The Status of Mariculture in North China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Quick Guide to Cooking with Ausab Abalone in Brine
A Quick Guide to Cooking With Ausab Abalone in Brine Ausab Canned Abalone is a versatile product that requires minimal effort to create the perfect meal at home. The abalone is completely cleaned and cooked, and ready to eat. With a unique umami flavor, it can be used in many different ways. The meat is smooth and tender, and the perfect balance between sweet and salty. Ensure the canned abalone is stored in a well ventilated, cool place out of direct sunlight. How to Prepare the Abalone The abalone is canned, ready to eat with mouth attached. To preserve it’s tender texture, it is best to use the abalone when just heated through. This can be achieved by using the abalone at the end of cooking, or slowly heated in the can. To safely heat the abalone in it’s can follow these steps: 1. Leave the can unopened and remove all labels. 2. Place the can into a pot of water so that it is fully submerged and is horizontal. 3. Bring the water to a gentle simmer and leave submerged for 15 – 20 minutes. 4. Remove the pot from the heat and wait for the water to cool before carefully lifting the can out of the water with large tongs. 5. Open the can once it is cool enough to handle. 6. The abalone can be served whole or sliced thinly. Abalone Recipes Ausab Canned Abalone can be pan fried, used in soups or grilled. Teriyaki Abalone Serves 4 1 x Ausab Canned Abalone in Brine 250ml Light Soy Sauce 200ml Mirin 200ml Sake 60g Sugar 1. -
CHEMICAL STUDIES on the MEAT of ABALONE (Haliotis Discus Hannai INO)-Ⅰ
Title CHEMICAL STUDIES ON THE MEAT OF ABALONE (Haliotis discus hannai INO)-Ⅰ Author(s) TANIKAWA, Eiichi; YAMASHITA, Jiro Citation 北海道大學水産學部研究彙報, 12(3), 210-238 Issue Date 1961-11 Doc URL http://hdl.handle.net/2115/23140 Type bulletin (article) File Information 12(3)_P210-238.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP CHEMICAL STUDIES ON THE MEAT OF ABALONE (Haliotis discus hannai INo)-I Eiichi TANIKAWA and Jiro YAMASHITA* Faculty of Fisheries, Hokkaido University There are about 90 existing species of abalones (Haliotis) in the world, of which the distribution is wide, in the Pacific, Atlantic and Indian Oceans. Among the habitats, especially the coasts along Japan, the Pacific coast of the U.S.A. and coasts along Australia have many species and large production. In Japan from ancient times abalones have been used as food. Japanese, as well as American, abalones are famous for their large size. Among abalones, H. gigantea (" Madaka-awabi "), H. gigantea sieboldi (" Megai-awabi "), H. gigantea discus (" Kuro-awabi") and H. discus hannai (" Ezo-awabi") are important in commerce. Abalone is prepared as raw fresh meat (" Sashimi") or is cooked after cut ting it from the shell and trimming the visceral mass and then mantle fringe from the large central muscle which is then cut transversely into slices. These small steaks may be served at table as raw fresh meat (" Sashimi") or may be fried, stewed, or minced and made into chowder. A large proportion of the abalones harvested in Japan are prepared as cooked, dried and smoked products for export to China. -
Recirculating Aquaculture Systems in China-Current Application And
quac d A ul n tu a r e s e J i o r u e r h n Ying et al., Fish Aquac J 2015, 6:3 s i a F l Fisheries and Aquaculture Journal DOI: 10.4172/2150-3508.1000134 ISSN: 2150-3508 ResearchCommentary Article OpenOpen Access Access Recirculating Aquaculture Systems in China-Current Application and Prospects Liu Ying, Liu Baoliang, Shi Ce and Sun Guoxiang Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China For the past 20 years, aquaculture has seen a worldwide expansion RAS with independent intellectual property rights achieved from the and is the fastest growing food-producing sector in the world, with an experimental stage gradually turns to industrialization, large-scale average annual growth rate of 6-8%. World aquaculture has grown popularization and application. tremendously during the last sixty years from a production of less than a million tonne in the early 1950s to 90.43 million tonnes by 2012. Of Integrative stage (2007~2011): China has made considerable this production, 66.63 million tonnes, or 73.68%, was fish. Aquaculture progress in research and application of marine industrial aquaculture, is now fully comparable to marine capture fisheries when measured by and established the suitable development mode of China’s RAS. volume of output on global scale. The contribution from aquaculture During this period, many species, such as grouper, half-smooth to the world total fish production of capture and aquaculture in 2012 tongue sole, fugu, abalone, and sea cucumber were firstly cultured in reached 42.2%, up from 25.7% in 2000. -
