China Were Taken from This Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Disease List for Aquaculture Health Certificate
Quarantine Standard for Designated Species of Imported/Exported Aquatic Animals [Attached Table] 4. Listed Diseases & Quarantine Standard for Designated Species Listed disease designated species standard Common name Disease Pathogen 1. Epizootic haematopoietic Epizootic Perca fluviatilis Redfin perch necrosis(EHN) haematopoietic Oncorhynchus mykiss Rainbow trout necrosis virus(EHNV) Macquaria australasica Macquarie perch Bidyanus bidyanus Silver perch Gambusia affinis Mosquito fish Galaxias olidus Mountain galaxias Negative Maccullochella peelii Murray cod Salmo salar Atlantic salmon Ameirus melas Black bullhead Esox lucius Pike 2. Spring viraemia of Spring viraemia of Cyprinus carpio Common carp carp, (SVC) carp virus(SVCV) Grass carp, Ctenopharyngodon idella white amur Hypophthalmichthys molitrix Silver carp Hypophthalmichthys nobilis Bighead carp Carassius carassius Crucian carp Carassius auratus Goldfish Tinca tinca Tench Sheatfish, Silurus glanis European catfish, wels Negative Leuciscus idus Orfe Rutilus rutilus Roach Danio rerio Zebrafish Esox lucius Northern pike Poecilia reticulata Guppy Lepomis gibbosus Pumpkinseed Oncorhynchus mykiss Rainbow trout Abramis brama Freshwater bream Notemigonus cysoleucas Golden shiner 3.Viral haemorrhagic Viral haemorrhagic Oncorhynchus spp. Pacific salmon septicaemia(VHS) septicaemia Oncorhynchus mykiss Rainbow trout virus(VHSV) Gadus macrocephalus Pacific cod Aulorhynchus flavidus Tubesnout Cymatogaster aggregata Shiner perch Ammodytes hexapterus Pacific sandlance Merluccius productus Pacific -
Recirculating Aquaculture Systems in China-Current Application And
quac d A ul n tu a r e s e J i o r u e r h n Ying et al., Fish Aquac J 2015, 6:3 s i a F l Fisheries and Aquaculture Journal DOI: 10.4172/2150-3508.1000134 ISSN: 2150-3508 ResearchCommentary Article OpenOpen Access Access Recirculating Aquaculture Systems in China-Current Application and Prospects Liu Ying, Liu Baoliang, Shi Ce and Sun Guoxiang Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China For the past 20 years, aquaculture has seen a worldwide expansion RAS with independent intellectual property rights achieved from the and is the fastest growing food-producing sector in the world, with an experimental stage gradually turns to industrialization, large-scale average annual growth rate of 6-8%. World aquaculture has grown popularization and application. tremendously during the last sixty years from a production of less than a million tonne in the early 1950s to 90.43 million tonnes by 2012. Of Integrative stage (2007~2011): China has made considerable this production, 66.63 million tonnes, or 73.68%, was fish. Aquaculture progress in research and application of marine industrial aquaculture, is now fully comparable to marine capture fisheries when measured by and established the suitable development mode of China’s RAS. volume of output on global scale. The contribution from aquaculture During this period, many species, such as grouper, half-smooth to the world total fish production of capture and aquaculture in 2012 tongue sole, fugu, abalone, and sea cucumber were firstly cultured in reached 42.2%, up from 25.7% in 2000. -
Biological Control of Invasive Fish and Aquatic Invertebrates: a Brief Review with Case Studies
Management of Biological Invasions (2019) Volume 10, Issue 2: 227–254 CORRECTED PROOF Review Biological control of invasive fish and aquatic invertebrates: a brief review with case studies Przemyslaw G. Bajer1,*, Ratna Ghosal1,+, Maciej Maselko2, Michael J. Smanski2, Joseph D. Lechelt1, Gretchen Hansen3 and Matthew S. Kornis4 1University of Minnesota, Minnesota Aquatic Invasive Species Research Center, Dept. of Fisheries, Wildlife, and Conservation Biology, 135 Skok Hall, 2003 Upper Buford Circle, St. Paul, MN 55108, USA 2University of Minnesota, Dept. of Biochemistry, Molecular Biology and Biophysics, 1479 Gortner Ave., Room 344, St. Paul MN 55108, USA 3Minnesota Department of Natural Resources, 500 Lafayette Road, St. Paul, MN 55155, USA 4U.S. Fish and Wildlife Service, Great Lakes Fish Tag and Recovery Laboratory, Green Bay Fish and Wildlife Conservation Office, 2661 Scott Tower Drive, New Franken, WI 54229, USA +Current