Review Selective Anti-Herpesvirus Agents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) United States Patent (10) Patent No.: US 8,993,581 B2 Perrine Et Al
US00899.3581B2 (12) United States Patent (10) Patent No.: US 8,993,581 B2 Perrine et al. (45) Date of Patent: Mar. 31, 2015 (54) METHODS FOR TREATINGVIRAL (58) Field of Classification Search DSORDERS CPC ... A61K 31/00; A61K 31/166; A61K 31/185: A61K 31/233; A61K 31/522: A61K 38/12: (71) Applicant: Trustees of Boston University, Boston, A61K 38/15: A61K 45/06 MA (US) USPC ........... 514/263.38, 21.1, 557, 565, 575, 617; 424/2011 (72) Inventors: Susan Perrine, Weston, MA (US); Douglas Faller, Weston, MA (US) See application file for complete search history. (73) Assignee: Trustees of Boston University, Boston, (56) References Cited MA (US) U.S. PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this 3,471,513 A 10, 1969 Chinn et al. patent is extended or adjusted under 35 3,904,612 A 9/1975 Nagasawa et al. U.S.C. 154(b) by 0 days. (Continued) (21) Appl. No.: 13/915,092 FOREIGN PATENT DOCUMENTS (22) Filed: Jun. 11, 2013 CA 1209037 A 8, 1986 CA 2303268 A1 4f1995 (65) Prior Publication Data (Continued) US 2014/OO45774 A1 Feb. 13, 2014 OTHER PUBLICATIONS Related U.S. Application Data (63) Continuation of application No. 12/890,042, filed on PCT/US 10/59584 Search Report and Written Opinion mailed Feb. Sep. 24, 2010, now abandoned. 11, 2011. (Continued) (60) Provisional application No. 61/245,529, filed on Sep. 24, 2009, provisional application No. 61/295,663, filed on Jan. 15, 2010. Primary Examiner — Savitha Rao (74) Attorney, Agent, or Firm — Nixon Peabody LLP (51) Int. -
Overview of Antiviral Medications Used in Ophthalmology
ANTIVIRALS Overview of antiviral medications Jeremy Hoffman Clinical Research used in ophthalmology Fellow: International Centre for Eye Health, As eye health professionals, London School of Hygiene & Tropical we are fortunate to have Medicine, UK. a number of antiviral medications available in our armoury to treat a range of ophthalmic viral infections. This article provides an overview of what antiviral agents are available for these conditions, detailing their regimen SANDIP DAS SANYAM (SAGARMATHA CHOUDHARY EYE HOSPITAL, NEPAL) SANDIP DAS SANYAM(SAGARMATHA and evidence that Aciclovir – either as topical eye ointment or systemic tablets – is still the first-line antiviral in the treatment of many viral eye diseases around the supports their use. world, including here in Nepal. phthalmic viral infections, particularly herpes associated with toxicity, including superficial punctate simplex keratitis, have been at the forefront of keratopathy, chemical conjunctivitis, punctal occlusion Othe development of antiviral medications. and occasional serious hypersensitivity reactions. Idoxuridine was also unable to penetrate the corneal The discovery of the first targeted antiviral agent, epithelium to treat stromal or endothelial keratitis. in common with penicillin (the first antibiotic), owes much to serendipity. In 1959, William Prusoff With the advent of aciclovir in 1982, most herpetic developed idoxuridine (IDU) as a potential systemic ophthalmic infections became treatable, including anti-cancer agent. Idoxuridine those caused by herpes -
Stems for Nonproprietary Drug Names
USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol -
WSAVA List of Essential Medicines for Cats and Dogs
The World Small Animal Veterinary Association (WSAVA) List of Essential Medicines for Cats and Dogs Version 1; January 20th, 2020 Members of the WSAVA Therapeutic Guidelines Group (TGG) Steagall PV, Pelligand L, Page SW, Bourgeois M, Weese S, Manigot G, Dublin D, Ferreira JP, Guardabassi L © 2020 WSAVA All Rights Reserved Contents Background ................................................................................................................................... 2 Definition ...................................................................................................................................... 2 Using the List of Essential Medicines ............................................................................................ 2 Criteria for selection of essential medicines ................................................................................. 3 Anaesthetic, analgesic, sedative and emergency drugs ............................................................... 4 Antimicrobial drugs ....................................................................................................................... 7 Antibacterial and antiprotozoal drugs ....................................................................................... 7 Systemic administration ........................................................................................................ 7 Topical administration ........................................................................................................... 9 Antifungal drugs ..................................................................................................................... -