Circular 162. the Soft-Shell Clam
HE OFT iHELL 'LAM UNITED STATES DEPARTMENT 8F THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU OF COMMERCIAL FISHERIES Circular 162 CONTENTS Page 1 Intr oduc tion. • • • . 2 Natural history • . ~ . 2 Distribution. 3 Taxonomy. · . Anatomy. • • • •• . · . 3 4 Life cycle. • • • • • . • •• Predators, diseases, and parasites . 7 Fishery - methods and management .•••.••• • 9 New England area. • • • • • . • • • • • . .. 9 Chesapeake area . ........... 1 1 Special problem s of paralytic shellfish poisoning and pollution . .............. 13 Summary . .... 14 Acknowledgment s •••• · . 14 Selected bibliography •••••• 15 ABSTRACT Describes the soft- shell cla.1n industry of the Atlantic coast; reviewing past and present economic importance, fishery methods, fishery management programs, and special problems associated with shellfish culture and marketing. Provides a summary of soft- shell clam natural history in- eluding distribution, taxonomy, anatomy, and life cycle. l THE SOFT -SHELL CLAM by Robert W. Hanks Bureau of Commercial Fisheries Biological Labor ator y U.S. Fish and Wildlife Serv i c e Boothbay Harbor, Maine INTRODUCTION for s a lted c l a m s used as bait by cod fishermen on t he G r and Bank. For the next The soft-shell clam, Myaarenaria L., has 2 5 years this was the most important outlet played an important role in the history and for cla ms a nd was a sour ce of wealth to economy of the eastern coast of our country . some coastal communities . Many of the Long before the first explorers reached digg ers e a rne d up t o $10 per day in this our shores, clams were important in the busin ess during October to March, when diet of some American Indian tribes. -
Shells Shells Are the Remains of a Group of Animals Called Molluscs
Inspire - Educate – Showcase Shells Shells are the remains of a group of animals called molluscs. Bivalves Molluscs are soft-bodied animals inhabiting marine, land and Bivalves are molluscs made up of two shells joined by a hinge with freshwater habitats. The shells we commonly come across on the interlocking teeth. The shells are usually held together by a tough beach belong to one of two groups of molluscs, either gastropods ligament. These creatures also have a set of two tubes which which have one shell, or bivalves which have two shells. The material sometimes stick out from shell allowing the animal to breathe and making up the shell is secreted by special glands of the animal living feed. within it. Some commonly known bivalves include clams, cockles, mussels, scallops and oysters. Can you think of any others? Oysters and mussels attach themselves to solid objects such as jetty pylons or rocks on the sea floor and filter feed by taking Gastropod = One Shell Bivalve = Two Shells water into one tube and removing the tiny particles of plankton from the water. In contrast, scallops and cockles are moving Particular shell shapes have been adapted to suit the habitat and bivalves and can either swim through the conditions in which the animals live, helping them to survive. The water or pull themselves through the sand wedge shape of a cockle shell allows them to easily burrow into the with their muscular, soft bodies. sand. Ribs, folds and frills on many molluscs help to strengthen the shell and provide extra protection from predators. -
Pacific Oysters, Abalone Undergo Sensory Evaluation