Address: Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat 380009, India Author e-mails: [email protected] (PGB), [email protected] (RG), [email protected] (MM), [email protected] (MJS), [email protected] (JDL), [email protected] (GH), [email protected] (MSK) *Corresponding author Citation: Bajer PG, Ghosal R, Maselko M, Smanski MJ, Lechelt JD, Hansen G, Abstract Kornis MS (2019) Biological control of invasive fish and aquatic invertebrates: a We review various applications of biocontrol for invasive fish and aquatic brief review with case studies. invertebrates. We adopt a broader definition of biocontrol that includes traditional Management of Biological Invasions 10(2): methods like predation and physical removal (biocontrol by humans), and modern 227–254, https://doi.org/10.3391/mbi.2019. -
18 TILAPIA CULTURE in MAINLAND CHINA Lai Qiuming1 and Yang Yi2
TILAPIA CULTURE IN MAINLAND CHINA Lai Qiuming1 and Yang Yi2 1College of Aquaculture, Hainan University, Haikou, Hainan, China 2Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand Abstract The first tilapia species introduced to mainland China is Mozambique tilapia (Oreochromis mossambicus) from Vietnam in 1957. Since then, several tilapia species such as blue tilapia (O. aureus) and different strains of Nile tilapia (O. niloticus) have been introduced to China from different places. Tilapia culture in China started in early 1960s, but was not popular until early 1980s. Since then, tilapia culture has been expanded rapidly in response to the introduction of new strains, success in all-male tilapia production and improvement in both nursing and grow-out technologies. Tilapia production increased from 18,100 metric tons in 1984 to 706,585 metric tons in 2002, with an average annual growth rate of 25%. Considering the low seafood especially tilapia consumption per capita, large domestic markets and technology improvements, there is still a huge potential for further expansion of tilapia culture in China. Introduction There is a growing consensus that tilapias (Oreochromis spp.) can become one of the world’s most important cultured fishes (FAO, 1980). Since 1980s, culture of tilapias has been quickly expanded in many parts of the world, especially in China. The attributes which makes tilapias especially Nile tilapia (O. niloticus) so suitable for fish farming are their general hardiness, great tolerance to adverse environmental conditions, ease of breeding, rapid growth rate, ability to efficiently convert organic and domestic wastes into high quality protein, and good taste (Stickney et al., 1979; Balarin and Haller, 1982; Pullin and Lowe- McConnell, 1982). -
The Status of Mariculture in North China
The Status of Mariculture in North China Chang Yaqing1,Chen Jiaxin2 (1.Key Lab of Mariculture and Biotechnology.Dalian Fisheries University,Dalian, Liaoning, 116023, P.R China;2.Yellow Sea Fisheries Research Institute Chinese Academy of Fisheries Sciences, Qingdao, Shandong,266071, P.R China) Introduction China has a long history of mariculture production. The mariculture industry in China has obtained break through in the all artificial nursery and cultural technique of shrimps, mollusca and fishes of high commercial value since 1950s, which has advanced the development of mariculture industry. The first major development was seaweed culture during 1950s, prompted by breakthroughs in breeding technology. By the end of the 1970s, annual seaweed production reached 250,000 metric tons in dry weight ( approximately 1.5million tons of fresh seaweed ). Shrimp culture developed during the 1980s because of advances in hatchery technology and economic reform policies. Annual shrimp production reached 210,000 tons in 1992. Disease outbreaks since 1993, however, have reduced shrimp production by about two-thirds. Mariculture production increased steadily between 1954 and 1985, but has been exponential since 1986, mostly driven by molluscan culture. Molluscan 1 culture in China began to expand beyond the four traditional species: oyster,cockle,razor clam and ruditapes clam in the 1970s,Mussel culture was the first new industry to emerge ,followed by scallop aquaculture in 1980s. Abalone culture has become a major industry in 1990s. Traditional oyster and clam cultures have also advanced and expanded in recent years.Now more than 30 species of marine mollusks are cultured commercially in China. Because of the rapid development in recent years, molluscan culture has become the largest sector of the Chinese mariculture industry, accounting for 81% of the total production in weight. -