Silibinin Component for the Treatment of Hepatitis Silbininkomponente Zur Behandlung Von Hepatitis Composant De Silibinine Pour Le Traitement De L’Hépatite
(19) & (11) EP 2 219 642 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/357 (2006.01) A61P 1/16 (2006.01) 21.09.2011 Bulletin 2011/38 A61P 31/12 (2006.01) (21) Application number: 08849759.9 (86) International application number: PCT/EP2008/009659 (22) Date of filing: 14.11.2008 (87) International publication number: WO 2009/062737 (22.05.2009 Gazette 2009/21) (54) SILIBININ COMPONENT FOR THE TREATMENT OF HEPATITIS SILBININKOMPONENTE ZUR BEHANDLUNG VON HEPATITIS COMPOSANT DE SILIBININE POUR LE TRAITEMENT DE L’HÉPATITE (84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR WO-A-02/067853 GB-A- 2 167 414 HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR • POLYAK STEPHEN J ET AL: "Inhibition of T- cell inflammatory cytokines, hepatocyte NF-kappa B (30) Priority: 15.11.2007 EP 07022187 signaling, and HCV infection by standardized 15.11.2007 US 988168 P silymarin" GASTROENTEROLOGY, vol. 132, no. 25.03.2008 EP 08005459 5, May 2007 (2007-05), pages 1925-1936, XP002477920 ISSN: 0016-5085 (43) Date of publication of application: • MAYER K E ET AL: "Silymarin treatment of viral 25.08.2010 Bulletin 2010/34 hepatitis: A systematic review" JOURNAL OF VIRAL HEPATITIS 200511 GB, vol. 12, no. 6, (60) Divisional application: November 2005 (2005-11), pages 559-567, 11005445.9 XP002477921 ISSN: 1352-0504 1365-2893 • CHAVEZ M L: "TREATMENT OF HEPATITIS C (73) Proprietor: Madaus GmbH WITH MILK THISTLE?" JOURNAL OF HERBAL 51067 Köln (DE) PHARMACOTHERAPY, HAWORTH HERBAL PRESS, BINGHAMTON, US, vol. -
Treatment of Viral Infections Including COVID-19
Treatment of Viral Infections including COVID-19 Dr. Sujith J Chandy MBBS., MD., PhD., FRCP(Edin) Director, ReAct Asia Pacific Professor, Clinical Pharmacology Christian Medical College, Vellore, India 1 What is a Virus? An infective agent (intracellular parasite) …… ….. consists of a nucleic acid molecule in a protein coat / capsid …..able to multiply only within the living cells of a host 2 Types of Virus DNA VIRUS RNA VIRUS Rhabdo virus Pox virus Rubella virus Herpes virus Picorna virus Adeno virus Orthomyxo virus Hepadna virus Paramyxo virus Papilloma virus Retro virus Corona virus Most DNA viruses assemble in the nucleus; most RNA viruses in cytoplasm 3 The more ‘in’famous viruses in the last decade 4 Stages of viral replication & Targets for treatment Cell Entry Uncoating Translation of viral proteins Posttranslational modification Release 5 Mechanisms of anti-viral action • Inhibition of viral enzymes -viral DNA and RNA polymerase • Viral protein glycosylation, virus assembly, new virus particle transport, and virus release. • Other mechanisms -inhibition of ACE2 cellular receptor. • Acidification at the surface of the cell membrane inhibiting fusion of the virus, and immunomodulation of cytokine release 6 Problems with antiviral therapy • Drugs interfere with host cell metabolism: – this can lead to adverse effects • Adequate concentrations of drug need to be accumulated inside cell: - for good effect • Peak viral replication associated with symptoms: – therapy must be started earlier to be effective 8 Acyclovir • Guanosine derivative • Mechanism: 1. Inhibits herpes virus DNA polymerase 2. Incorporated into viral DNA – stops DNA strand elongation • PK – widely distributed, enters CSF & cornea • Preparations – tablet, vial, cream, eye ointment • ADR – burning sensation (topical), rashes (IV) Acyclovir - Uses • Genital Herpes Simplex • Mucocutaneous HSV • HSV encephalitis – IV therapy • HSV keratitis – eye ointment • Herpes Zoster – IV or oral. -
Surveillance of Antimicrobial Consumption in Europe 2013-2014 SURVEILLANCE REPORT
