar to natural growth rates. The Miniata, or Lapu Lapu, is a beautiful fish of eighties), specific gravity, and composition. Enhanced Recently it has become fashionable to add external typically shy bass-like behavior. It is tolerant of wide circulation, aeration, and filtration are beneficial in an food to a reef by target feeding the stony corals. The variations in water conditions, accepts most foods, and aquarium containing such voracious fish, as you can theory behind this is that the photosynthetic corals are is very resistant to disease. imagine. not able to supply from their symbiotic algae all the Range and Description As is typical of basses, this species does not like to nitrogen necessary for growth, although they do fulfill share its space with other fish. Yawning behavior and 100% of the daily respiration requirements. There is This grouper is common to many parts of the side-to-side alignment with tankmates are signs of speculation that corals that were not fed and still tropical Indo-Pacific, from the Red Sea to Durban, aggression that should not be ignored. Negative showed strong growth were consuming floating organic South Africa, and on most islands in the west-central interactions can be diminished be providing ample tank Pacific. It is not found in Hawaii or the Persian Gulf. It Continued on page 2 Continued on page 2 ©2002 Aquarium Systems, Inc., Mentor, OH - Printed in U.S.A. Introducing a Zonal Based Natural from the exposed zone where Filtration System for Reef Aquariums the excess particulate matter is produced. Large particulate Continued from page 1 matter is best processed by organisms in zones between material. A new study of the coral Pocillopora damicornis exposed and cryptic. I call on natural reefs supports this speculation. Briefly, the these semi-exposed and semi- study found that this coral was able to acquire nitrogen cryptic. These zones are by taking ammonium from sea water, enough to populated by non- support 100% of the growth demands of the coral and photosynthetic organisms that its symbiotic algae, even at normal ocean capture plankton and concentrations. Corals were also found capable of particulate matter, such as the supplying 11% of their nitrogen demands from feather duster worm, Bispira dissolved free amino acids. This indicates that aquarists viola. Animals in the cryptic do not need to feed SPS corals to insure adequate zone primarily consume nitrogen supplies. dissolved organic material, protozoans, and fine particulate matter. Water currents here should be very of this matter. In this zone there exists an excess slow. Cryptic sponges can become clogged if large amount of organic carbon compounds that are particulate matter is transported to their surfaces by strong currents. There are, however, many species of Photo by Tracy Gray consumed by the cryptic organisms in the dark zone. An aquarist must reevaluate the traditional reef sponge that thrive in more exposed zones and can be aquarium when he sets up this new zonal based system. placed in the semi-cryptic and semi-exposed zones. A traditional reef aquarium contains live rock and sand illuminated by very bright lights. Photosynthetic corals are placed on top of the live rocks and sand. Such a set up reproduces the upper region of a tropical reef that is exposed to light. It does not reproduce the complete Four corals grown from fragments in exposed zone. tropical reef platform. Researchers have found that at Photo by Tracy Gray least half the surfaces of a reef platform are not In my work with sponges and sea squirts I set up significantly exposed to light, but are cryptic in nature, some aquariums that received no added food at all. The and many surveys have found that these cryptic areas only added energy was in the form of light from metal can support just as much life as the exposed areas. halide lamps. These systems were divided into two sides, Aquarists should think of the typical exposed captive one light and one dark. An environmental gradient from reef as only a part of the whole zoned reef platform. strong light to almost no light was established. Although some aquarists have established caves in their Photosynthetic stony corals did very well here, as did reefs, such zones are small in size, and need to be coralline algae. Inorganic nitrate-nitrogen levels were expanded in scope. The exposed or illuminated part of slightly elevated, but well within the recommended a reef should be about equal in size to the cryptic zone. Cryptic zone organisms spreading on rocks. range. To my amazement, a large community of cryptic This would help to achieve a balance between the organisms was able to thrive in the dark area, including exposed zone where excess carbon based organic Our research has demonstrated that this Zonal numerous species of sponges and even a couple of sea compounds are generated, and the cryptic zone where Based Natural Filtration System works and is squirts. What was the food for these organisms? they are consumed, in part by bacterial and protozoan completely natural, with no risk of nitrate-nitrogen Because I used no sediment beds I was able to observe life forms. problems. Aquarists can establish habitats for organisms how much organic matter was created. The light side, The exposed zone can be set up the same way such as sponges and sea squirts that traditionally have termed the exposed zone, generated a large amount of current brightly lit reef tanks are set up now. The use of been viewed as difficult to maintain. The major particulate matter, primarily wastes from the herbivores to control algal growth will result in the drawback of this system is that it is difficult to acquire herbivorous fish, snails, and hermit crabs.