Dict-En-Fr-Food V3
Dictionnaire Anglais-Français de l’Alimentation English-French Food Dictionary Version 3.0 Pascal Médeville (CC BY-NC-ND 4.0) 1 This work is distributed under Creative Commons license CC BY-NC-ND 4.0. Please revise the information below and stay within the limits of the license. 2 Le présent travail est distribué dans le cadre de la licence Creative Commons CC BY-NC-ND 4.0. Veuillez lire les informations ci-dessous et respecter les limites imposées. 3 Sigles et abréviations utilisés dans ce dictionnaire : adj. : adjectif agr. : agriculture bot. : botanique ichtyol. : ichtyologie Ind. : Indonésie it. : Italie J : Japon microbiol. : microbiologie œnol. : œnologie p.ex. : par exemple UK : Royaume Uni US : États-Unis d’Amérique vét. : médecine vétérinaire zool. : zoologie Historique des versions/Version history : Date Objet No. de version Déc. 2008 Version initiale 1.0 Juin 2009 Corrections diverses ; Ajout de nouvelles sources ; Ajout de nouvelles 2.0 références bibliographiques Avril 2020 Ajout de nouvelles entrées ; Corrections diverses ; Ajout de nouvelles 3.0 sources ; Ajout de nouvelles references bibliographiques 4 Pour vos traductions anglais-français ou chinois-français dans le domaine de la gastronomie ou de l’agro-alimentaire, veuillez prendre contact avec Pascal Médeville à l’une des adresses suivantes : [email protected] ou [email protected]. For all your food and agrifood translation needs (English to French of Chinese to French), you can contact Pascal Médeville, at [email protected] or [email protected]. Pour toutes vos traductions et besoins de publication assistée par ordinateur en chinois ou d’autres langues asiatiques, n’hésitez pas à faire appel à Pascal Médeville ou à Parallels Translation Office : www.parallels-translation.net. -
Water Quality, Aquatic Life and Fish in Song Bung River
REPORT SNO 5281-2006 Water quality, Aquatic FINAL REPORT Life and Fish in Song Bung River A Part Study of the Environmental Impact Assessment for the Song Bung 4 Hydro- power Development Project in Central Vietnam Norwegian Institute for Water Research – an institute in the Environmental Research Alliance of Norway REPORT Main Office Regional Office, Regional Office, Regional Office, Regional Office Sørlandet Østlandet Vestlandet Midt-Norge Gaustadalleen 21 Televeien 3 Sandvikaveien 41 Nordnesboder 5 P.O. Box 1266 N-0349 Oslo, Norway N-4879 Grimstad, Norway N-2312 Ottestad, Norway N-5008 Bergen, Norway N-7462, Norway Phone (47) 22 18 51 00 Phone (47) 37 29 50 55 Phone (47) 62 57 64 00 Phone (47) 55 30 22 50 Phone (47) 73 54 63 85 / 86 Telefax (47) 22 18 52 00 Telefax (47) 37 04 45 13 Telefax (47) 62 57 66 53 Telefax (47) 55 30 22 51 Telefax (47) 73 54 63 87 Internet: www.niva.no Title Serial No. Date Water Quality, Aquatic Life and Fish 5281-2006 15.11. 2006 A Part Study of the Environmental Impact Assessment for the Song Bung 4 Hydropower Development Project in Central Vietnam Report No. Sub-No. Pages Price FINAL REPORT O-25364 134 Author(s) Topic group Distribution Water Management Free Dag Berge, Ho Thanh Hai and Nguyen Kiem Son Geographical area Printed Vietnam NIVA Client(s) Client ref. Asian Development Bank ADB TA 4625-VIE SWECO International Abstract The study comprise three main tasks: 1) Assess the present situation in the river with respect to water quality, aquatic life, fish and fishery; 2) Assess the impact of the hydropower regulation scheme on these items, and 3) Propose and outline mitigation measures to reduce the negative impacts. -
Original Layout- All Part.Pmd