12/14/2019 Pacific oysters, abalone undergo sensory evaluation « Global Aquaculture Advocate (https://www.aquaculturealliance.org) Intelligence Pacific oysters, abalone undergo sensory evaluation Monday, 1 November 2010 By Nick Elliott , Conor Delahunty , Ciarán Forde , Maeva Cochet and Peter Kube Results demonstrate ability to differentiate among regions, farms and growing conditions https://www.aquaculturealliance.org/advocate/pacific-oysters-abalone-undergo-sensory-evaluation/?headlessPrint=AAAAAPIA9c8r7gs82oWZBA 12/14/2019 Pacific oysters, abalone undergo sensory evaluation « Global Aquaculture Advocate Sensory evaluation is a scientic approach to measurement of how food products stimulate our senses. Sensory evaluation is a scientic approach to the measurement and analysis of how food and beverage products stimulate our senses. It is used routinely to guide food product research and development, production, manufacture and handling, and quality control. Information on the sensory properties of food and beverages can be related to differences in their chemical and physical compositions. The sensory differences also can be related to differences in consumer preference, offering insight on what drives product acceptance. Seafood evaluation A pilot study on the sensory properties of Pacic oysters and abalone was conducted at the CSIRO Sensory Laboratory in Sydney, Australia, by a team of scientists from CSIRO Food and Nutritional Sciences. It found differences among the sensory properties of samples produced in different growing conditions and regions. The pilot study began by establishing protocols for the preparation and tasting of the oysters and abalone, as well as a sensory evaluation vocabulary for odor, texture, avor and aftertaste for each product. Once consensus was reached, the samples underwent an objective sensory assessment by a panel of 10 trained assessors, whose role was to quantitatively rate the perceptual differences among the samples. -
Jackson's Auction
Jackson's Auction Collector's Choice: Antiques & Collectibles Wednesday - September 19, 2012 Collector's Choice: Antiques & Collectibles 675: REED & BARTON STERLING SILVER FLATWARE, 148 PIECES USD 4,000 - 6,000 A LARGE 148 PIECE SET OF REED AND BARTON FRANCIS 1ST STERLING SILVER FLATWARE, MID 20TH CENTURY. Comprising 24 table knives, 24 table forks, 24 salad forks, 35 teaspoons, 13 cream soup spoons, 5 tablespoons, 12 individual butter knives and 11 various serving pieces. Contained in two fitted chests, not matching. Total weight approximately 194 troy oz. 676: DUTCH SILVER EPERGNE, 1853 USD 1,000 - 1,500 A VERY FINE DUTCH SILVER AND CUT CRYSTAL CENTERPIECE EPERGNE, 1853. Stamp hallmarks including "Z&B" probably for Pieter Zollner and William Beijoer (1849-1871) comprising a silver entwining stem with extending foliage supporting two scallop cut crystal trays below a tulip blossom finial raised on a scalloped floral repousse and chased bell form base. Additionally stamped "Pde Meyer te'Hage." Silver weight approximately 34.76 troy oz. Height 22.5 inches (57cm). 677: WALLACE ROSE POINT STERLING SILVER FLATWARE, 63 PIECES USD 1,200 - 1,800 A VERY FINE SET OF WALLACE ROSE POINT STERLING SILVER FLATWARE, MID 20TH CENTURY. 63 pieces comprising 10 each place knives, place forks and salad forks, 20 teaspoons, 10 individual butters, a gravy ladle, sugar shell and pastry server. All contained in a fitted mahogany chest with drawer. Weight approximately 60 troy oz. 678: A FINE CONTINENTAL SILVER BACCHANALIAN FOOTED BOWL USD 200 - 400 A FINE CONTINENTAL SILVER BACCHANALIAN FOOTED BOWL, 20TH CENTURY. With embossed and chased facial mask within hammered scalloped lobes and grape vine rim in deep relief. -
18 TILAPIA CULTURE in MAINLAND CHINA Lai Qiuming1 and Yang Yi2
TILAPIA CULTURE IN MAINLAND CHINA Lai Qiuming1 and Yang Yi2 1College of Aquaculture, Hainan University, Haikou, Hainan, China 2Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand Abstract The first tilapia species introduced to mainland China is Mozambique tilapia (Oreochromis mossambicus) from Vietnam in 1957. Since then, several tilapia species such as blue tilapia (O. aureus) and different strains of Nile tilapia (O. niloticus) have been introduced to China from different places. Tilapia culture in China started in early 1960s, but was not popular until early 1980s. Since then, tilapia culture has been expanded rapidly in response to the introduction of new strains, success in all-male tilapia production and improvement in both nursing and grow-out technologies. Tilapia production increased from 18,100 metric tons in 1984 to 706,585 metric tons in 2002, with an average annual growth rate of 25%. Considering the low seafood especially tilapia consumption per capita, large domestic