Recommended publications
  • Viral Haemorrhagic Septicaemia Virus (VHSV): on the Search for Determinants Important for Virulence in Rainbow Trout Oncorhynchus Mykiss
    Downloaded from orbit.dtu.dk on: Nov 08, 2017 Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss Olesen, Niels Jørgen; Skall, H. F.; Kurita, J.; Mori, K.; Ito, T. Published in: 17th International Conference on Diseases of Fish And Shellfish Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Olesen, N. J., Skall, H. F., Kurita, J., Mori, K., & Ito, T. (2015). Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss. In 17th International Conference on Diseases of Fish And Shellfish: Abstract book (pp. 147-147). [O-139] Las Palmas: European Association of Fish Pathologists. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts.
    [Show full text]
  • Morphology and Histology of the Testicles
    MORPHOLOGY AND HISTOLOGY OF THE TESTICLES OF QUEEN ANGELFISH Holacanthus ciliaris Arquivos de Ciências do Mar (LINNAEUS, 1758) (TELEOSTEI: PERCIFORMES: POMACANTHIDAE) Morfologia e histologia dos testículos do peixe-anjo Holacanthus ciliaris (Linnaeus, 1758) (Teleostei: Perciformes: Pomacanthidae) Mara C. Nottingham1 , José Roberto Feitosa Silva2 , Maria Elisabeth de Araújo1, 3 ABSTRACT Aspects of the morphology and histology of the testicles of Holacanthus ciliaris were studied in this research. Monthly collections of living fish, totaling 39 males, were carried out between December, 2000 and November, 2001 on the coast of Ceará State, Brazil. The total length of the fish varied between 63.4 mm and 334 mm, the standard length between 50.9 mm and 270 mm, and the total weight between 6,70 g and 590 g. The testicles were bilobed and ribbon-like in shape, with firm texture and coloration varying between transparent and amber. In the histological study, male gametes were found in all espermatogenesis stages along the months of the year. Key words: Holacanthus ciliaris, Pomacanthidae, reef fish, reproduction. RESUMO Aspectos da morfologia e histologia de testículos de Holacanthus ciliaris foram estudados nesta pesquisa. Coletas mensais de peixes vivos, totalizando 39 machos, foram realizadas entre os meses de dezembro de 2000 e novembro de 2001 na costa do Estado do Ceará. O comprimento total dos peixes variou entre 63,4 e 334mm, o comprimento padrão entre 50,9 e 270mm e o peso total entre 6,70 e 590g. Os testículos apresentavam-se bilobulados, em forma de fita, com textura firme e coloração variando entre transparente e âmbar. No estudo histológico foram encontrados gametas masculinos em todos os estágios da espermatogênese durante os meses do ano.