Distribution and Ecology of Some Important Riverine Fish Species of the Mekong River Basin Mekong River Commission Distribution and Ecology of Some Important Riverine Fish Species of the Mekong River Basin A.F. Poulsen, K.G. Hortle, J. Valbo-Jorgensen, S. Chan, C.K.Chhuon, S. Viravong, K. Bouakhamvongsa, U. Suntornratana, N. Yoorong, T.T. Nguyen, and B.Q. Tran. Edited by K.G. Hortle, S.J. Booth and T.A.M. Visser MRC 2004 1 Distribution and Ecology of Some Important Riverine Fish Species of the Mekong River Basin Published in Phnom Penh in May 2004 by the Mekong River Commission. This document should be cited as: Poulsen, A.F., K.G. Hortle, J. Valbo-Jorgensen, S. Chan, C.K.Chhuon, S. Viravong, K. Bouakhamvongsa, U. Suntornratana, N. Yoorong, T.T. Nguyen and B.Q. Tran. 2004. Distribution and Ecology of Some Important Riverine Fish Species of the Mekong River Basin. MRC Technical Paper No. 10. ISSN: 1683-1489 Acknowledgments This report was prepared with financial assistance from the Government of Denmark (through Danida) under the auspices of the Assessment of Mekong Fisheries Component (AMCF) of the Mekong River Fisheries Programme, and other sources as acknowledged. The AMCF is based in national research centres, whose staff were primarily responsible for the fieldwork summarised in this report. The ongoing managerial, administrative and technical support from these centres for the MRC Fisheries Programme is greatly appreciated. The centres are: Living Aquatic Resources Research Centre, PO Box 9108, Vientiane, Lao PDR. Department of Fisheries, 186 Norodom Blvd, PO Box 582, Phnom Penh, Cambodia. -
Chinese Academy of Fishery Sciences, State Oceanic
Contribution to GSDR 2015 – chapter 3 Vulnerability of Nearshore Ecosystems from Rapid Intensive Coastal Development LIU Hui, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences SU Jilan, Second Institute of Oceanography, State Oceanic Administration Introduction The Millennium Ecosystem Assessment pointed out that coastal systems are among the most productive systems in the world and are experiencing acute pressures from growing population and exploitation. It found that the greatest threat is development-related loss of habitats and services, while degradation from other exploitation also poses severe problems. Over recent decades, the world as a whole has experienced fast economic development, especially in the developing countries. Extensive land reclamation has accompanied such development in coastal countries. For example, around the Yellow Sea, bordered by China and the two Koreas, 28% of its tidal flats existing in the 1980s had been reclaimed by the late 2000s (Murray et al., 2014). At the same time, as part of the significant growth of aquaculture in developing countries over the decades, mariculture has also undergone rapid expansion with no sign of peaking, supplying over half of world seafood demand (FAO, 2007 and 2014). However, marine aquaculture is largely confined to relatively small areas in coastal seas. For example, China’s is credited with 63.3% and 54%, respectively, of the world’s farmed marine food fish and aquatic plants production (FAO 2014). For such high production, nearly 1/3 of China’s total intertidal wetlands and 10% of China’s total nearshore water have been converted for mariculture use (MOA, 2014). Significant pressure from the combined effects of large-scale reclamation and mariculture have resulted in serious deterioration of the coastal ecosystems (CCICED Task Force, 2013) 1 Impacts from reclamation on coastal ecosystems and their services are largely known. -
Proceedings of the 40Th U.S.-Japan Aquaculture Panel Symposium
Hatchery Technology for High Quality Juvenile Production Proceedings of the 40th U.S.-Japan Aquaculture Panel Symposium University of Hawaii East West Center Honolulu, Hawaii October 22-23 2012 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS-F/SPO-136 Hatchery Technology for High Quality Juvenile Production Proceedings of the 40th U.S.-Japan Aquaculture Panel Symposium University of Hawaii East West Center Honolulu, Hawaii October 22-23 2012 Mike Rust1, Paul Olin2, April Bagwill3, and Marie Fujitani3, editors 1Northwest Fisheries Science Center 2725 Montlake Boulevard East Seattle, Washington 98112 2California Sea Grant UCSD / Scripps Institution of Oceanography 133 Aviation Blvd., Suite 109 Santa Rosa CA 95403 3NOAA National Marine Fisheries Service 1315 East-West Highway Silver Spring, MD 20910 NOAA Technical Memorandum NMFS-F/SPO-136 December 2013 U.S. Department of Commerce Penny Pritzker, Secretary of Commerce National Oceanic and Atmospheric Administration Dr. Kathryn Sullivan, (Acting) NOAA Administrator National Marine Fisheries Service Samuel D. Rauch III, (Acting) Assistant Administrator for Fisheries SUGGESTED CITATION: Rust, M., P. Olin, A. Bagwill and M. Fujitani (editors). 2013. Hatchery Technology for High Quality Juvenile Production: Proceedings of the 40th U.S.-Japan Aquaculture Panel Symposium, Honolulu, Hawaii, October 22-23, 2012. U.S. Dept. Commerce, NOAA Tech. Memo. NMFS-F/SPO-136. A COPY OF THIS REPORT MAY BE OBTAINED FROM: Northwest Fisheries Science Center 2725 Montlake Boulevard East Seattle, Washington 98112 OR ONLINE AT: http://spo.nmfs.noaa.gov/tm/ Reference throughout this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. -