markets and technology improvements, there is still a huge potential for further expansion of tilapia culture in China. Introduction There is a growing consensus that tilapias (Oreochromis spp.) can become one of the world’s most important cultured fishes (FAO, 1980). Since 1980s, culture of tilapias has been quickly expanded in many parts of the world, especially in China. The attributes which makes tilapias especially Nile tilapia (O. niloticus) so suitable for fish farming are their general hardiness, great tolerance to adverse environmental conditions, ease of breeding, rapid growth rate, ability to efficiently convert organic and domestic wastes into high quality protein, and good taste (Stickney et al., 1979; Balarin and Haller, 1982; Pullin and Lowe- McConnell, 1982). -
Status Review of the Pinto Abalone - Decision
Status Review of the Pinto Abalone - Decision TABLE OF CONTENTS Page Summary Sheet ............................................................................................................. 1 of 42 CR-102 ......................................................................................................................... 3 of 42 WAC 220-330-090 Crawfish, ((abalone,)) sea urchins, sea cucumbers, goose barnacles—Areas and seasons, personal-use fishery ........................................ 6 of 42 WAC 220-320-010 Shellfish—Classification .................................................................. 7 of 42 WAC 220-610-010 Wildlife classified as endangered species ....................................... 9 of 42 Status Report for the Pinto Abalone in Washington .................................................... 10 of 42 Summary Sheet Meeting dates: May 31, 2019 Agenda item: Status Review of the Pinto Abalone (Decision) Presenter(s): Chris Eardley, Puget Sound Shellfish Policy Coordinator Henry Carson, Fish & Wildlife Research Scientist Background summary: Pinto abalone are iconic marine snails prized as food and for their beautiful shells. Initially a state recreational fishery started in 1959; the pinto abalone fishery closed in 1994 due to signs of overharvest. Populations have continued to decline since the closure, most likely due to illegal harvest and densities too low for reproduction to occur. Populations at monitoring sites declined 97% from 1992 – 2017. These ten sites originally held 359 individuals and now hold 12. The average size of the remnant individuals continues to increase and wild juveniles have not been sighted in ten years, indicating an aging population with little reproduction in the wild. The species is under active restoration by the department and its partners to prevent local extinction. Since 2009 we have placed over 15,000 hatchery-raised juvenile abalone on sites in the San Juan Islands. Federal listing under the Endangered Species Act (ESA) was evaluated in 2014 but retained the “species of concern” designation only. -
3 Abalones, Haliotidae
3 Abalones, Haliotidae Red abalone, Haliotis rufescens, clinging to a boulder. Photo credit: D Stein, CDFW. History of the Fishery The nearshore waters of California are home to seven species of abalone, five of which have historically supported commercial or recreational fisheries: red abalone (Haliotis rufescens), pink abalone (H. corrugata), green abalone (H. fulgens), black abalone (H. cracherodii), and white abalone (H. sorenseni). Pinto abalone (H. kamtschatkana) and flat abalone (H. walallensis) occur in numbers too low to support fishing. Dating back to the early 1900s, central and southern California supported commercial fisheries for red, pink, green, black, and white abalone, with red abalone dominating the landings from 1916 through 1943. Landings increased rapidly beginning in the 1940s and began a steady decline in the late 1960s which continued until the 1997 moratorium on all abalone fishing south of San Francisco (Figure 3-1). Fishing depleted the stocks by species and area, with sea otter predation in central California, withering syndrome and pollution adding to the decline. Serial depletion of species (sequential decline in landings) was initially masked in the combined landings data, which suggested a stable fishery until the late 1960s. In fact, declining pink abalone landings were replaced by landings of red abalone and then green abalone, which were then supplemented with white abalone and black abalone landings before the eventual decline of the abalone species complex. Low population numbers and disease triggered the closure of the commercial black abalone fishery in 1993 and was followed by closures of the commercial pink, green, and white abalone fisheries in 1996. -