    [Show full text]
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Unfolding the Secrets of Coral–Algal Symbiosis
    The ISME Journal (2015) 9, 844–856 & 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Unfolding the secrets of coral–algal symbiosis Nedeljka Rosic1, Edmund Yew Siang Ling2, Chon-Kit Kenneth Chan3, Hong Ching Lee4, Paulina Kaniewska1,5,DavidEdwards3,6,7,SophieDove1,8 and Ove Hoegh-Guldberg1,8,9 1School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia; 2University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia; 3School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia; 4The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia; 5Australian Institute of Marine Science, Townsville, Queensland, Australia; 6School of Plant Biology, University of Western Australia, Perth, Western Australia, Australia; 7Australian Centre for Plant Functional Genomics, The University of Queensland, St Lucia, Queensland, Australia; 8ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia and 9Global Change Institute and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia Dinoflagellates from the genus Symbiodinium form a mutualistic symbiotic relationship with reef- building corals. Here we applied massively parallel Illumina sequencing to assess genetic similarity and diversity among four phylogenetically diverse dinoflagellate clades (A, B, C and D) that are commonly associated with corals. We obtained more than 30 000 predicted genes for each Symbiodinium clade, with a majority of the aligned transcripts corresponding to sequence data sets of symbiotic dinoflagellates and o2% of sequences having bacterial or other foreign origin.
    [Show full text]
  • Symbiodinium Genomes Reveal Adaptive Evolution of Functions Related to Symbiosis
    bioRxiv preprint doi: https://doi.org/10.1101/198762; this version posted October 5, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Article 2 Symbiodinium genomes reveal adaptive evolution of 3 functions related to symbiosis 4 Huanle Liu1, Timothy G. Stephens1, Raúl A. González-Pech1, Victor H. Beltran2, Bruno 5 Lapeyre3,4, Pim Bongaerts5, Ira Cooke3, David G. Bourne2,6, Sylvain Forêt7,*, David J. 6 Miller3, Madeleine J. H. van Oppen2,8, Christian R. Voolstra9, Mark A. Ragan1 and Cheong 7 Xin Chan1,10,† 8 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, 9 Australia 10 2Australian Institute of Marine Science, Townsville, QLD 4810, Australia 11 3ARC Centre of Excellence for Coral Reef Studies and Department of Molecular and Cell 12 Biology, James Cook University, Townsville, QLD 4811, Australia 13 4Laboratoire d’excellence CORAIL, Centre de Recherches Insulaires et Observatoire de 14 l’Environnement, Moorea 98729, French Polynesia 15 5Global Change Institute, The University of Queensland, Brisbane, QLD 4072, Australia 16 6College of Science and Engineering, James Cook University, Townsville, QLD 4811, 17 Australia 18 7Research School of Biology, Australian National University, Canberra, ACT 2601, Australia 19 8School of BioSciences, The University of Melbourne, VIC 3010, Australia 1 bioRxiv preprint doi: https://doi.org/10.1101/198762; this version posted October 5, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • The Symbiotic Life of Symbiodinium in the Open Ocean Within a New Species of Calcifying Ciliate (Tiarina Sp.)
    The ISME Journal (2016) 10, 1424–1436 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE The symbiotic life of Symbiodinium in the open ocean within a new species of calcifying ciliate (Tiarina sp.) Solenn Mordret1,2,5, Sarah Romac1,2, Nicolas Henry1,2, Sébastien Colin1,2, Margaux Carmichael1,2, Cédric Berney1,2, Stéphane Audic1,2, Daniel J Richter1,2, Xavier Pochon3,4, Colomban de Vargas1,2 and Johan Decelle1,2,6 1EPEP—Evolution des Protistes et des Ecosystèmes Pélagiques—team, Sorbonne Universités, UPMC Univ Paris 06, UMR 7144, Station Biologique de Roscoff, Roscoff, France; 2CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France; 3Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand and 4Institute of Marine Science, University of Auckland, Auckland, New Zealand Symbiotic partnerships between heterotrophic hosts and intracellular microalgae are common in tropical and subtropical oligotrophic waters of benthic and pelagic marine habitats. The iconic example is the photosynthetic dinoflagellate genus Symbiodinium that establishes mutualistic symbioses with a wide diversity of benthic hosts, sustaining highly biodiverse reef ecosystems worldwide. Paradoxically, although various species of photosynthetic dinoflagellates are prevalent eukaryotic symbionts in pelagic waters, Symbiodinium has not yet been reported in symbiosis within oceanic plankton, despite its high propensity for the symbiotic lifestyle. Here we report a new pelagic photosymbiosis between a calcifying ciliate host and the microalga Symbiodinium in surface ocean waters. Confocal and scanning electron microscopy, together with an 18S rDNA-based phylogeny, showed that the host is a new ciliate species closely related to Tiarina fusus (Colepidae).