SURVEILLANCE REPORT SURVEILLANCE REPORT Surveillance of antimicrobial consumption in Europe in Europe consumption of antimicrobial Surveillance Surveillance of antimicrobial consumption in Europe 2013-2014 2012 www.ecdc.europa.eu ECDC SURVEILLANCE REPORT Surveillance of antimicrobial consumption in Europe 2013–2014 This report of the European Centre for Disease Prevention and Control (ECDC) was coordinated by Klaus Weist. Contributing authors Klaus Weist, Arno Muller, Ana Hoxha, Vera Vlahović-Palčevski, Christelle Elias, Dominique Monnet and Ole Heuer. Data analysis: Klaus Weist, Arno Muller and Ana Hoxha. Acknowledgements The authors would like to thank the ESAC-Net Disease Network Coordination Committee members (Marcel Bruch, Philippe Cavalié, Herman Goossens, Jenny Hellman, Susan Hopkins, Stephanie Natsch, Anna Olczak-Pienkowska, Ajay Oza, Arjana Tambić Andrasevic, Peter Zarb) and observers (Jane Robertson, Arno Muller, Mike Sharland, Theo Verheij) for providing valuable comments and scientific advice during the production of the report. All ESAC-Net participants and National Coordinators are acknowledged for providing data and valuable comments on this report. The authors also acknowledge Gaetan Guyodo, Catalin Albu and Anna Renau-Rosell for managing the data and providing technical support to the participating countries. Suggested citation: European Centre for Disease Prevention and Control. Surveillance of antimicrobial consumption in Europe, 2013‒2014. Stockholm: ECDC; 2018. Stockholm, May 2018 ISBN 978-92-9498-187-5 ISSN 2315-0955 -
Current Drugs to Treat Infections with Herpes Simplex Viruses-1 and -2
viruses Review Current Drugs to Treat Infections with Herpes Simplex Viruses-1 and -2 Lauren A. Sadowski 1,†, Rista Upadhyay 1,2,†, Zachary W. Greeley 1,‡ and Barry J. Margulies 1,3,* 1 Towson University Herpes Virus Lab, Department of Biological Sciences, Towson University, Towson, MD 21252, USA; [email protected] (L.A.S.); [email protected] (R.U.); [email protected] (Z.W.G.) 2 Towson University Department of Chemistry, Towson, MD 21252, USA 3 Molecular Biology, Biochemistry, and Bioinformatics Program, Towson University, Towson, MD 21252, USA * Correspondence: [email protected] † Authors contributed equally to this manuscript. ‡ Current address: Becton-Dickinson, Sparks, MD 21152, USA. Abstract: Herpes simplex viruses-1 and -2 (HSV-1 and -2) are two of the three human alphaher- pesviruses that cause infections worldwide. Since both viruses can be acquired in the absence of visible signs and symptoms, yet still result in lifelong infection, it is imperative that we provide interventions to keep them at bay, especially in immunocompromised patients. While numerous experimental vaccines are under consideration, current intervention consists solely of antiviral chemotherapeutic agents. This review explores all of the clinically approved drugs used to prevent the worst sequelae of recurrent outbreaks by these viruses. Keywords: acyclovir; ganciclovir; cidofovir; vidarabine; foscarnet; amenamevir; docosanol; nelfi- navir; HSV-1; HSV-2 Citation: Sadowski, L.A.; Upadhyay, R.; Greeley, Z.W.; Margulies, B.J. Current Drugs to Treat Infections 1. Introduction with Herpes Simplex Viruses-1 and -2. The world of anti-herpes simplex (anti-HSV) agents took flight in 1962 with the FDA Viruses 2021, 13, 1228. -
Longitudinal Analysis of the Utility of Liver Biochemistry in Hospitalised COVID-19 Patients As Prognostic Markers
medRxiv preprint doi: https://doi.org/10.1101/2020.09.15.20194985; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Longitudinal analysis of the utility of liver biochemistry in hospitalised COVID-19 patients as prognostic markers. Authors: Tingyan Wang1,2*, David A Smith1,3*, Cori Campbell1,2*, Steve Harris1,4, Hizni Salih1, Kinga A Várnai1,3, Kerrie Woods1,3, Theresa Noble1,3, Oliver Freeman1, Zuzana Moysova1,3, Thomas Marjot5, Gwilym J Webb6, Jim Davies1,4, Eleanor Barnes2,3*, Philippa C Matthews3,7*. Affiliations: 1. NIHR Oxford Biomedical Research Centre, Big Data Institute, University of Oxford 2. Nuffield Department of Medicine, University of Oxford 3. Oxford University Hospitals NHS Foundation Trust 4. Department of Computer Science, University of Oxford 5. Oxford Liver Unit, Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford University Hospitals 6. Cambridge Liver Unit, Addenbrooke's Hospital, Cambridge 7. Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust *Equal Contributions Corresponding Author: Professor Eleanor Barnes, The Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK. Telephone: 01865 281547. Email: [email protected] Author Contributions: T.W, D.A.S, C.C., P.C.M and E.B contributed equally to this work. T.W, D.A.S and C.C performed the data analysis and wrote the manuscript and were supervised by E.B, P.C.M and J.D. -