Shrimp Farming in China: Lessons from Its Developmental History « Global Aquaculture Advocate
11/28/2018 Shrimp farming in China: Lessons from its developmental history « Global Aquaculture Advocate LEADERSHIP & INNOVATION (/ADVOCATE/CATEGORY/LEADERSHIP-INNOVATION) Shrimp farming in China: Lessons from its developmental history Friday, 11 September 2015 By Dr. Xianhong Meng , Dr. Qingyin Wang , Dr. Jie Kon , Dr. Jian Li and Dr. Jie Huang Disease diagnosis, prevention and control techniques should be enhanced Marine shrimp farming has been one of the most important industries in the eld of marine economy development in China. The main species cultured are Chinese shrimp (Fenneropenaeus chinensis); Pacic white shrimp (Litopenaeus vannamei); black tiger shrimp (Penaeus monodon); and Kuruma shrimp (Marsupenaeus japonicus). Before 1995, F. chinensis was the most important farmed shrimp species in China, especially in the provinces comprising its natural distribution along the coast of the Bohai and Yellow Seas. Its highest ocean catch was over 40,000 metric tons (MT) in 1979. Production increases since 1995 came basically from L. vannamei (Figure 1). In 2013, China harvested more than 1 mmt of shrimp from marine farm ponds, with L. vannamei accounting for 812,545 MT or 75.14 percent of the total. The production of F. chinensis (41,931 MT, 3.88 percent), P. monodon (72,008 MT, 6.65 percent) and M. japonicus (45,949 MT, 4.25 percent) also contributed relatively small shares. https://www.aquaculturealliance.org/advocate/shrimp-farming-in-china-what-should-we-learn-from-its-developmental-history/?headlessPrint=AAAA 11/28/2018 Shrimp farming in China: Lessons from its developmental history « Global Aquaculture Advocate Especially with the outbreak of white spot syndrome in 1993, China made the large-scale development of new shrimp varieties selected for faster growth and greater disease resistance a priority. -
Aquaculture Research and Its Relation to Development in China
AQUACULTURE RESEARCH AND ITS RELATION TO DEVELOPMENT IN CHINA S.F. Li Shanghai Fisheries University, Shanghai, China E-mail: [email protected] ABSTRACT China has a long history in aquaculture that goes back 2500 years. However, key advances followed the artificial breeding of carp in the 1950s. This chapter focuses on the development from the 1980s to the present, discussing the major issues in the developments, current and future trends and challenges, and the roles of Shanghai Fisheries University and the WorldFish Center in addressing these concerns. STATUS Pond culture is the most important practice contributing to total aquaculture production from Dramatic development since 1980s freshwaters. Pond culture has an estimated share of 60 to 70 per cent of total freshwater aquaculture The history of fish farming in China goes back at least production, in which Taihu Lake area in the Yangtze 2500 years, and it has long held prominence in the River Delta and Zhong-Nan-Shuan area in the Pearl rich Chinese civilization. But it was only after the 1950s River Delta are the traditional centers of fish culture. that aquaculture has been rapidly developed. The Culture in open-waters (lakes, reservoirs, channels) and breakthrough in the artificial breeding of the silver carp, in paddies contributes most of the remaining output. bighead carp and grass carp achieved from 1958 to 1960 The most commonly farmed species are silver carp changed the traditional practice of collecting wild fry (Hypophthalmichthys molitrix), bighead carp (Aristichthys from the rivers. Meanwhile, in the 1960s Chinese nobilis), grass carp (Ctenopharyngodon idellus), black scientists summarized the experience of Chinese carp (Mylopharyngodon piceus), common carp (Cyprinus freshwater fish culture into eight words; water, seed, carpio), crucian carp (Carassius auratus), blunt snout feeds, density, polyculture, rotation, disease, and bream (Megalobrama amblycephala), mud carp (Cirrhina management.