    [Show full text]
  • Centropyge, Pomacanthidae
    Galaxea, Journal of Coral Reef Studies 22: 31-36(2020) Note Filling an empty role: first report of cleaning by pygmy angelfishes (Centropyge, Pomacanthidae) Pauline NARVAEZ*1, 2, 3 and Renato A. MORAIS1, 3 1 ARC Centre of Excellence for Coral Reef Studies, 1 James Cook Drive, Townsville, Queensland 4810, Australia 2 Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, 1 James Cook Drive, Townsville, Queensland 4810, Australia 3 College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, Queensland 4810, Aus­ tralia * Corresponding author: Pauline Narvaez E­mail: [email protected] Communicated by Frederic Sinniger (Associate Editor­in­Chief) Abstract Cleaner fishes remove ectoparasites, mucus and search of ectoparasites, mucus, and dead or diseased dead tissues from other ‘client’ organisms. These mutu­ tissue (Côté 2000; Côté and Soares 2011). Cleaners have alistic interactions provide benefits for the ‘clients’ and, been classified as either dedicated or facultative, depend­ on a larger scale, maintain healthy reef ecosystems. Here, ing on their degree of reliance on cleaning interactions for we report two species of angelfishes, Centropyge bicolor accessing food (Vaughan et al. 2017). While dedicated and C. tibicen, acting as cleaners of the blue tang cleaners rely almost exclusively on cleaning, facultative Paracanthurus hepatus in an aquarium. This observation ones also exploit other food sources. In total, 208 fish and is the first time that pygmy angelfishes are recorded 51 shrimp species have been reported as either dedicated cleaning in any en vironment. This novel cleaning ob­ or facultative cleaners (Vaughan et al. 2017).
    [Show full text]
  • Ciliate Diversity, Community Structure, and Novel Taxa in Lakes of the Mcmurdo Dry Valleys, Antarctica
    Reference: Biol. Bull. 227: 175–190. (October 2014) © 2014 Marine Biological Laboratory Ciliate Diversity, Community Structure, and Novel Taxa in Lakes of the McMurdo Dry Valleys, Antarctica YUAN XU1,*†, TRISTA VICK-MAJORS2, RACHAEL MORGAN-KISS3, JOHN C. PRISCU2, AND LINDA AMARAL-ZETTLER4,5,*࿣ 1Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; 2Montana State University, Department of Land Resources and Environmental Sciences, 334 Leon Johnson Hall, Bozeman, Montana 59717; 3Department of Microbiology, Miami University, Oxford, Ohio 45056; 4The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543; and 5Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island 02912 Abstract. We report an in-depth survey of next-genera- trends in dissolved oxygen concentration and salinity may tion DNA sequencing of ciliate diversity and community play a critical role in structuring ciliate communities. A structure in two permanently ice-covered McMurdo Dry PCR-based strategy capitalizing on divergent eukaryotic V9 Valley lakes during the austral summer and autumn (No- hypervariable region ribosomal RNA gene targets unveiled vember 2007 and March 2008). We tested hypotheses on the two new genera in these lakes. A novel taxon belonging to relationship between species richness and environmental an unknown class most closely related to Cryptocaryon conditions
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Download Fishlore.Com's Saltwater Aquarium and Reef Tank E-Book
    Updated: August 6, 2013 This e-Book is FREE for public use. Commercial use prohibited. Copyright FishLore.com – providing tropical fish tank and aquarium fish information for freshwater fish and saltwater fish keepers. FishLore.com Saltwater Aquarium & Reef Tank e-Book 1 CONTENTS Foreword .......................................................................................................................................... 10 Why Set Up an Aquarium? .............................................................................................................. 12 Aquarium Types ............................................................................................................................... 14 Aquarium Electrical Safety ............................................................................................................... 15 Aquarium Fish Cruelty Through Ignorance ..................................................................................... 17 The Aquarium Nitrogen Cycle ......................................................................................................... 19 Aquarium Filter and Fish Tank Filtration ......................................................................................... 24 Saltwater Aquarium Types - FOWLR, Fish Only with Live Rock, Reef Tank .................................... 30 Freshwater Aquarium vs. Saltwater Aquarium ............................................................................... 33 Saltwater Aquarium Tank Setup Guide ..........................................................................................