Molecular Biomarker Studies on Ecotoxicological Impact of Pollutants on the Marine Gastropods Along the Goa Coast
MOLECULAR BIOMARKER STUDIES ON ECOTOXICOLOGICAL IMPACT OF POLLUTANTS ON THE MARINE GASTROPODS ALONG THE GOA COAST JACKY BHAGAT A Thesis submitted to Goa University for the Award of the Degree of DOCTOR OF PHILOSOPHY in MARINE SCIENCES Research Guide: Dr. B. S. Ingole, Professor & Chief Scientist, CSIR-National Institute of Oceanography Dona Paula, Goa - 403004 Co-guide: Dr. A. Sarkar Former Senior Principal Scientist CSIR-National Institute of Oceanography Dona Paula, Goa - 403004 Place of Work: CSIR-National Institute of Oceanography Dona Paula, Goa - 403004 Details of Ph.D. Registration: No. 201109255, 15 November, 2011 I | Page Statement As required under the University ordinance OB-9.9 (v-vi), I state that this thesis entitled "Molecular Biomarker Studies On Ecotoxicological Impact Of Pollutants On The Marine Gastropods Along The Goa Coast" is my original contribution and it has not been submitted on any previous occasion. The literature related to the problem investigated has been cited. Due acknowledgements have been made wherever facilities and suggestions have been availed of. JACKY BHAGAT CSIR-National Institute of Oceanography, Goa. 3rd April, 2017 II | Page Certificate This is to certify that the thesis entitled "Molecular Biomarker Studies On Ecotoxicological Impact Of Pollutants On The Marine Gastropods Along The Goa Coast" submitted by Shri Jacky Bhagat for the award of the degree of Doctor of Philosophy in Marine Science is based on original studies carried out by him under my supervision. The thesis or any part thereof has not been previously submitted for any other degree or diploma in any institution. Dr. B. S. Ingole Research Supervisor CSIR-National Institute of Oceanography, Dona Paula, Goa 3rd April, 2017 III | Page List of Papers Published Papers from thesis: 1. -
Spermatogenesis and Sperm Ultrastructure in the Land Slug Limax Flavus (Gastropoda, Pulmonata) from Egypt
Advances in Biological Research 7 (6): 253-265, 2013 ISSN 1992-0067 © IDOSI Publications, 2013 DOI: 10.5829/idosi.abr.2013.7.6.76164 Spermatogenesis and Sperm Ultrastructure in the Land Slug Limax flavus (Gastropoda, Pulmonata) from Egypt Irene Sameh Gamil Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt Abstract: Spermatogenesis and sperm ultrastructure are examined and described for the first time in the garden slug Limax flavus (Gastropoda, Pulmonata, Stylommatophora) in Egypt. Spermatogonia show round nuclei with patchy heterochromatin. The primary spermatocytes are characterized by the presence of synaptonemal complexes. The secondary spermatocytes are reduced in size and contain less cytoplasm and clustered stacks of Golgian cisternae with small proacrosomal vesicles lying close to them. During spermiogenesis, electron-dense plaques develop at both the future anterior and posterior poles of the nuclear surface. These plaques determine the apparent antero-posterior axis of the spermatid, the distal plaque indicates the future anterior part of the cell and the basal one the posterior part where an abundant number of mitochondria are aggregated. The mature spermatozoon shows the characteristic sperm features: an acrosomal vesicle supported by an acrosomal pedestal; a helically keeled nucleus, a neck region and a complex elongate middle piece featuring paracrystalline and matrix layers sheathing the axoneme, coarse fibers and glycogen helices. Key words: Spermiogenesis Spermatozoa Hermaphrodite snail Mollusca Pulmonate INTRODUCTION study, a detailed description of spermatogenesis process till the formation of mature autospermatozoa The bulk of the land Gastropoda consists of is presented. Studies on the spermatozoa and Pulmonata including the most important order spermatogenesis have been used extensively to Stylommatophora which is one of the most diverse and explore taxonomic and phylogenetic relationships of economically significant groups of living molluscs [1].