Optimized Ophthalmics: Advances in the Medical Treatment of Ocular Disease
OPTIMIZED OPHTHALMICS: ADVANCES IN THE MEDICAL TREATMENT OF OCULAR DISEASE Seth Eaton, VMD, DACVO Cornell University Veterinary Specialists As with other medical disciplines, ophthalmology and vision science is a rapidly expanding branch of clinical medicine. The efforts of physicians, veterinarians, research investigators, and other medical professionals have contributed invaluably to the current body of knowledge regarding eye disease, ocular health, and the vision sciences. In turn, medical treatment options for various conditions and pathologies continue to evolve, presenting practitioners with better tools with which to treat their patients. Though not exhaustive, this discussion aims to present some of the pharmacologic advances that show great potential to help our veterinary patients. OCULAR PHARMACOLOGY: AN OVERVIEW The eye’s response to a medication (topical or oral) is reliant on many factors, all of which contribute to the drugs effective activity and concentration at the intended site of action. These factors include (but are not limited to): - Mode of administration (suspension, ointment, oral, parenteral) - Route of absorption - Molecular state of the drug - Ocular surface dynamics - Integrity of ocular barriers/disease status of the treated eye Given the potential physiologic barriers associated with absorption of oral and/or parenterally- administered medications, topical ophthalmic medications are often the preferred mode of quick and efficient delivery of medication to the eye. The specific features of an eye drop’s -
FDA Listing of Established Pharmacologic Class Text Phrases January 2021
FDA Listing of Established Pharmacologic Class Text Phrases January 2021 FDA EPC Text Phrase PLR regulations require that the following statement is included in the Highlights Indications and Usage heading if a drug is a member of an EPC [see 21 CFR 201.57(a)(6)]: “(Drug) is a (FDA EPC Text Phrase) indicated for Active Moiety Name [indication(s)].” For each listed active moiety, the associated FDA EPC text phrase is included in this document. For more information about how FDA determines the EPC Text Phrase, see the 2009 "Determining EPC for Use in the Highlights" guidance and 2013 "Determining EPC for Use in the Highlights" MAPP 7400.13. -
Antiviral Drugs and Their Toxicities Review Article
Review Article Antiviral Drugs and Their Toxicities Muhammed Ekmekyapar1, Şükrü Gürbüz2 1Department of Emergency Medicine, Malatya Education and Research Hospital, Malatya, Turkey 2 Department of Emergency Medicine, Faculty of Medicine, Inonu University, Malatya, Turkey Abstract Developments in antiviral agents have led to significant progress in the treatment of infections caused by herpes simplex virus 1-2, varicella-zoster virus (VZV), cytomegalovirus, influenza A and B, and human immunodeficiency virus (HIV). There are several antiviral drug therapies that are widely used today. These antiviral drugs are examined under four main headings: drugs effective against influenza viruses, drugs effective against herpes viruses, anti-HIV drugs and immunomodulators in antiviral therapy. Toxicities of these drugs are also examined in four main headings: toxicity of drugs that are effective against herpes viruses, toxicity of drugs effective against influenza viruses, toxicity of antiretroviral drugs and toxicity of other antiviral agents. Under these main headings, antiviral drugs and toxicities of these drugs will be analyzed in more detail. The side effects and toxicities of these drugs should be well known and if such a situation is encountered, it would be more appropriate to choose another antiviral treatment that may have less side effects and toxicity for the patient if necessary. Key words: Antiviral drugs, side effects, toxicity Özet Antiviral ajanlardaki gelişmeler, herpes simpleks virüs 1-2, varisella-zoster virüs, sitomegalovirüs, influenza A ve B ve insan immün yetmezlik (HIV) virüsü kaynaklı enfeksiyonların tedavisinde önemli ilerleme sağlamıştır. Günümüzde yaygın olarak kullanılan çeşitli antiviral ilaç tedavileri vardır. Bu antiviral ilaçlar dört ana başlık altında incelenir: influenza virüslerine karşı etkili ilaçlar, herpes virüslerine karşı etkili ilaçlar, anti-HIV ilaçları ve antiviral tedavide kullanılan immünomodülatörler.