    [Show full text]
  • Systématique Et Ecologie Des Crustacés Décapodes Et Stomatopodes De Polynésie Française Joseph Poupin
    Systématique et Ecologie des Crustacés Décapodes et Stomatopodes de Polynésie Française Joseph Poupin To cite this version: Joseph Poupin. Systématique et Ecologie des Crustacés Décapodes et Stomatopodes de Polynésie Française. Ecologie, Environnement. Université de Perpignan, 2005. tel-00085049 HAL Id: tel-00085049 https://tel.archives-ouvertes.fr/tel-00085049 Submitted on 11 Jul 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université de Perpignan - Faculté des Sciences Mémoire présenté par Joseph Poupin à L’Université de Perpignan Pour l’obtention d’une Habilitation à Diriger les Recherches Titre Systématique et Ecologie des Crustacés Décapodes et Stomatopodes de Polynésie Française. Soutenance effectuée le mercredi 25 mai 2005 à l’Institut de Recherche de l’Ecole Navale Composition du jury : • Claramunt Christophe, examinateur • Galzin René, rapporteur • Hily Christian, rapporteur • Lemaitre Rafael, examinateur • Van Wormoudth Alain, rapporteur Mémoire accompagné d’un fascicule séparé sur les Travaux et Perspectives de Recherche de Mr. POUPIN (56 pp, 17 figs). A l’issue de la soutenance, le 25 mai 2005, l’Habilitation à Diriger les Recherches a été attribuée au candidat. Version du mémoire corrigée suivant les recommandations du jury.
    [Show full text]
  • A Reappraisal of Stegastes Species Occurring in the South Atlantic Using
    de Souza et al. Helgol Mar Res (2016) 70:20 DOI 10.1186/s10152-016-0471-x Helgoland Marine Research ORIGINAL ARTICLE Open Access A reappraisal of Stegastes species occurring in the South Atlantic using morphological and molecular data Allyson Santos de Souza1*, Ricardo de Souza Rosa2, Rodrigo Xavier Soares1, Paulo Augusto de Lima‑Filho3, Claudio de Oliveira4, Oscar Akio Shibatta5 and Wagner Franco Molina1 Abstract The taxonomic status of Pomacentridae species can be difficult to determine, due to the high diversity, and in some cases, poorly understood characters, such as color patterns. Although Stegastes rocasensis, endemic to the Rocas atoll and Fernando de Noronha archipelago, and S. sanctipauli, endemic to the São Pedro and São Paulo archipelago, differ in color pattern, they exhibit similar morphological characters and largely overlapping counts of fin rays and lateral-line scales. Another nominal insular species, S. trindadensis, has recently been synonymized with S. fuscus but retained as a valid subspecies by some authors. Counts and morphometric analyses and mitochondrial DNA (COI, 16SrRNA, CytB) and nuclear DNA (rag1 and rhodopsin) comparisons of three insular species (S. rocasensis, S. sanctipauli and S. trindadensis) and three other South Atlantic species (S. fuscus, S. variabilis and S. pictus) were carried out in the present study. Analyses of the principal components obtained by traditional multivariate morphometry indicate that the species in general have similar body morphology. Molecular analyses revealed conspicuous similarity between S. rocasensis and S. sanctipauli and between S. trindadensis and S. fuscus and a clear divergence between S. variabilis from Northeast Brazil and S. variabilis from the Caribbean region.
    [Show full text]